compiled-knowledge 4.0.0a20__cp312-cp312-musllinux_1_2_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of compiled-knowledge might be problematic. Click here for more details.

Files changed (178) hide show
  1. ck/__init__.py +0 -0
  2. ck/circuit/__init__.py +17 -0
  3. ck/circuit/_circuit_cy.c +37520 -0
  4. ck/circuit/_circuit_cy.cpython-312-x86_64-linux-musl.so +0 -0
  5. ck/circuit/_circuit_cy.pxd +32 -0
  6. ck/circuit/_circuit_cy.pyx +768 -0
  7. ck/circuit/_circuit_py.py +836 -0
  8. ck/circuit/tmp_const.py +74 -0
  9. ck/circuit_compiler/__init__.py +2 -0
  10. ck/circuit_compiler/circuit_compiler.py +26 -0
  11. ck/circuit_compiler/cython_vm_compiler/__init__.py +1 -0
  12. ck/circuit_compiler/cython_vm_compiler/_compiler.c +19821 -0
  13. ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-312-x86_64-linux-musl.so +0 -0
  14. ck/circuit_compiler/cython_vm_compiler/_compiler.pyx +380 -0
  15. ck/circuit_compiler/cython_vm_compiler/cython_vm_compiler.py +121 -0
  16. ck/circuit_compiler/interpret_compiler.py +223 -0
  17. ck/circuit_compiler/llvm_compiler.py +388 -0
  18. ck/circuit_compiler/llvm_vm_compiler.py +546 -0
  19. ck/circuit_compiler/named_circuit_compilers.py +57 -0
  20. ck/circuit_compiler/support/__init__.py +0 -0
  21. ck/circuit_compiler/support/circuit_analyser/__init__.py +13 -0
  22. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c +10615 -0
  23. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-312-x86_64-linux-musl.so +0 -0
  24. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.pyx +98 -0
  25. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_py.py +93 -0
  26. ck/circuit_compiler/support/input_vars.py +148 -0
  27. ck/circuit_compiler/support/llvm_ir_function.py +234 -0
  28. ck/example/__init__.py +53 -0
  29. ck/example/alarm.py +366 -0
  30. ck/example/asia.py +28 -0
  31. ck/example/binary_clique.py +32 -0
  32. ck/example/bow_tie.py +33 -0
  33. ck/example/cancer.py +37 -0
  34. ck/example/chain.py +38 -0
  35. ck/example/child.py +199 -0
  36. ck/example/clique.py +33 -0
  37. ck/example/cnf_pgm.py +39 -0
  38. ck/example/diamond_square.py +68 -0
  39. ck/example/earthquake.py +36 -0
  40. ck/example/empty.py +10 -0
  41. ck/example/hailfinder.py +539 -0
  42. ck/example/hepar2.py +628 -0
  43. ck/example/insurance.py +504 -0
  44. ck/example/loop.py +40 -0
  45. ck/example/mildew.py +38161 -0
  46. ck/example/munin.py +22982 -0
  47. ck/example/pathfinder.py +53747 -0
  48. ck/example/rain.py +39 -0
  49. ck/example/rectangle.py +161 -0
  50. ck/example/run.py +30 -0
  51. ck/example/sachs.py +129 -0
  52. ck/example/sprinkler.py +30 -0
  53. ck/example/star.py +44 -0
  54. ck/example/stress.py +64 -0
  55. ck/example/student.py +43 -0
  56. ck/example/survey.py +46 -0
  57. ck/example/triangle_square.py +54 -0
  58. ck/example/truss.py +49 -0
  59. ck/in_out/__init__.py +3 -0
  60. ck/in_out/parse_ace_lmap.py +216 -0
  61. ck/in_out/parse_ace_nnf.py +322 -0
  62. ck/in_out/parse_net.py +480 -0
  63. ck/in_out/parser_utils.py +185 -0
  64. ck/in_out/pgm_pickle.py +42 -0
  65. ck/in_out/pgm_python.py +268 -0
  66. ck/in_out/render_bugs.py +111 -0
  67. ck/in_out/render_net.py +177 -0
  68. ck/in_out/render_pomegranate.py +184 -0
  69. ck/pgm.py +3475 -0
  70. ck/pgm_circuit/__init__.py +1 -0
  71. ck/pgm_circuit/marginals_program.py +352 -0
  72. ck/pgm_circuit/mpe_program.py +237 -0
  73. ck/pgm_circuit/pgm_circuit.py +79 -0
  74. ck/pgm_circuit/program_with_slotmap.py +236 -0
  75. ck/pgm_circuit/slot_map.py +35 -0
  76. ck/pgm_circuit/support/__init__.py +0 -0
  77. ck/pgm_circuit/support/compile_circuit.py +83 -0
  78. ck/pgm_circuit/target_marginals_program.py +103 -0
  79. ck/pgm_circuit/wmc_program.py +323 -0
  80. ck/pgm_compiler/__init__.py +2 -0
  81. ck/pgm_compiler/ace/__init__.py +1 -0
  82. ck/pgm_compiler/ace/ace.py +299 -0
  83. ck/pgm_compiler/factor_elimination.py +395 -0
  84. ck/pgm_compiler/named_pgm_compilers.py +63 -0
  85. ck/pgm_compiler/pgm_compiler.py +19 -0
  86. ck/pgm_compiler/recursive_conditioning.py +231 -0
  87. ck/pgm_compiler/support/__init__.py +0 -0
  88. ck/pgm_compiler/support/circuit_table/__init__.py +17 -0
  89. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c +16393 -0
  90. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-312-x86_64-linux-musl.so +0 -0
  91. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.pyx +332 -0
  92. ck/pgm_compiler/support/circuit_table/_circuit_table_py.py +304 -0
  93. ck/pgm_compiler/support/clusters.py +568 -0
  94. ck/pgm_compiler/support/factor_tables.py +406 -0
  95. ck/pgm_compiler/support/join_tree.py +332 -0
  96. ck/pgm_compiler/support/named_compiler_maker.py +43 -0
  97. ck/pgm_compiler/variable_elimination.py +91 -0
  98. ck/probability/__init__.py +0 -0
  99. ck/probability/empirical_probability_space.py +50 -0
  100. ck/probability/pgm_probability_space.py +32 -0
  101. ck/probability/probability_space.py +622 -0
  102. ck/program/__init__.py +3 -0
  103. ck/program/program.py +137 -0
  104. ck/program/program_buffer.py +180 -0
  105. ck/program/raw_program.py +67 -0
  106. ck/sampling/__init__.py +0 -0
  107. ck/sampling/forward_sampler.py +211 -0
  108. ck/sampling/marginals_direct_sampler.py +113 -0
  109. ck/sampling/sampler.py +62 -0
  110. ck/sampling/sampler_support.py +232 -0
  111. ck/sampling/uniform_sampler.py +72 -0
  112. ck/sampling/wmc_direct_sampler.py +171 -0
  113. ck/sampling/wmc_gibbs_sampler.py +153 -0
  114. ck/sampling/wmc_metropolis_sampler.py +165 -0
  115. ck/sampling/wmc_rejection_sampler.py +115 -0
  116. ck/utils/__init__.py +0 -0
  117. ck/utils/iter_extras.py +163 -0
  118. ck/utils/local_config.py +270 -0
  119. ck/utils/map_list.py +128 -0
  120. ck/utils/map_set.py +128 -0
  121. ck/utils/np_extras.py +51 -0
  122. ck/utils/random_extras.py +64 -0
  123. ck/utils/tmp_dir.py +94 -0
  124. ck_demos/__init__.py +0 -0
  125. ck_demos/ace/__init__.py +0 -0
  126. ck_demos/ace/copy_ace_to_ck.py +15 -0
  127. ck_demos/ace/demo_ace.py +49 -0
  128. ck_demos/all_demos.py +88 -0
  129. ck_demos/circuit/__init__.py +0 -0
  130. ck_demos/circuit/demo_circuit_dump.py +22 -0
  131. ck_demos/circuit/demo_derivatives.py +43 -0
  132. ck_demos/circuit_compiler/__init__.py +0 -0
  133. ck_demos/circuit_compiler/compare_circuit_compilers.py +32 -0
  134. ck_demos/circuit_compiler/show_llvm_program.py +26 -0
  135. ck_demos/pgm/__init__.py +0 -0
  136. ck_demos/pgm/demo_pgm_dump.py +18 -0
  137. ck_demos/pgm/demo_pgm_dump_stress.py +18 -0
  138. ck_demos/pgm/demo_pgm_string_rendering.py +15 -0
  139. ck_demos/pgm/show_examples.py +25 -0
  140. ck_demos/pgm_compiler/__init__.py +0 -0
  141. ck_demos/pgm_compiler/compare_pgm_compilers.py +63 -0
  142. ck_demos/pgm_compiler/demo_compiler_dump.py +60 -0
  143. ck_demos/pgm_compiler/demo_factor_elimination.py +47 -0
  144. ck_demos/pgm_compiler/demo_join_tree.py +25 -0
  145. ck_demos/pgm_compiler/demo_marginals_program.py +53 -0
  146. ck_demos/pgm_compiler/demo_mpe_program.py +55 -0
  147. ck_demos/pgm_compiler/demo_pgm_compiler.py +38 -0
  148. ck_demos/pgm_compiler/demo_recursive_conditioning.py +33 -0
  149. ck_demos/pgm_compiler/demo_variable_elimination.py +33 -0
  150. ck_demos/pgm_compiler/demo_wmc_program.py +29 -0
  151. ck_demos/pgm_compiler/time_fe_compiler.py +93 -0
  152. ck_demos/pgm_inference/__init__.py +0 -0
  153. ck_demos/pgm_inference/demo_inferencing_basic.py +188 -0
  154. ck_demos/pgm_inference/demo_inferencing_mpe_cancer.py +45 -0
  155. ck_demos/pgm_inference/demo_inferencing_wmc_and_mpe_sprinkler.py +154 -0
  156. ck_demos/pgm_inference/demo_inferencing_wmc_student.py +110 -0
  157. ck_demos/programs/__init__.py +0 -0
  158. ck_demos/programs/demo_program_buffer.py +24 -0
  159. ck_demos/programs/demo_program_multi.py +24 -0
  160. ck_demos/programs/demo_program_none.py +19 -0
  161. ck_demos/programs/demo_program_single.py +23 -0
  162. ck_demos/programs/demo_raw_program_interpreted.py +21 -0
  163. ck_demos/programs/demo_raw_program_llvm.py +21 -0
  164. ck_demos/sampling/__init__.py +0 -0
  165. ck_demos/sampling/check_sampler.py +71 -0
  166. ck_demos/sampling/demo_marginal_direct_sampler.py +40 -0
  167. ck_demos/sampling/demo_uniform_sampler.py +38 -0
  168. ck_demos/sampling/demo_wmc_direct_sampler.py +40 -0
  169. ck_demos/utils/__init__.py +0 -0
  170. ck_demos/utils/compare.py +120 -0
  171. ck_demos/utils/convert_network.py +45 -0
  172. ck_demos/utils/sample_model.py +216 -0
  173. ck_demos/utils/stop_watch.py +384 -0
  174. compiled_knowledge-4.0.0a20.dist-info/METADATA +50 -0
  175. compiled_knowledge-4.0.0a20.dist-info/RECORD +178 -0
  176. compiled_knowledge-4.0.0a20.dist-info/WHEEL +5 -0
  177. compiled_knowledge-4.0.0a20.dist-info/licenses/LICENSE.txt +21 -0
  178. compiled_knowledge-4.0.0a20.dist-info/top_level.txt +2 -0
@@ -0,0 +1,504 @@
1
+ from ck.pgm import PGM
2
+
3
+
4
+ class Insurance(PGM):
5
+ """
6
+ This PGM is the well known 'Insurance' Bayesian network.
7
+ """
8
+
9
+ def __init__(self):
10
+ super().__init__(self.__class__.__name__)
11
+
12
+ GoodStudent = self.new_rv('GoodStudent', ('True', 'False'))
13
+ Age = self.new_rv('Age', ('Adolescent', 'Adult', 'Senior'))
14
+ SocioEcon = self.new_rv('SocioEcon', ('Prole', 'Middle', 'UpperMiddle', 'Wealthy'))
15
+ RiskAversion = self.new_rv('RiskAversion', ('Psychopath', 'Adventurous', 'Normal', 'Cautious'))
16
+ VehicleYear = self.new_rv('VehicleYear', ('Current', 'Older'))
17
+ ThisCarDam = self.new_rv('ThisCarDam', ('None', 'Mild', 'Moderate', 'Severe'))
18
+ RuggedAuto = self.new_rv('RuggedAuto', ('EggShell', 'Football', 'Tank'))
19
+ Accident = self.new_rv('Accident', ('None', 'Mild', 'Moderate', 'Severe'))
20
+ MakeModel = self.new_rv('MakeModel', ('SportsCar', 'Economy', 'FamilySedan', 'Luxury', 'SuperLuxury'))
21
+ DrivQuality = self.new_rv('DrivQuality', ('Poor', 'Normal', 'Excellent'))
22
+ Mileage = self.new_rv('Mileage', ('FiveThou', 'TwentyThou', 'FiftyThou', 'Domino'))
23
+ Antilock = self.new_rv('Antilock', ('True', 'False'))
24
+ DrivingSkill = self.new_rv('DrivingSkill', ('SubStandard', 'Normal', 'Expert'))
25
+ SeniorTrain = self.new_rv('SeniorTrain', ('True', 'False'))
26
+ ThisCarCost = self.new_rv('ThisCarCost', ('Thousand', 'TenThou', 'HundredThou', 'Million'))
27
+ Theft = self.new_rv('Theft', ('True', 'False'))
28
+ CarValue = self.new_rv('CarValue', ('FiveThou', 'TenThou', 'TwentyThou', 'FiftyThou', 'Million'))
29
+ HomeBase = self.new_rv('HomeBase', ('Secure', 'City', 'Suburb', 'Rural'))
30
+ AntiTheft = self.new_rv('AntiTheft', ('True', 'False'))
31
+ PropCost = self.new_rv('PropCost', ('Thousand', 'TenThou', 'HundredThou', 'Million'))
32
+ OtherCarCost = self.new_rv('OtherCarCost', ('Thousand', 'TenThou', 'HundredThou', 'Million'))
33
+ OtherCar = self.new_rv('OtherCar', ('True', 'False'))
34
+ MedCost = self.new_rv('MedCost', ('Thousand', 'TenThou', 'HundredThou', 'Million'))
35
+ Cushioning = self.new_rv('Cushioning', ('Poor', 'Fair', 'Good', 'Excellent'))
36
+ Airbag = self.new_rv('Airbag', ('True', 'False'))
37
+ ILiCost = self.new_rv('ILiCost', ('Thousand', 'TenThou', 'HundredThou', 'Million'))
38
+ DrivHist = self.new_rv('DrivHist', ('Zero', 'One', 'Many'))
39
+
40
+ pgm_factor0 = self.new_factor(GoodStudent, SocioEcon, Age)
41
+ pgm_function0 = pgm_factor0.set_cpt()
42
+ pgm_function0.set_cpd((0, 0), (0.1, 0.9))
43
+ pgm_function0.set_cpd((1, 0), (0.2, 0.8))
44
+ pgm_function0.set_cpd((2, 0), (0.5, 0.5))
45
+ pgm_function0.set_cpd((3, 0), (0.4, 0.6))
46
+ pgm_function0.set_cpd((0, 1), (0.0, 1.0))
47
+ pgm_function0.set_cpd((1, 1), (0.0, 1.0))
48
+ pgm_function0.set_cpd((2, 1), (0.0, 1.0))
49
+ pgm_function0.set_cpd((3, 1), (0.0, 1.0))
50
+ pgm_function0.set_cpd((0, 2), (0.0, 1.0))
51
+ pgm_function0.set_cpd((1, 2), (0.0, 1.0))
52
+ pgm_function0.set_cpd((2, 2), (0.0, 1.0))
53
+ pgm_function0.set_cpd((3, 2), (0.0, 1.0))
54
+ pgm_factor1 = self.new_factor(Age)
55
+ pgm_function1 = pgm_factor1.set_cpt()
56
+ pgm_function1.set_cpd((), (0.2, 0.6, 0.2))
57
+ pgm_factor2 = self.new_factor(SocioEcon, Age)
58
+ pgm_function2 = pgm_factor2.set_cpt()
59
+ pgm_function2.set_cpd((0,), (0.4, 0.4, 0.19, 0.01))
60
+ pgm_function2.set_cpd((1,), (0.4, 0.4, 0.19, 0.01))
61
+ pgm_function2.set_cpd((2,), (0.5, 0.2, 0.29, 0.01))
62
+ pgm_factor3 = self.new_factor(RiskAversion, Age, SocioEcon)
63
+ pgm_function3 = pgm_factor3.set_cpt()
64
+ pgm_function3.set_cpd((0, 0), (0.02, 0.58, 0.3, 0.1))
65
+ pgm_function3.set_cpd((1, 0), (0.015, 0.285, 0.5, 0.2))
66
+ pgm_function3.set_cpd((2, 0), (0.01, 0.09, 0.4, 0.5))
67
+ pgm_function3.set_cpd((0, 1), (0.02, 0.38, 0.5, 0.1))
68
+ pgm_function3.set_cpd((1, 1), (0.015, 0.185, 0.6, 0.2))
69
+ pgm_function3.set_cpd((2, 1), (0.01, 0.04, 0.35, 0.6))
70
+ pgm_function3.set_cpd((0, 2), (0.02, 0.48, 0.4, 0.1))
71
+ pgm_function3.set_cpd((1, 2), (0.015, 0.285, 0.5, 0.2))
72
+ pgm_function3.set_cpd((2, 2), (0.01, 0.09, 0.4, 0.5))
73
+ pgm_function3.set_cpd((0, 3), (0.02, 0.58, 0.3, 0.1))
74
+ pgm_function3.set_cpd((1, 3), (0.015, 0.285, 0.4, 0.3))
75
+ pgm_function3.set_cpd((2, 3), (0.01, 0.09, 0.4, 0.5))
76
+ pgm_factor4 = self.new_factor(VehicleYear, SocioEcon, RiskAversion)
77
+ pgm_function4 = pgm_factor4.set_cpt()
78
+ pgm_function4.set_cpd((0, 0), (0.15, 0.85))
79
+ pgm_function4.set_cpd((1, 0), (0.3, 0.7))
80
+ pgm_function4.set_cpd((2, 0), (0.8, 0.2))
81
+ pgm_function4.set_cpd((3, 0), (0.9, 0.1))
82
+ pgm_function4.set_cpd((0, 1), (0.15, 0.85))
83
+ pgm_function4.set_cpd((1, 1), (0.3, 0.7))
84
+ pgm_function4.set_cpd((2, 1), (0.8, 0.2))
85
+ pgm_function4.set_cpd((3, 1), (0.9, 0.1))
86
+ pgm_function4.set_cpd((0, 2), (0.15, 0.85))
87
+ pgm_function4.set_cpd((1, 2), (0.3, 0.7))
88
+ pgm_function4.set_cpd((2, 2), (0.8, 0.2))
89
+ pgm_function4.set_cpd((3, 2), (0.9, 0.1))
90
+ pgm_function4.set_cpd((0, 3), (0.15, 0.85))
91
+ pgm_function4.set_cpd((1, 3), (0.3, 0.7))
92
+ pgm_function4.set_cpd((2, 3), (0.8, 0.2))
93
+ pgm_function4.set_cpd((3, 3), (0.9, 0.1))
94
+ pgm_factor5 = self.new_factor(ThisCarDam, Accident, RuggedAuto)
95
+ pgm_function5 = pgm_factor5.set_cpt()
96
+ pgm_function5.set_cpd((0, 0), (1.0, 0.0, 0.0, 0.0))
97
+ pgm_function5.set_cpd((1, 0), (0.001, 0.9, 0.098, 0.001))
98
+ pgm_function5.set_cpd((2, 0), (1e-06, 0.000999, 0.7, 0.299))
99
+ pgm_function5.set_cpd((3, 0), (1e-06, 9e-06, 9e-05, 0.9999))
100
+ pgm_function5.set_cpd((0, 1), (1.0, 0.0, 0.0, 0.0))
101
+ pgm_function5.set_cpd((1, 1), (0.2, 0.75, 0.049999, 1e-06))
102
+ pgm_function5.set_cpd((2, 1), (0.001, 0.099, 0.8, 0.1))
103
+ pgm_function5.set_cpd((3, 1), (1e-06, 0.000999, 0.009, 0.99))
104
+ pgm_function5.set_cpd((0, 2), (1.0, 0.0, 0.0, 0.0))
105
+ pgm_function5.set_cpd((1, 2), (0.7, 0.29, 0.009999, 1e-06))
106
+ pgm_function5.set_cpd((2, 2), (0.05, 0.6, 0.3, 0.05))
107
+ pgm_function5.set_cpd((3, 2), (0.05, 0.2, 0.2, 0.55))
108
+ pgm_factor6 = self.new_factor(RuggedAuto, MakeModel, VehicleYear)
109
+ pgm_function6 = pgm_factor6.set_cpt()
110
+ pgm_function6.set_cpd((0, 0), (0.95, 0.04, 0.01))
111
+ pgm_function6.set_cpd((1, 0), (0.5, 0.5, 0.0))
112
+ pgm_function6.set_cpd((2, 0), (0.2, 0.6, 0.2))
113
+ pgm_function6.set_cpd((3, 0), (0.1, 0.6, 0.3))
114
+ pgm_function6.set_cpd((4, 0), (0.05, 0.55, 0.4))
115
+ pgm_function6.set_cpd((0, 1), (0.95, 0.04, 0.01))
116
+ pgm_function6.set_cpd((1, 1), (0.9, 0.1, 0.0))
117
+ pgm_function6.set_cpd((2, 1), (0.05, 0.55, 0.4))
118
+ pgm_function6.set_cpd((3, 1), (0.1, 0.6, 0.3))
119
+ pgm_function6.set_cpd((4, 1), (0.05, 0.55, 0.4))
120
+ pgm_factor7 = self.new_factor(Accident, Antilock, Mileage, DrivQuality)
121
+ pgm_function7 = pgm_factor7.set_cpt()
122
+ pgm_function7.set_cpd((0, 0, 0), (0.7, 0.2, 0.07, 0.03))
123
+ pgm_function7.set_cpd((1, 0, 0), (0.6, 0.2, 0.1, 0.1))
124
+ pgm_function7.set_cpd((0, 1, 0), (0.4, 0.3, 0.2, 0.1))
125
+ pgm_function7.set_cpd((1, 1, 0), (0.3, 0.2, 0.2, 0.3))
126
+ pgm_function7.set_cpd((0, 2, 0), (0.3, 0.3, 0.2, 0.2))
127
+ pgm_function7.set_cpd((1, 2, 0), (0.2, 0.2, 0.2, 0.4))
128
+ pgm_function7.set_cpd((0, 3, 0), (0.2, 0.2, 0.3, 0.3))
129
+ pgm_function7.set_cpd((1, 3, 0), (0.1, 0.1, 0.3, 0.5))
130
+ pgm_function7.set_cpd((0, 0, 1), (0.99, 0.007, 0.002, 0.001))
131
+ pgm_function7.set_cpd((1, 0, 1), (0.98, 0.01, 0.005, 0.005))
132
+ pgm_function7.set_cpd((0, 1, 1), (0.98, 0.01, 0.005, 0.005))
133
+ pgm_function7.set_cpd((1, 1, 1), (0.96, 0.02, 0.015, 0.005))
134
+ pgm_function7.set_cpd((0, 2, 1), (0.97, 0.02, 0.007, 0.003))
135
+ pgm_function7.set_cpd((1, 2, 1), (0.95, 0.03, 0.015, 0.005))
136
+ pgm_function7.set_cpd((0, 3, 1), (0.95, 0.03, 0.01, 0.01))
137
+ pgm_function7.set_cpd((1, 3, 1), (0.94, 0.03, 0.02, 0.01))
138
+ pgm_function7.set_cpd((0, 0, 2), (0.999, 0.0007, 0.0002, 0.0001))
139
+ pgm_function7.set_cpd((1, 0, 2), (0.995, 0.003, 0.001, 0.001))
140
+ pgm_function7.set_cpd((0, 1, 2), (0.995, 0.003, 0.001, 0.001))
141
+ pgm_function7.set_cpd((1, 1, 2), (0.99, 0.007, 0.002, 0.001))
142
+ pgm_function7.set_cpd((0, 2, 2), (0.99, 0.007, 0.002, 0.001))
143
+ pgm_function7.set_cpd((1, 2, 2), (0.98, 0.01, 0.005, 0.005))
144
+ pgm_function7.set_cpd((0, 3, 2), (0.985, 0.01, 0.003, 0.002))
145
+ pgm_function7.set_cpd((1, 3, 2), (0.98, 0.01, 0.007, 0.003))
146
+ pgm_factor8 = self.new_factor(MakeModel, SocioEcon, RiskAversion)
147
+ pgm_function8 = pgm_factor8.set_cpt()
148
+ pgm_function8.set_cpd((0, 0), (0.1, 0.7, 0.2, 0.0, 0.0))
149
+ pgm_function8.set_cpd((1, 0), (0.15, 0.2, 0.65, 0.0, 0.0))
150
+ pgm_function8.set_cpd((2, 0), (0.2, 0.05, 0.3, 0.45, 0.0))
151
+ pgm_function8.set_cpd((3, 0), (0.3, 0.01, 0.09, 0.4, 0.2))
152
+ pgm_function8.set_cpd((0, 1), (0.1, 0.7, 0.2, 0.0, 0.0))
153
+ pgm_function8.set_cpd((1, 1), (0.15, 0.2, 0.65, 0.0, 0.0))
154
+ pgm_function8.set_cpd((2, 1), (0.2, 0.05, 0.3, 0.45, 0.0))
155
+ pgm_function8.set_cpd((3, 1), (0.3, 0.01, 0.09, 0.4, 0.2))
156
+ pgm_function8.set_cpd((0, 2), (0.1, 0.7, 0.2, 0.0, 0.0))
157
+ pgm_function8.set_cpd((1, 2), (0.15, 0.2, 0.65, 0.0, 0.0))
158
+ pgm_function8.set_cpd((2, 2), (0.2, 0.05, 0.3, 0.45, 0.0))
159
+ pgm_function8.set_cpd((3, 2), (0.3, 0.01, 0.09, 0.4, 0.2))
160
+ pgm_function8.set_cpd((0, 3), (0.1, 0.7, 0.2, 0.0, 0.0))
161
+ pgm_function8.set_cpd((1, 3), (0.15, 0.2, 0.65, 0.0, 0.0))
162
+ pgm_function8.set_cpd((2, 3), (0.2, 0.05, 0.3, 0.45, 0.0))
163
+ pgm_function8.set_cpd((3, 3), (0.3, 0.01, 0.09, 0.4, 0.2))
164
+ pgm_factor9 = self.new_factor(DrivQuality, DrivingSkill, RiskAversion)
165
+ pgm_function9 = pgm_factor9.set_cpt()
166
+ pgm_function9.set_cpd((0, 0), (1.0, 0.0, 0.0))
167
+ pgm_function9.set_cpd((1, 0), (0.5, 0.2, 0.3))
168
+ pgm_function9.set_cpd((2, 0), (0.3, 0.2, 0.5))
169
+ pgm_function9.set_cpd((0, 1), (1.0, 0.0, 0.0))
170
+ pgm_function9.set_cpd((1, 1), (0.3, 0.4, 0.3))
171
+ pgm_function9.set_cpd((2, 1), (0.01, 0.01, 0.98))
172
+ pgm_function9.set_cpd((0, 2), (1.0, 0.0, 0.0))
173
+ pgm_function9.set_cpd((1, 2), (0.0, 1.0, 0.0))
174
+ pgm_function9.set_cpd((2, 2), (0.0, 0.0, 1.0))
175
+ pgm_function9.set_cpd((0, 3), (1.0, 0.0, 0.0))
176
+ pgm_function9.set_cpd((1, 3), (0.0, 0.8, 0.2))
177
+ pgm_function9.set_cpd((2, 3), (0.0, 0.0, 1.0))
178
+ pgm_factor10 = self.new_factor(Mileage)
179
+ pgm_function10 = pgm_factor10.set_cpt()
180
+ pgm_function10.set_cpd((), (0.1, 0.4, 0.4, 0.1))
181
+ pgm_factor11 = self.new_factor(Antilock, MakeModel, VehicleYear)
182
+ pgm_function11 = pgm_factor11.set_cpt()
183
+ pgm_function11.set_cpd((0, 0), (0.9, 0.1))
184
+ pgm_function11.set_cpd((1, 0), (0.001, 0.999))
185
+ pgm_function11.set_cpd((2, 0), (0.4, 0.6))
186
+ pgm_function11.set_cpd((3, 0), (0.99, 0.01))
187
+ pgm_function11.set_cpd((4, 0), (0.99, 0.01))
188
+ pgm_function11.set_cpd((0, 1), (0.1, 0.9))
189
+ pgm_function11.set_cpd((1, 1), (0.0, 1.0))
190
+ pgm_function11.set_cpd((2, 1), (0.0, 1.0))
191
+ pgm_function11.set_cpd((3, 1), (0.3, 0.7))
192
+ pgm_function11.set_cpd((4, 1), (0.15, 0.85))
193
+ pgm_factor12 = self.new_factor(DrivingSkill, Age, SeniorTrain)
194
+ pgm_function12 = pgm_factor12.set_cpt()
195
+ pgm_function12.set_cpd((0, 0), (0.5, 0.45, 0.05))
196
+ pgm_function12.set_cpd((1, 0), (0.3, 0.6, 0.1))
197
+ pgm_function12.set_cpd((2, 0), (0.1, 0.6, 0.3))
198
+ pgm_function12.set_cpd((0, 1), (0.5, 0.45, 0.05))
199
+ pgm_function12.set_cpd((1, 1), (0.3, 0.6, 0.1))
200
+ pgm_function12.set_cpd((2, 1), (0.4, 0.5, 0.1))
201
+ pgm_factor13 = self.new_factor(SeniorTrain, Age, RiskAversion)
202
+ pgm_function13 = pgm_factor13.set_cpt()
203
+ pgm_function13.set_cpd((0, 0), (0.0, 1.0))
204
+ pgm_function13.set_cpd((1, 0), (0.0, 1.0))
205
+ pgm_function13.set_cpd((2, 0), (1e-06, 0.999999))
206
+ pgm_function13.set_cpd((0, 1), (0.0, 1.0))
207
+ pgm_function13.set_cpd((1, 1), (0.0, 1.0))
208
+ pgm_function13.set_cpd((2, 1), (1e-06, 0.999999))
209
+ pgm_function13.set_cpd((0, 2), (0.0, 1.0))
210
+ pgm_function13.set_cpd((1, 2), (0.0, 1.0))
211
+ pgm_function13.set_cpd((2, 2), (0.3, 0.7))
212
+ pgm_function13.set_cpd((0, 3), (0.0, 1.0))
213
+ pgm_function13.set_cpd((1, 3), (0.0, 1.0))
214
+ pgm_function13.set_cpd((2, 3), (0.9, 0.1))
215
+ pgm_factor14 = self.new_factor(ThisCarCost, ThisCarDam, CarValue, Theft)
216
+ pgm_function14 = pgm_factor14.set_cpt()
217
+ pgm_function14.set_cpd((0, 0, 0), (0.2, 0.8, 0.0, 0.0))
218
+ pgm_function14.set_cpd((1, 0, 0), (0.15, 0.85, 0.0, 0.0))
219
+ pgm_function14.set_cpd((2, 0, 0), (0.05, 0.95, 0.0, 0.0))
220
+ pgm_function14.set_cpd((3, 0, 0), (0.03, 0.97, 0.0, 0.0))
221
+ pgm_function14.set_cpd((0, 1, 0), (0.05, 0.95, 0.0, 0.0))
222
+ pgm_function14.set_cpd((1, 1, 0), (0.03, 0.97, 0.0, 0.0))
223
+ pgm_function14.set_cpd((2, 1, 0), (0.01, 0.99, 0.0, 0.0))
224
+ pgm_function14.set_cpd((3, 1, 0), (1e-06, 0.999999, 0.0, 0.0))
225
+ pgm_function14.set_cpd((0, 2, 0), (0.04, 0.01, 0.95, 0.0))
226
+ pgm_function14.set_cpd((1, 2, 0), (0.03, 0.02, 0.95, 0.0))
227
+ pgm_function14.set_cpd((2, 2, 0), (0.001, 0.001, 0.998, 0.0))
228
+ pgm_function14.set_cpd((3, 2, 0), (1e-06, 1e-06, 0.999998, 0.0))
229
+ pgm_function14.set_cpd((0, 3, 0), (0.04, 0.01, 0.95, 0.0))
230
+ pgm_function14.set_cpd((1, 3, 0), (0.03, 0.02, 0.95, 0.0))
231
+ pgm_function14.set_cpd((2, 3, 0), (0.001, 0.001, 0.998, 0.0))
232
+ pgm_function14.set_cpd((3, 3, 0), (1e-06, 1e-06, 0.999998, 0.0))
233
+ pgm_function14.set_cpd((0, 4, 0), (0.04, 0.01, 0.2, 0.75))
234
+ pgm_function14.set_cpd((1, 4, 0), (0.02, 0.03, 0.25, 0.7))
235
+ pgm_function14.set_cpd((2, 4, 0), (0.001, 0.001, 0.018, 0.98))
236
+ pgm_function14.set_cpd((3, 4, 0), (1e-06, 1e-06, 0.009998, 0.99))
237
+ pgm_function14.set_cpd((0, 0, 1), (1.0, 0.0, 0.0, 0.0))
238
+ pgm_function14.set_cpd((1, 0, 1), (0.95, 0.05, 0.0, 0.0))
239
+ pgm_function14.set_cpd((2, 0, 1), (0.25, 0.75, 0.0, 0.0))
240
+ pgm_function14.set_cpd((3, 0, 1), (0.05, 0.95, 0.0, 0.0))
241
+ pgm_function14.set_cpd((0, 1, 1), (1.0, 0.0, 0.0, 0.0))
242
+ pgm_function14.set_cpd((1, 1, 1), (0.95, 0.05, 0.0, 0.0))
243
+ pgm_function14.set_cpd((2, 1, 1), (0.15, 0.85, 0.0, 0.0))
244
+ pgm_function14.set_cpd((3, 1, 1), (0.01, 0.99, 0.0, 0.0))
245
+ pgm_function14.set_cpd((0, 2, 1), (1.0, 0.0, 0.0, 0.0))
246
+ pgm_function14.set_cpd((1, 2, 1), (0.99, 0.01, 0.0, 0.0))
247
+ pgm_function14.set_cpd((2, 2, 1), (0.01, 0.01, 0.98, 0.0))
248
+ pgm_function14.set_cpd((3, 2, 1), (0.005, 0.005, 0.99, 0.0))
249
+ pgm_function14.set_cpd((0, 3, 1), (1.0, 0.0, 0.0, 0.0))
250
+ pgm_function14.set_cpd((1, 3, 1), (0.99, 0.01, 0.0, 0.0))
251
+ pgm_function14.set_cpd((2, 3, 1), (0.005, 0.005, 0.99, 0.0))
252
+ pgm_function14.set_cpd((3, 3, 1), (0.001, 0.001, 0.998, 0.0))
253
+ pgm_function14.set_cpd((0, 4, 1), (1.0, 0.0, 0.0, 0.0))
254
+ pgm_function14.set_cpd((1, 4, 1), (0.98, 0.01, 0.01, 0.0))
255
+ pgm_function14.set_cpd((2, 4, 1), (0.003, 0.003, 0.044, 0.95))
256
+ pgm_function14.set_cpd((3, 4, 1), (1e-06, 1e-06, 0.029998, 0.97))
257
+ pgm_factor15 = self.new_factor(Theft, AntiTheft, HomeBase, CarValue)
258
+ pgm_function15 = pgm_factor15.set_cpt()
259
+ pgm_function15.set_cpd((0, 0, 0), (1e-06, 0.999999))
260
+ pgm_function15.set_cpd((1, 0, 0), (1e-06, 0.999999))
261
+ pgm_function15.set_cpd((0, 1, 0), (0.0005, 0.9995))
262
+ pgm_function15.set_cpd((1, 1, 0), (0.001, 0.999))
263
+ pgm_function15.set_cpd((0, 2, 0), (1e-05, 0.99999))
264
+ pgm_function15.set_cpd((1, 2, 0), (1e-05, 0.99999))
265
+ pgm_function15.set_cpd((0, 3, 0), (1e-05, 0.99999))
266
+ pgm_function15.set_cpd((1, 3, 0), (1e-05, 0.99999))
267
+ pgm_function15.set_cpd((0, 0, 1), (2e-06, 0.999998))
268
+ pgm_function15.set_cpd((1, 0, 1), (2e-06, 0.999998))
269
+ pgm_function15.set_cpd((0, 1, 1), (0.002, 0.998))
270
+ pgm_function15.set_cpd((1, 1, 1), (0.005, 0.995))
271
+ pgm_function15.set_cpd((0, 2, 1), (0.0001, 0.9999))
272
+ pgm_function15.set_cpd((1, 2, 1), (0.0002, 0.9998))
273
+ pgm_function15.set_cpd((0, 3, 1), (2e-05, 0.99998))
274
+ pgm_function15.set_cpd((1, 3, 1), (0.0001, 0.9999))
275
+ pgm_function15.set_cpd((0, 0, 2), (3e-06, 0.999997))
276
+ pgm_function15.set_cpd((1, 0, 2), (3e-06, 0.999997))
277
+ pgm_function15.set_cpd((0, 1, 2), (0.005, 0.995))
278
+ pgm_function15.set_cpd((1, 1, 2), (0.01, 0.99))
279
+ pgm_function15.set_cpd((0, 2, 2), (0.0003, 0.9997))
280
+ pgm_function15.set_cpd((1, 2, 2), (0.0005, 0.9995))
281
+ pgm_function15.set_cpd((0, 3, 2), (5e-05, 0.99995))
282
+ pgm_function15.set_cpd((1, 3, 2), (0.0002, 0.9998))
283
+ pgm_function15.set_cpd((0, 0, 3), (2e-06, 0.999998))
284
+ pgm_function15.set_cpd((1, 0, 3), (2e-06, 0.999998))
285
+ pgm_function15.set_cpd((0, 1, 3), (0.005, 0.995))
286
+ pgm_function15.set_cpd((1, 1, 3), (0.01, 0.99))
287
+ pgm_function15.set_cpd((0, 2, 3), (0.0003, 0.9997))
288
+ pgm_function15.set_cpd((1, 2, 3), (0.0005, 0.9995))
289
+ pgm_function15.set_cpd((0, 3, 3), (5e-05, 0.99995))
290
+ pgm_function15.set_cpd((1, 3, 3), (0.0002, 0.9998))
291
+ pgm_function15.set_cpd((0, 0, 4), (1e-06, 0.999999))
292
+ pgm_function15.set_cpd((1, 0, 4), (1e-06, 0.999999))
293
+ pgm_function15.set_cpd((0, 1, 4), (1e-06, 0.999999))
294
+ pgm_function15.set_cpd((1, 1, 4), (1e-06, 0.999999))
295
+ pgm_function15.set_cpd((0, 2, 4), (1e-06, 0.999999))
296
+ pgm_function15.set_cpd((1, 2, 4), (1e-06, 0.999999))
297
+ pgm_function15.set_cpd((0, 3, 4), (1e-06, 0.999999))
298
+ pgm_function15.set_cpd((1, 3, 4), (1e-06, 0.999999))
299
+ pgm_factor16 = self.new_factor(CarValue, MakeModel, VehicleYear, Mileage)
300
+ pgm_function16 = pgm_factor16.set_cpt()
301
+ pgm_function16.set_cpd((0, 0, 0), (0.0, 0.1, 0.8, 0.09, 0.01))
302
+ pgm_function16.set_cpd((1, 0, 0), (0.1, 0.8, 0.1, 0.0, 0.0))
303
+ pgm_function16.set_cpd((2, 0, 0), (0.0, 0.1, 0.9, 0.0, 0.0))
304
+ pgm_function16.set_cpd((3, 0, 0), (0.0, 0.0, 0.0, 1.0, 0.0))
305
+ pgm_function16.set_cpd((4, 0, 0), (0.0, 0.0, 0.0, 0.0, 1.0))
306
+ pgm_function16.set_cpd((0, 1, 0), (0.03, 0.3, 0.6, 0.06, 0.01))
307
+ pgm_function16.set_cpd((1, 1, 0), (0.25, 0.7, 0.05, 0.0, 0.0))
308
+ pgm_function16.set_cpd((2, 1, 0), (0.2, 0.3, 0.5, 0.0, 0.0))
309
+ pgm_function16.set_cpd((3, 1, 0), (0.01, 0.09, 0.2, 0.7, 0.0))
310
+ pgm_function16.set_cpd((4, 1, 0), (1e-06, 1e-06, 1e-06, 1e-06, 0.999996))
311
+ pgm_function16.set_cpd((0, 0, 1), (0.0, 0.1, 0.8, 0.09, 0.01))
312
+ pgm_function16.set_cpd((1, 0, 1), (0.1, 0.8, 0.1, 0.0, 0.0))
313
+ pgm_function16.set_cpd((2, 0, 1), (0.0, 0.1, 0.9, 0.0, 0.0))
314
+ pgm_function16.set_cpd((3, 0, 1), (0.0, 0.0, 0.0, 1.0, 0.0))
315
+ pgm_function16.set_cpd((4, 0, 1), (0.0, 0.0, 0.0, 0.0, 1.0))
316
+ pgm_function16.set_cpd((0, 1, 1), (0.16, 0.5, 0.3, 0.03, 0.01))
317
+ pgm_function16.set_cpd((1, 1, 1), (0.7, 0.2999, 0.0001, 0.0, 0.0))
318
+ pgm_function16.set_cpd((2, 1, 1), (0.5, 0.3, 0.2, 0.0, 0.0))
319
+ pgm_function16.set_cpd((3, 1, 1), (0.05, 0.15, 0.3, 0.5, 0.0))
320
+ pgm_function16.set_cpd((4, 1, 1), (1e-06, 1e-06, 1e-06, 1e-06, 0.999996))
321
+ pgm_function16.set_cpd((0, 0, 2), (0.0, 0.1, 0.8, 0.09, 0.01))
322
+ pgm_function16.set_cpd((1, 0, 2), (0.1, 0.8, 0.1, 0.0, 0.0))
323
+ pgm_function16.set_cpd((2, 0, 2), (0.0, 0.1, 0.9, 0.0, 0.0))
324
+ pgm_function16.set_cpd((3, 0, 2), (0.0, 0.0, 0.0, 1.0, 0.0))
325
+ pgm_function16.set_cpd((4, 0, 2), (0.0, 0.0, 0.0, 0.0, 1.0))
326
+ pgm_function16.set_cpd((0, 1, 2), (0.4, 0.47, 0.1, 0.02, 0.01))
327
+ pgm_function16.set_cpd((1, 1, 2), (0.99, 0.009999, 1e-06, 0.0, 0.0))
328
+ pgm_function16.set_cpd((2, 1, 2), (0.7, 0.2, 0.1, 0.0, 0.0))
329
+ pgm_function16.set_cpd((3, 1, 2), (0.1, 0.3, 0.3, 0.3, 0.0))
330
+ pgm_function16.set_cpd((4, 1, 2), (1e-06, 1e-06, 1e-06, 1e-06, 0.999996))
331
+ pgm_function16.set_cpd((0, 0, 3), (0.0, 0.1, 0.8, 0.09, 0.01))
332
+ pgm_function16.set_cpd((1, 0, 3), (0.1, 0.8, 0.1, 0.0, 0.0))
333
+ pgm_function16.set_cpd((2, 0, 3), (0.0, 0.1, 0.9, 0.0, 0.0))
334
+ pgm_function16.set_cpd((3, 0, 3), (0.0, 0.0, 0.0, 1.0, 0.0))
335
+ pgm_function16.set_cpd((4, 0, 3), (0.0, 0.0, 0.0, 0.0, 1.0))
336
+ pgm_function16.set_cpd((0, 1, 3), (0.9, 0.06, 0.02, 0.01, 0.01))
337
+ pgm_function16.set_cpd((1, 1, 3), (0.999998, 1e-06, 1e-06, 0.0, 0.0))
338
+ pgm_function16.set_cpd((2, 1, 3), (0.99, 0.009999, 1e-06, 0.0, 0.0))
339
+ pgm_function16.set_cpd((3, 1, 3), (0.2, 0.2, 0.3, 0.3, 0.0))
340
+ pgm_function16.set_cpd((4, 1, 3), (1e-06, 1e-06, 1e-06, 1e-06, 0.999996))
341
+ pgm_factor17 = self.new_factor(HomeBase, RiskAversion, SocioEcon)
342
+ pgm_function17 = pgm_factor17.set_cpt()
343
+ pgm_function17.set_cpd((0, 0), (1e-06, 0.8, 0.049999, 0.15))
344
+ pgm_function17.set_cpd((1, 0), (1e-06, 0.8, 0.05, 0.149999))
345
+ pgm_function17.set_cpd((2, 0), (1e-06, 0.8, 0.05, 0.149999))
346
+ pgm_function17.set_cpd((3, 0), (1e-06, 0.8, 0.05, 0.149999))
347
+ pgm_function17.set_cpd((0, 1), (0.15, 0.8, 0.04, 0.01))
348
+ pgm_function17.set_cpd((1, 1), (0.01, 0.25, 0.6, 0.14))
349
+ pgm_function17.set_cpd((2, 1), (0.299999, 1e-06, 0.6, 0.1))
350
+ pgm_function17.set_cpd((3, 1), (0.95, 1e-06, 0.024445, 0.025554))
351
+ pgm_function17.set_cpd((0, 2), (0.35, 0.6, 0.04, 0.01))
352
+ pgm_function17.set_cpd((1, 2), (0.2, 0.4, 0.3, 0.1))
353
+ pgm_function17.set_cpd((2, 2), (0.5, 1e-06, 0.4, 0.099999))
354
+ pgm_function17.set_cpd((3, 2), (0.999997, 1e-06, 1e-06, 1e-06))
355
+ pgm_function17.set_cpd((0, 3), (0.489999, 0.5, 1e-06, 0.01))
356
+ pgm_function17.set_cpd((1, 3), (0.95, 1e-06, 1e-06, 0.049998))
357
+ pgm_function17.set_cpd((2, 3), (0.85, 1e-06, 0.001, 0.148999))
358
+ pgm_function17.set_cpd((3, 3), (0.999997, 1e-06, 1e-06, 1e-06))
359
+ pgm_factor18 = self.new_factor(AntiTheft, RiskAversion, SocioEcon)
360
+ pgm_function18 = pgm_factor18.set_cpt()
361
+ pgm_function18.set_cpd((0, 0), (1e-06, 0.999999))
362
+ pgm_function18.set_cpd((1, 0), (1e-06, 0.999999))
363
+ pgm_function18.set_cpd((2, 0), (0.1, 0.9))
364
+ pgm_function18.set_cpd((3, 0), (0.95, 0.05))
365
+ pgm_function18.set_cpd((0, 1), (1e-06, 0.999999))
366
+ pgm_function18.set_cpd((1, 1), (1e-06, 0.999999))
367
+ pgm_function18.set_cpd((2, 1), (0.3, 0.7))
368
+ pgm_function18.set_cpd((3, 1), (0.999999, 1e-06))
369
+ pgm_function18.set_cpd((0, 2), (0.05, 0.95))
370
+ pgm_function18.set_cpd((1, 2), (0.2, 0.8))
371
+ pgm_function18.set_cpd((2, 2), (0.9, 0.1))
372
+ pgm_function18.set_cpd((3, 2), (0.999999, 1e-06))
373
+ pgm_function18.set_cpd((0, 3), (0.5, 0.5))
374
+ pgm_function18.set_cpd((1, 3), (0.5, 0.5))
375
+ pgm_function18.set_cpd((2, 3), (0.8, 0.2))
376
+ pgm_function18.set_cpd((3, 3), (0.999999, 1e-06))
377
+ pgm_factor19 = self.new_factor(PropCost, OtherCarCost, ThisCarCost)
378
+ pgm_function19 = pgm_factor19.set_cpt()
379
+ pgm_function19.set_cpd((0, 0), (0.7, 0.3, 0.0, 0.0))
380
+ pgm_function19.set_cpd((1, 0), (0.0, 0.95, 0.05, 0.0))
381
+ pgm_function19.set_cpd((2, 0), (0.0, 0.0, 0.98, 0.02))
382
+ pgm_function19.set_cpd((3, 0), (0.0, 0.0, 0.0, 1.0))
383
+ pgm_function19.set_cpd((0, 1), (0.0, 0.95, 0.05, 0.0))
384
+ pgm_function19.set_cpd((1, 1), (0.0, 0.6, 0.4, 0.0))
385
+ pgm_function19.set_cpd((2, 1), (0.0, 0.0, 0.8, 0.2))
386
+ pgm_function19.set_cpd((3, 1), (0.0, 0.0, 0.0, 1.0))
387
+ pgm_function19.set_cpd((0, 2), (0.0, 0.0, 0.98, 0.02))
388
+ pgm_function19.set_cpd((1, 2), (0.0, 0.0, 0.95, 0.05))
389
+ pgm_function19.set_cpd((2, 2), (0.0, 0.0, 0.6, 0.4))
390
+ pgm_function19.set_cpd((3, 2), (0.0, 0.0, 0.0, 1.0))
391
+ pgm_function19.set_cpd((0, 3), (0.0, 0.0, 0.0, 1.0))
392
+ pgm_function19.set_cpd((1, 3), (0.0, 0.0, 0.0, 1.0))
393
+ pgm_function19.set_cpd((2, 3), (0.0, 0.0, 0.0, 1.0))
394
+ pgm_function19.set_cpd((3, 3), (0.0, 0.0, 0.0, 1.0))
395
+ pgm_factor20 = self.new_factor(OtherCarCost, Accident, RuggedAuto)
396
+ pgm_function20 = pgm_factor20.set_cpt()
397
+ pgm_function20.set_cpd((0, 0), (1.0, 0.0, 0.0, 0.0))
398
+ pgm_function20.set_cpd((1, 0), (0.99, 0.005, 0.00499, 1e-05))
399
+ pgm_function20.set_cpd((2, 0), (0.6, 0.2, 0.19998, 2e-05))
400
+ pgm_function20.set_cpd((3, 0), (0.2, 0.4, 0.39996, 4e-05))
401
+ pgm_function20.set_cpd((0, 1), (1.0, 0.0, 0.0, 0.0))
402
+ pgm_function20.set_cpd((1, 1), (0.9799657, 0.00999965, 0.009984651, 4.999825e-05))
403
+ pgm_function20.set_cpd((2, 1), (0.5, 0.2, 0.29997, 3e-05))
404
+ pgm_function20.set_cpd((3, 1), (0.1, 0.5, 0.39994, 6e-05))
405
+ pgm_function20.set_cpd((0, 2), (1.0, 0.0, 0.0, 0.0))
406
+ pgm_function20.set_cpd((1, 2), (0.95, 0.03, 0.01998, 2e-05))
407
+ pgm_function20.set_cpd((2, 2), (0.4, 0.3, 0.29996, 4e-05))
408
+ pgm_function20.set_cpd((3, 2), (0.005, 0.55, 0.4449, 0.0001))
409
+ pgm_factor21 = self.new_factor(OtherCar, SocioEcon)
410
+ pgm_function21 = pgm_factor21.set_cpt()
411
+ pgm_function21.set_cpd((0,), (0.5, 0.5))
412
+ pgm_function21.set_cpd((1,), (0.8, 0.2))
413
+ pgm_function21.set_cpd((2,), (0.9, 0.1))
414
+ pgm_function21.set_cpd((3,), (0.95, 0.05))
415
+ pgm_factor22 = self.new_factor(MedCost, Accident, Age, Cushioning)
416
+ pgm_function22 = pgm_factor22.set_cpt()
417
+ pgm_function22.set_cpd((0, 0, 0), (1.0, 0.0, 0.0, 0.0))
418
+ pgm_function22.set_cpd((1, 0, 0), (0.96, 0.03, 0.009, 0.001))
419
+ pgm_function22.set_cpd((2, 0, 0), (0.5, 0.2, 0.2, 0.1))
420
+ pgm_function22.set_cpd((3, 0, 0), (0.3, 0.3, 0.2, 0.2))
421
+ pgm_function22.set_cpd((0, 1, 0), (1.0, 0.0, 0.0, 0.0))
422
+ pgm_function22.set_cpd((1, 1, 0), (0.96, 0.03, 0.009, 0.001))
423
+ pgm_function22.set_cpd((2, 1, 0), (0.5, 0.2, 0.2, 0.1))
424
+ pgm_function22.set_cpd((3, 1, 0), (0.3, 0.3, 0.2, 0.2))
425
+ pgm_function22.set_cpd((0, 2, 0), (1.0, 0.0, 0.0, 0.0))
426
+ pgm_function22.set_cpd((1, 2, 0), (0.9, 0.07, 0.02, 0.01))
427
+ pgm_function22.set_cpd((2, 2, 0), (0.3, 0.3, 0.2, 0.2))
428
+ pgm_function22.set_cpd((3, 2, 0), (0.2, 0.2, 0.3, 0.3))
429
+ pgm_function22.set_cpd((0, 0, 1), (1.0, 0.0, 0.0, 0.0))
430
+ pgm_function22.set_cpd((1, 0, 1), (0.98, 0.019, 0.0009, 0.0001))
431
+ pgm_function22.set_cpd((2, 0, 1), (0.8, 0.15, 0.03, 0.02))
432
+ pgm_function22.set_cpd((3, 0, 1), (0.5, 0.2, 0.2, 0.1))
433
+ pgm_function22.set_cpd((0, 1, 1), (1.0, 0.0, 0.0, 0.0))
434
+ pgm_function22.set_cpd((1, 1, 1), (0.98, 0.019, 0.0009, 0.0001))
435
+ pgm_function22.set_cpd((2, 1, 1), (0.8, 0.15, 0.03, 0.02))
436
+ pgm_function22.set_cpd((3, 1, 1), (0.5, 0.2, 0.2, 0.1))
437
+ pgm_function22.set_cpd((0, 2, 1), (1.0, 0.0, 0.0, 0.0))
438
+ pgm_function22.set_cpd((1, 2, 1), (0.95, 0.04, 0.007, 0.003))
439
+ pgm_function22.set_cpd((2, 2, 1), (0.5, 0.2, 0.2, 0.1))
440
+ pgm_function22.set_cpd((3, 2, 1), (0.3, 0.3, 0.2, 0.2))
441
+ pgm_function22.set_cpd((0, 0, 2), (1.0, 0.0, 0.0, 0.0))
442
+ pgm_function22.set_cpd((1, 0, 2), (0.99, 0.0099, 9e-05, 1e-05))
443
+ pgm_function22.set_cpd((2, 0, 2), (0.95, 0.02, 0.02, 0.01))
444
+ pgm_function22.set_cpd((3, 0, 2), (0.9, 0.07, 0.02, 0.01))
445
+ pgm_function22.set_cpd((0, 1, 2), (1.0, 0.0, 0.0, 0.0))
446
+ pgm_function22.set_cpd((1, 1, 2), (0.99, 0.0099, 9e-05, 1e-05))
447
+ pgm_function22.set_cpd((2, 1, 2), (0.95, 0.02, 0.02, 0.01))
448
+ pgm_function22.set_cpd((3, 1, 2), (0.9, 0.07, 0.02, 0.01))
449
+ pgm_function22.set_cpd((0, 2, 2), (1.0, 0.0, 0.0, 0.0))
450
+ pgm_function22.set_cpd((1, 2, 2), (0.97, 0.025, 0.003, 0.002))
451
+ pgm_function22.set_cpd((2, 2, 2), (0.9, 0.07, 0.02, 0.01))
452
+ pgm_function22.set_cpd((3, 2, 2), (0.6, 0.3, 0.07, 0.03))
453
+ pgm_function22.set_cpd((0, 0, 3), (1.0, 0.0, 0.0, 0.0))
454
+ pgm_function22.set_cpd((1, 0, 3), (0.999, 0.00099, 9e-06, 1e-06))
455
+ pgm_function22.set_cpd((2, 0, 3), (0.99, 0.007, 0.002, 0.001))
456
+ pgm_function22.set_cpd((3, 0, 3), (0.95, 0.03, 0.01, 0.01))
457
+ pgm_function22.set_cpd((0, 1, 3), (1.0, 0.0, 0.0, 0.0))
458
+ pgm_function22.set_cpd((1, 1, 3), (0.999, 0.00099, 9e-06, 1e-06))
459
+ pgm_function22.set_cpd((2, 1, 3), (0.99, 0.007, 0.002, 0.001))
460
+ pgm_function22.set_cpd((3, 1, 3), (0.95, 0.03, 0.01, 0.01))
461
+ pgm_function22.set_cpd((0, 2, 3), (1.0, 0.0, 0.0, 0.0))
462
+ pgm_function22.set_cpd((1, 2, 3), (0.99, 0.007, 0.002, 0.001))
463
+ pgm_function22.set_cpd((2, 2, 3), (0.95, 0.03, 0.01, 0.01))
464
+ pgm_function22.set_cpd((3, 2, 3), (0.9, 0.05, 0.03, 0.02))
465
+ pgm_factor23 = self.new_factor(Cushioning, RuggedAuto, Airbag)
466
+ pgm_function23 = pgm_factor23.set_cpt()
467
+ pgm_function23.set_cpd((0, 0), (0.5, 0.3, 0.2, 0.0))
468
+ pgm_function23.set_cpd((1, 0), (0.0, 0.1, 0.6, 0.3))
469
+ pgm_function23.set_cpd((2, 0), (0.0, 0.0, 0.0, 1.0))
470
+ pgm_function23.set_cpd((0, 1), (0.7, 0.3, 0.0, 0.0))
471
+ pgm_function23.set_cpd((1, 1), (0.1, 0.6, 0.3, 0.0))
472
+ pgm_function23.set_cpd((2, 1), (0.0, 0.0, 0.7, 0.3))
473
+ pgm_factor24 = self.new_factor(Airbag, MakeModel, VehicleYear)
474
+ pgm_function24 = pgm_factor24.set_cpt()
475
+ pgm_function24.set_cpd((0, 0), (1.0, 0.0))
476
+ pgm_function24.set_cpd((1, 0), (1.0, 0.0))
477
+ pgm_function24.set_cpd((2, 0), (1.0, 0.0))
478
+ pgm_function24.set_cpd((3, 0), (1.0, 0.0))
479
+ pgm_function24.set_cpd((4, 0), (1.0, 0.0))
480
+ pgm_function24.set_cpd((0, 1), (0.1, 0.9))
481
+ pgm_function24.set_cpd((1, 1), (0.05, 0.95))
482
+ pgm_function24.set_cpd((2, 1), (0.2, 0.8))
483
+ pgm_function24.set_cpd((3, 1), (0.6, 0.4))
484
+ pgm_function24.set_cpd((4, 1), (0.1, 0.9))
485
+ pgm_factor25 = self.new_factor(ILiCost, Accident)
486
+ pgm_function25 = pgm_factor25.set_cpt()
487
+ pgm_function25.set_cpd((0,), (1.0, 0.0, 0.0, 0.0))
488
+ pgm_function25.set_cpd((1,), (0.999, 0.000998, 1e-06, 1e-06))
489
+ pgm_function25.set_cpd((2,), (0.9, 0.05, 0.03, 0.02))
490
+ pgm_function25.set_cpd((3,), (0.8, 0.1, 0.06, 0.04))
491
+ pgm_factor26 = self.new_factor(DrivHist, DrivingSkill, RiskAversion)
492
+ pgm_function26 = pgm_factor26.set_cpt()
493
+ pgm_function26.set_cpd((0, 0), (0.001, 0.004, 0.995))
494
+ pgm_function26.set_cpd((1, 0), (0.1, 0.3, 0.6))
495
+ pgm_function26.set_cpd((2, 0), (0.3, 0.3, 0.4))
496
+ pgm_function26.set_cpd((0, 1), (0.002, 0.008, 0.99))
497
+ pgm_function26.set_cpd((1, 1), (0.5, 0.3, 0.2))
498
+ pgm_function26.set_cpd((2, 1), (0.6, 0.3, 0.1))
499
+ pgm_function26.set_cpd((0, 2), (0.03, 0.15, 0.82))
500
+ pgm_function26.set_cpd((1, 2), (0.9, 0.07, 0.03))
501
+ pgm_function26.set_cpd((2, 2), (0.99, 0.009999, 1e-06))
502
+ pgm_function26.set_cpd((0, 3), (0.3, 0.3, 0.4))
503
+ pgm_function26.set_cpd((1, 3), (0.95, 0.04, 0.01))
504
+ pgm_function26.set_cpd((2, 3), (0.999998, 1e-06, 1e-06))
ck/example/loop.py ADDED
@@ -0,0 +1,40 @@
1
+ import math
2
+ import random as _random
3
+
4
+ from ck.pgm import PGM
5
+
6
+
7
+ class Loop(PGM):
8
+ """
9
+ This PGM is the 'Loop' factor graph.
10
+
11
+ The Loop factor graph consists of a chain of random variables where
12
+ adjacent random variables in the chain are connected by a binary factor.
13
+ Random variables are named x0, x1, x2, ... .
14
+ If include_unaries then, also includes one unary factor per random variable.
15
+ """
16
+
17
+ def __init__(
18
+ self,
19
+ vars_per_loop: int = 20,
20
+ states_per_var: int = 20,
21
+ include_unaries: int = True,
22
+ random_seed: int = 123456,
23
+ ):
24
+ params = (vars_per_loop, states_per_var, include_unaries)
25
+ super().__init__(f'{self.__class__.__name__}({",".join(str(param) for param in params)})')
26
+
27
+ scale = 1 + math.log2(vars_per_loop)
28
+ random_stream = _random.Random(random_seed).random
29
+ binary_iter = map(lambda x: x / scale, iter(random_stream, None))
30
+ unary_iter = iter(random_stream, None)
31
+
32
+ rvs = [self.new_rv(f'x{i}', states_per_var) for i in range(vars_per_loop)]
33
+
34
+ for i in range(1, len(rvs)):
35
+ self.new_factor(rvs[i], rvs[i - 1]).set_dense().set_iter(binary_iter)
36
+ self.new_factor(rvs[-1], rvs[0]).set_dense().set_iter(binary_iter)
37
+
38
+ if include_unaries:
39
+ for rv in rvs:
40
+ self.new_factor(rv).set_dense().set_iter(unary_iter)