compiled-knowledge 4.0.0a20__cp312-cp312-macosx_10_13_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of compiled-knowledge might be problematic. Click here for more details.

Files changed (178) hide show
  1. ck/__init__.py +0 -0
  2. ck/circuit/__init__.py +17 -0
  3. ck/circuit/_circuit_cy.c +37525 -0
  4. ck/circuit/_circuit_cy.cpython-312-darwin.so +0 -0
  5. ck/circuit/_circuit_cy.pxd +32 -0
  6. ck/circuit/_circuit_cy.pyx +768 -0
  7. ck/circuit/_circuit_py.py +836 -0
  8. ck/circuit/tmp_const.py +74 -0
  9. ck/circuit_compiler/__init__.py +2 -0
  10. ck/circuit_compiler/circuit_compiler.py +26 -0
  11. ck/circuit_compiler/cython_vm_compiler/__init__.py +1 -0
  12. ck/circuit_compiler/cython_vm_compiler/_compiler.c +19826 -0
  13. ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-312-darwin.so +0 -0
  14. ck/circuit_compiler/cython_vm_compiler/_compiler.pyx +380 -0
  15. ck/circuit_compiler/cython_vm_compiler/cython_vm_compiler.py +121 -0
  16. ck/circuit_compiler/interpret_compiler.py +223 -0
  17. ck/circuit_compiler/llvm_compiler.py +388 -0
  18. ck/circuit_compiler/llvm_vm_compiler.py +546 -0
  19. ck/circuit_compiler/named_circuit_compilers.py +57 -0
  20. ck/circuit_compiler/support/__init__.py +0 -0
  21. ck/circuit_compiler/support/circuit_analyser/__init__.py +13 -0
  22. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c +10620 -0
  23. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-312-darwin.so +0 -0
  24. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.pyx +98 -0
  25. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_py.py +93 -0
  26. ck/circuit_compiler/support/input_vars.py +148 -0
  27. ck/circuit_compiler/support/llvm_ir_function.py +234 -0
  28. ck/example/__init__.py +53 -0
  29. ck/example/alarm.py +366 -0
  30. ck/example/asia.py +28 -0
  31. ck/example/binary_clique.py +32 -0
  32. ck/example/bow_tie.py +33 -0
  33. ck/example/cancer.py +37 -0
  34. ck/example/chain.py +38 -0
  35. ck/example/child.py +199 -0
  36. ck/example/clique.py +33 -0
  37. ck/example/cnf_pgm.py +39 -0
  38. ck/example/diamond_square.py +68 -0
  39. ck/example/earthquake.py +36 -0
  40. ck/example/empty.py +10 -0
  41. ck/example/hailfinder.py +539 -0
  42. ck/example/hepar2.py +628 -0
  43. ck/example/insurance.py +504 -0
  44. ck/example/loop.py +40 -0
  45. ck/example/mildew.py +38161 -0
  46. ck/example/munin.py +22982 -0
  47. ck/example/pathfinder.py +53747 -0
  48. ck/example/rain.py +39 -0
  49. ck/example/rectangle.py +161 -0
  50. ck/example/run.py +30 -0
  51. ck/example/sachs.py +129 -0
  52. ck/example/sprinkler.py +30 -0
  53. ck/example/star.py +44 -0
  54. ck/example/stress.py +64 -0
  55. ck/example/student.py +43 -0
  56. ck/example/survey.py +46 -0
  57. ck/example/triangle_square.py +54 -0
  58. ck/example/truss.py +49 -0
  59. ck/in_out/__init__.py +3 -0
  60. ck/in_out/parse_ace_lmap.py +216 -0
  61. ck/in_out/parse_ace_nnf.py +322 -0
  62. ck/in_out/parse_net.py +480 -0
  63. ck/in_out/parser_utils.py +185 -0
  64. ck/in_out/pgm_pickle.py +42 -0
  65. ck/in_out/pgm_python.py +268 -0
  66. ck/in_out/render_bugs.py +111 -0
  67. ck/in_out/render_net.py +177 -0
  68. ck/in_out/render_pomegranate.py +184 -0
  69. ck/pgm.py +3475 -0
  70. ck/pgm_circuit/__init__.py +1 -0
  71. ck/pgm_circuit/marginals_program.py +352 -0
  72. ck/pgm_circuit/mpe_program.py +237 -0
  73. ck/pgm_circuit/pgm_circuit.py +79 -0
  74. ck/pgm_circuit/program_with_slotmap.py +236 -0
  75. ck/pgm_circuit/slot_map.py +35 -0
  76. ck/pgm_circuit/support/__init__.py +0 -0
  77. ck/pgm_circuit/support/compile_circuit.py +83 -0
  78. ck/pgm_circuit/target_marginals_program.py +103 -0
  79. ck/pgm_circuit/wmc_program.py +323 -0
  80. ck/pgm_compiler/__init__.py +2 -0
  81. ck/pgm_compiler/ace/__init__.py +1 -0
  82. ck/pgm_compiler/ace/ace.py +299 -0
  83. ck/pgm_compiler/factor_elimination.py +395 -0
  84. ck/pgm_compiler/named_pgm_compilers.py +63 -0
  85. ck/pgm_compiler/pgm_compiler.py +19 -0
  86. ck/pgm_compiler/recursive_conditioning.py +231 -0
  87. ck/pgm_compiler/support/__init__.py +0 -0
  88. ck/pgm_compiler/support/circuit_table/__init__.py +17 -0
  89. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c +16398 -0
  90. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-312-darwin.so +0 -0
  91. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.pyx +332 -0
  92. ck/pgm_compiler/support/circuit_table/_circuit_table_py.py +304 -0
  93. ck/pgm_compiler/support/clusters.py +568 -0
  94. ck/pgm_compiler/support/factor_tables.py +406 -0
  95. ck/pgm_compiler/support/join_tree.py +332 -0
  96. ck/pgm_compiler/support/named_compiler_maker.py +43 -0
  97. ck/pgm_compiler/variable_elimination.py +91 -0
  98. ck/probability/__init__.py +0 -0
  99. ck/probability/empirical_probability_space.py +50 -0
  100. ck/probability/pgm_probability_space.py +32 -0
  101. ck/probability/probability_space.py +622 -0
  102. ck/program/__init__.py +3 -0
  103. ck/program/program.py +137 -0
  104. ck/program/program_buffer.py +180 -0
  105. ck/program/raw_program.py +67 -0
  106. ck/sampling/__init__.py +0 -0
  107. ck/sampling/forward_sampler.py +211 -0
  108. ck/sampling/marginals_direct_sampler.py +113 -0
  109. ck/sampling/sampler.py +62 -0
  110. ck/sampling/sampler_support.py +232 -0
  111. ck/sampling/uniform_sampler.py +72 -0
  112. ck/sampling/wmc_direct_sampler.py +171 -0
  113. ck/sampling/wmc_gibbs_sampler.py +153 -0
  114. ck/sampling/wmc_metropolis_sampler.py +165 -0
  115. ck/sampling/wmc_rejection_sampler.py +115 -0
  116. ck/utils/__init__.py +0 -0
  117. ck/utils/iter_extras.py +163 -0
  118. ck/utils/local_config.py +270 -0
  119. ck/utils/map_list.py +128 -0
  120. ck/utils/map_set.py +128 -0
  121. ck/utils/np_extras.py +51 -0
  122. ck/utils/random_extras.py +64 -0
  123. ck/utils/tmp_dir.py +94 -0
  124. ck_demos/__init__.py +0 -0
  125. ck_demos/ace/__init__.py +0 -0
  126. ck_demos/ace/copy_ace_to_ck.py +15 -0
  127. ck_demos/ace/demo_ace.py +49 -0
  128. ck_demos/all_demos.py +88 -0
  129. ck_demos/circuit/__init__.py +0 -0
  130. ck_demos/circuit/demo_circuit_dump.py +22 -0
  131. ck_demos/circuit/demo_derivatives.py +43 -0
  132. ck_demos/circuit_compiler/__init__.py +0 -0
  133. ck_demos/circuit_compiler/compare_circuit_compilers.py +32 -0
  134. ck_demos/circuit_compiler/show_llvm_program.py +26 -0
  135. ck_demos/pgm/__init__.py +0 -0
  136. ck_demos/pgm/demo_pgm_dump.py +18 -0
  137. ck_demos/pgm/demo_pgm_dump_stress.py +18 -0
  138. ck_demos/pgm/demo_pgm_string_rendering.py +15 -0
  139. ck_demos/pgm/show_examples.py +25 -0
  140. ck_demos/pgm_compiler/__init__.py +0 -0
  141. ck_demos/pgm_compiler/compare_pgm_compilers.py +63 -0
  142. ck_demos/pgm_compiler/demo_compiler_dump.py +60 -0
  143. ck_demos/pgm_compiler/demo_factor_elimination.py +47 -0
  144. ck_demos/pgm_compiler/demo_join_tree.py +25 -0
  145. ck_demos/pgm_compiler/demo_marginals_program.py +53 -0
  146. ck_demos/pgm_compiler/demo_mpe_program.py +55 -0
  147. ck_demos/pgm_compiler/demo_pgm_compiler.py +38 -0
  148. ck_demos/pgm_compiler/demo_recursive_conditioning.py +33 -0
  149. ck_demos/pgm_compiler/demo_variable_elimination.py +33 -0
  150. ck_demos/pgm_compiler/demo_wmc_program.py +29 -0
  151. ck_demos/pgm_compiler/time_fe_compiler.py +93 -0
  152. ck_demos/pgm_inference/__init__.py +0 -0
  153. ck_demos/pgm_inference/demo_inferencing_basic.py +188 -0
  154. ck_demos/pgm_inference/demo_inferencing_mpe_cancer.py +45 -0
  155. ck_demos/pgm_inference/demo_inferencing_wmc_and_mpe_sprinkler.py +154 -0
  156. ck_demos/pgm_inference/demo_inferencing_wmc_student.py +110 -0
  157. ck_demos/programs/__init__.py +0 -0
  158. ck_demos/programs/demo_program_buffer.py +24 -0
  159. ck_demos/programs/demo_program_multi.py +24 -0
  160. ck_demos/programs/demo_program_none.py +19 -0
  161. ck_demos/programs/demo_program_single.py +23 -0
  162. ck_demos/programs/demo_raw_program_interpreted.py +21 -0
  163. ck_demos/programs/demo_raw_program_llvm.py +21 -0
  164. ck_demos/sampling/__init__.py +0 -0
  165. ck_demos/sampling/check_sampler.py +71 -0
  166. ck_demos/sampling/demo_marginal_direct_sampler.py +40 -0
  167. ck_demos/sampling/demo_uniform_sampler.py +38 -0
  168. ck_demos/sampling/demo_wmc_direct_sampler.py +40 -0
  169. ck_demos/utils/__init__.py +0 -0
  170. ck_demos/utils/compare.py +120 -0
  171. ck_demos/utils/convert_network.py +45 -0
  172. ck_demos/utils/sample_model.py +216 -0
  173. ck_demos/utils/stop_watch.py +384 -0
  174. compiled_knowledge-4.0.0a20.dist-info/METADATA +50 -0
  175. compiled_knowledge-4.0.0a20.dist-info/RECORD +178 -0
  176. compiled_knowledge-4.0.0a20.dist-info/WHEEL +6 -0
  177. compiled_knowledge-4.0.0a20.dist-info/licenses/LICENSE.txt +21 -0
  178. compiled_knowledge-4.0.0a20.dist-info/top_level.txt +2 -0
@@ -0,0 +1,539 @@
1
+ from ck.pgm import PGM
2
+
3
+
4
+ class Hailfinder(PGM):
5
+ """
6
+ This PGM is the well known 'Hailfinder' Bayesian network.
7
+ """
8
+
9
+ def __init__(self):
10
+ super().__init__(self.__class__.__name__)
11
+
12
+ pgm_rv0 = self.new_rv('N0_7muVerMo', ('StrongUp', 'WeakUp', 'Neutral', 'Down'))
13
+ pgm_rv1 = self.new_rv('SubjVertMo', ('StronUp', 'WeakUp', 'Neutral', 'Down'))
14
+ pgm_rv2 = self.new_rv('QGVertMotion', ('StrongUp', 'WeakUp', 'Neutral', 'Down'))
15
+ pgm_rv3 = self.new_rv('CombVerMo', ('StrongUp', 'WeakUp', 'Neutral', 'Down'))
16
+ pgm_rv4 = self.new_rv('AreaMeso_ALS', ('StrongUp', 'WeakUp', 'Neutral', 'Down'))
17
+ pgm_rv5 = self.new_rv('SatContMoist', ('VeryWet', 'Wet', 'Neutral', 'Dry'))
18
+ pgm_rv6 = self.new_rv('RaoContMoist', ('VeryWet', 'Wet', 'Neutral', 'Dry'))
19
+ pgm_rv7 = self.new_rv('CombMoisture', ('VeryWet', 'Wet', 'Neutral', 'Dry'))
20
+ pgm_rv8 = self.new_rv('AreaMoDryAir', ('VeryWet', 'Wet', 'Neutral', 'Dry'))
21
+ pgm_rv9 = self.new_rv('VISCloudCov', ('Cloudy', 'PC', 'Clear'))
22
+ pgm_rv10 = self.new_rv('IRCloudCover', ('Cloudy', 'PC', 'Clear'))
23
+ pgm_rv11 = self.new_rv('CombClouds', ('Cloudy', 'PC', 'Clear'))
24
+ pgm_rv12 = self.new_rv('CldShadeOth', ('Cloudy', 'PC', 'Clear'))
25
+ pgm_rv13 = self.new_rv('AMInstabMt', ('None', 'Weak', 'Strong'))
26
+ pgm_rv14 = self.new_rv('InsInMt', ('None', 'Weak', 'Strong'))
27
+ pgm_rv15 = self.new_rv('WndHodograph', ('DCVZFavor', 'StrongWest', 'Westerly', 'Other'))
28
+ pgm_rv16 = self.new_rv('OutflowFrMt', ('None', 'Weak', 'Strong'))
29
+ pgm_rv17 = self.new_rv('MorningBound', ('None', 'Weak', 'Strong'))
30
+ pgm_rv18 = self.new_rv('Boundaries', ('None', 'Weak', 'Strong'))
31
+ pgm_rv19 = self.new_rv('CldShadeConv', ('None', 'Some', 'Marked'))
32
+ pgm_rv20 = self.new_rv('CompPlFcst', ('IncCapDecIns', 'LittleChange', 'DecCapIncIns'))
33
+ pgm_rv21 = self.new_rv('CapChange', ('Decreasing', 'LittleChange', 'Increasing'))
34
+ pgm_rv22 = self.new_rv('LoLevMoistAd', ('StrongPos', 'WeakPos', 'Neutral', 'Negative'))
35
+ pgm_rv23 = self.new_rv('InsChange', ('Decreasing', 'LittleChange', 'Increasing'))
36
+ pgm_rv24 = self.new_rv('MountainFcst', ('XNIL', 'SIG', 'SVR'))
37
+ pgm_rv25 = self.new_rv('Date',
38
+ ('May15_Jun14', 'Jun15_Jul1', 'Jul2_Jul15', 'Jul16_Aug10', 'Aug11_Aug20', 'Aug20_Sep15'))
39
+ pgm_rv26 = self.new_rv('Scenario', ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K'))
40
+ pgm_rv27 = self.new_rv('ScenRelAMCIN', ('AB', 'CThruK'))
41
+ pgm_rv28 = self.new_rv('MorningCIN', ('None', 'PartInhibit', 'Stifling', 'TotalInhibit'))
42
+ pgm_rv29 = self.new_rv('AMCINInScen', ('LessThanAve', 'Average', 'MoreThanAve'))
43
+ pgm_rv30 = self.new_rv('CapInScen', ('LessThanAve', 'Average', 'MoreThanAve'))
44
+ pgm_rv31 = self.new_rv('ScenRelAMIns', ('ABI', 'CDEJ', 'F', 'G', 'H', 'K'))
45
+ pgm_rv32 = self.new_rv('LIfr12ZDENSd', ('LIGt0', 'N1GtLIGt_4', 'N5GtLIGt_8', 'LILt_8'))
46
+ pgm_rv33 = self.new_rv('AMDewptCalPl', ('Instability', 'Neutral', 'Stability'))
47
+ pgm_rv34 = self.new_rv('AMInsWliScen', ('LessUnstable', 'Average', 'MoreUnstable'))
48
+ pgm_rv35 = self.new_rv('InsSclInScen', ('LessUnstable', 'Average', 'MoreUnstable'))
49
+ pgm_rv36 = self.new_rv('ScenRel3_4', ('ACEFK', 'B', 'D', 'GJ', 'HI'))
50
+ pgm_rv37 = self.new_rv('LatestCIN', ('None', 'PartInhibit', 'Stifling', 'TotalInhibit'))
51
+ pgm_rv38 = self.new_rv('LLIW', ('Unfavorable', 'Weak', 'Moderate', 'Strong'))
52
+ pgm_rv39 = self.new_rv('CurPropConv', ('None', 'Slight', 'Moderate', 'Strong'))
53
+ pgm_rv40 = self.new_rv('ScnRelPlFcst', ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K'))
54
+ pgm_rv41 = self.new_rv('PlainsFcst', ('XNIL', 'SIG', 'SVR'))
55
+ pgm_rv42 = self.new_rv('N34StarFcst', ('XNIL', 'SIG', 'SVR'))
56
+ pgm_rv43 = self.new_rv('R5Fcst', ('XNIL', 'SIG', 'SVR'))
57
+ pgm_rv44 = self.new_rv(
58
+ 'Dewpoints',
59
+ ('LowEvrywhere', 'LowAtStation', 'LowSHighN', 'LowNHighS', 'LowMtsHighPl', 'HighEvrywher', 'Other'),
60
+ )
61
+ pgm_rv45 = self.new_rv('LowLLapse', ('CloseToDryAd', 'Steep', 'ModerateOrLe', 'Stable'))
62
+ pgm_rv46 = self.new_rv('MeanRH', ('VeryMoist', 'Average', 'Dry'))
63
+ pgm_rv47 = self.new_rv('MidLLapse', ('CloseToDryAd', 'Steep', 'ModerateOrLe'))
64
+ pgm_rv48 = self.new_rv('MvmtFeatures', ('StrongFront', 'MarkedUpper', 'OtherRapid', 'NoMajor'))
65
+ pgm_rv49 = self.new_rv('RHRatio', ('MoistMDryL', 'DryMMoistL', 'Other'))
66
+ pgm_rv50 = self.new_rv('SfcWndShfDis',
67
+ ('DenvCyclone', 'E_W_N', 'E_W_S', 'MovingFtorOt', 'DryLine', 'None', 'Other'))
68
+ pgm_rv51 = self.new_rv('SynForcng', ('SigNegative', 'NegToPos', 'SigPositive', 'PosToNeg', 'LittleChange'))
69
+ pgm_rv52 = self.new_rv('TempDis', ('QStationary', 'Moving', 'None', 'Other'))
70
+ pgm_rv53 = self.new_rv('WindAloft', ('LV', 'SWQuad', 'NWQuad', 'AllElse'))
71
+ pgm_rv54 = self.new_rv('WindFieldMt', ('Westerly', 'LVorOther'))
72
+ pgm_rv55 = self.new_rv('WindFieldPln', ('LV', 'DenvCyclone', 'LongAnticyc', 'E_NE', 'SEQuad', 'WidespdDnsl'))
73
+
74
+ pgm_factor0 = self.new_factor(pgm_rv0)
75
+ pgm_function_2955280956688 = pgm_factor0.set_dense()
76
+ pgm_function_2955280956688.set_flat(0.25, 0.25, 0.25, 0.25)
77
+ pgm_factor1 = self.new_factor(pgm_rv1)
78
+ pgm_function_2955280953728 = pgm_factor1.set_dense()
79
+ pgm_function_2955280953728.set_flat(0.15, 0.15, 0.5, 0.2)
80
+ pgm_factor2 = self.new_factor(pgm_rv2)
81
+ pgm_function_2955280955328 = pgm_factor2.set_dense()
82
+ pgm_function_2955280955328.set_flat(0.15, 0.15, 0.5, 0.2)
83
+ pgm_factor3 = self.new_factor(pgm_rv3, pgm_rv0, pgm_rv1, pgm_rv2)
84
+ pgm_function_2955280955408 = pgm_factor3.set_dense()
85
+ pgm_function_2955280955408.set_flat(
86
+ 1.0, 0.9, 0.7, 0.2, 0.9, 0.7, 0.15, 0.1, 0.7, 0.15, 0.2, 0.1, 0.2, 0.1, 0.1,
87
+ 0.1, 0.9, 0.7, 0.15, 0.1, 0.7, 0.0, 0.0, 0.0, 0.15, 0.0, 0.0, 0.0, 0.1, 0.0,
88
+ 0.0, 0.0, 0.7, 0.15, 0.2, 0.1, 0.15, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.1,
89
+ 0.0, 0.0, 0.0, 0.2, 0.1, 0.1, 0.1, 0.1, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0,
90
+ 0.1, 0.0, 0.0, 0.0, 0.0, 0.1, 0.2, 0.5, 0.1, 0.3, 0.7, 0.35, 0.2, 0.7, 0.6,
91
+ 0.2, 0.5, 0.35, 0.2, 0.1, 0.1, 0.3, 0.7, 0.35, 0.3, 1.0, 0.7, 0.2, 0.7, 0.7,
92
+ 0.3, 0.15, 0.35, 0.2, 0.15, 0.1, 0.2, 0.7, 0.6, 0.2,
93
+ 0.7, 0.7, 0.3, 0.15, 0.6, 0.3, 0.0, 0.0, 0.2, 0.15, 0.0, 0.0, 0.5, 0.35,
94
+ 0.2, 0.1, 0.35, 0.2, 0.15, 0.1, 0.2, 0.15, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0,
95
+ 0.0, 0.0, 0.1, 0.2, 0.0, 0.0, 0.15, 0.45, 0.1, 0.15, 0.2, 0.6, 0.2, 0.45,
96
+ 0.6, 0.2, 0.0, 0.0, 0.15, 0.45, 0.0, 0.0, 0.3, 0.7, 0.15, 0.3, 0.7, 0.5,
97
+ 0.45, 0.7, 0.5, 0.2, 0.1, 0.15, 0.2, 0.6, 0.15, 0.3, 0.7, 0.5, 0.2, 0.7,
98
+ 1.0, 0.7, 0.6, 0.5, 0.7, 0.3, 0.2, 0.45, 0.6, 0.2, 0.45, 0.7, 0.5, 0.2, 0.6,
99
+ 0.5, 0.7, 0.3, 0.2, 0.2, 0.3, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.1,
100
+ 0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 0.1, 0.6, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0,
101
+ 0.1, 0.0, 0.0, 0.0, 0.35, 0.1, 0.1, 0.35, 0.7, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0,
102
+ 0.0, 0.35, 0.0, 0.0, 0.0, 0.3, 0.1, 0.35, 0.3, 0.7, 0.1, 0.1, 0.1, 0.6, 0.1,
103
+ 0.1, 0.35, 0.7, 0.1, 0.35, 0.3, 0.7, 0.6, 0.7, 0.7, 1.0)
104
+ pgm_factor4 = self.new_factor(pgm_rv4, pgm_rv3)
105
+ pgm_function_2955280956848 = pgm_factor4.set_dense()
106
+ pgm_function_2955280956848.set_flat(
107
+ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
108
+ 1.0)
109
+ pgm_factor5 = self.new_factor(pgm_rv5)
110
+ pgm_function_2955280953408 = pgm_factor5.set_dense()
111
+ pgm_function_2955280953408.set_flat(0.15, 0.2, 0.4, 0.25)
112
+ pgm_factor6 = self.new_factor(pgm_rv6)
113
+ pgm_function_2955280955488 = pgm_factor6.set_dense()
114
+ pgm_function_2955280955488.set_flat(0.15, 0.2, 0.4, 0.25)
115
+ pgm_factor7 = self.new_factor(pgm_rv7, pgm_rv5, pgm_rv6)
116
+ pgm_function_2955280954048 = pgm_factor7.set_dense()
117
+ pgm_function_2955280954048.set_flat(
118
+ 0.9, 0.6, 0.3, 0.25, 0.55, 0.15, 0.05, 0.1, 0.25, 0.1, 0.0, 0.0, 0.25, 0.25,
119
+ 0.25, 0.25, 0.1, 0.35, 0.5, 0.35, 0.4, 0.6, 0.4, 0.3, 0.3, 0.35, 0.15, 0.1,
120
+ 0.25, 0.25, 0.25, 0.25, 0.0, 0.05, 0.2, 0.25, 0.05, 0.2, 0.45, 0.3, 0.35,
121
+ 0.5, 0.7, 0.4, 0.25, 0.25, 0.25, 0.25, 0.0, 0.0, 0.0, 0.15, 0.0, 0.05, 0.1,
122
+ 0.3, 0.1, 0.05, 0.15, 0.5, 0.25, 0.25, 0.25, 0.25)
123
+ pgm_factor8 = self.new_factor(pgm_rv8, pgm_rv4, pgm_rv7)
124
+ pgm_function_2955280954128 = pgm_factor8.set_dense()
125
+ pgm_function_2955280954128.set_flat(
126
+ 0.99, 0.7, 0.2, 0.0, 0.8, 0.35, 0.01, 0.0, 0.7, 0.2, 0.01, 0.0, 0.2, 0.05,
127
+ 0.0, 0.0, 0.01, 0.29, 0.55, 0.25, 0.2, 0.55, 0.39, 0.02, 0.29, 0.6, 0.09,
128
+ 0.0, 0.74, 0.4, 0.05, 0.0, 0.0, 0.01, 0.24, 0.55, 0.0, 0.1, 0.55, 0.43,
129
+ 0.01, 0.2, 0.8, 0.3, 0.06, 0.45, 0.5, 0.01, 0.0, 0.0, 0.01, 0.2, 0.0, 0.0,
130
+ 0.05, 0.55, 0.0, 0.0, 0.1, 0.7, 0.0, 0.1, 0.45, 0.99)
131
+ pgm_factor9 = self.new_factor(pgm_rv9)
132
+ pgm_function_2955280953568 = pgm_factor9.set_dense()
133
+ pgm_function_2955280953568.set_flat(0.1, 0.5, 0.4)
134
+ pgm_factor10 = self.new_factor(pgm_rv10)
135
+ pgm_function_2955280953648 = pgm_factor10.set_dense()
136
+ pgm_function_2955280953648.set_flat(0.15, 0.45, 0.4)
137
+ pgm_factor11 = self.new_factor(pgm_rv11, pgm_rv9, pgm_rv10)
138
+ pgm_function_2955280790816 = pgm_factor11.set_dense()
139
+ pgm_function_2955280790816.set_flat(
140
+ 0.95, 0.85, 0.8, 0.45, 0.1, 0.05, 0.1, 0.02, 0.0, 0.04, 0.13, 0.1, 0.52,
141
+ 0.8, 0.45, 0.4, 0.28, 0.02, 0.01, 0.02, 0.1, 0.03, 0.1, 0.5, 0.5, 0.7, 0.98)
142
+ pgm_factor12 = self.new_factor(pgm_rv12, pgm_rv8, pgm_rv4, pgm_rv11)
143
+ pgm_function_2955280788736 = pgm_factor12.set_dense()
144
+ pgm_function_2955280788736.set_flat(
145
+ 1.0, 0.85, 0.25, 0.95, 0.4, 0.05, 0.93, 0.2, 0.01, 0.74, 0.0, 0.0, 0.92,
146
+ 0.7, 0.15, 0.9, 0.25, 0.01, 0.8, 0.01, 0.0, 0.65, 0.0, 0.0, 0.88, 0.4, 0.1,
147
+ 0.85, 0.15, 0.0, 0.8, 0.03, 0.0, 0.5, 0.01, 0.0, 0.85, 0.55, 0.1, 0.6, 0.01,
148
+ 0.0, 0.78, 0.01, 0.0, 0.42, 0.05, 0.0, 0.0, 0.15, 0.35, 0.05, 0.55, 0.45,
149
+ 0.07, 0.78, 0.29, 0.25, 0.5, 0.1, 0.08, 0.29, 0.4, 0.09, 0.6, 0.3, 0.2,
150
+ 0.89, 0.1, 0.34, 0.4, 0.02, 0.12, 0.5, 0.4, 0.15, 0.75, 0.2, 0.18, 0.85,
151
+ 0.05, 0.48, 0.74, 0.01, 0.14, 0.43, 0.25, 0.39, 0.9, 0.15, 0.2, 0.74, 0.04,
152
+ 0.55, 0.65, 0.0, 0.0, 0.0, 0.4, 0.0,
153
+ 0.05, 0.5, 0.0, 0.02, 0.7, 0.01, 0.5, 0.9, 0.0, 0.01, 0.45, 0.01, 0.15,
154
+ 0.69, 0.0, 0.1, 0.9, 0.01, 0.6, 0.98, 0.0, 0.1, 0.5, 0.0, 0.1, 0.8, 0.02,
155
+ 0.12, 0.95, 0.02, 0.25, 0.99, 0.01, 0.02, 0.65, 0.01, 0.09, 0.85, 0.02,
156
+ 0.25, 0.96, 0.03, 0.3, 1.0)
157
+ pgm_factor13 = self.new_factor(pgm_rv13)
158
+ pgm_function_2955280788816 = pgm_factor13.set_dense()
159
+ pgm_function_2955280788816.set_flat(0.333333, 0.333333, 0.333334)
160
+ pgm_factor14 = self.new_factor(pgm_rv14, pgm_rv12, pgm_rv13)
161
+ pgm_function_2955280790736 = pgm_factor14.set_dense()
162
+ pgm_function_2955280790736.set_flat(
163
+ 0.9, 0.01, 0.0, 0.6, 0.0, 0.0, 0.5, 0.0, 0.0, 0.1, 0.4, 0.05, 0.39, 0.4,
164
+ 0.0, 0.35, 0.15, 0.0, 0.0, 0.59, 0.95, 0.01, 0.6, 1.0, 0.15, 0.85, 1.0)
165
+ pgm_factor15 = self.new_factor(pgm_rv15)
166
+ pgm_function_2955280787616 = pgm_factor15.set_dense()
167
+ pgm_function_2955280787616.set_flat(0.3, 0.25, 0.25, 0.2)
168
+ pgm_factor16 = self.new_factor(pgm_rv16, pgm_rv14, pgm_rv15)
169
+ pgm_function_2955280787696 = pgm_factor16.set_dense()
170
+ pgm_function_2955280787696.set_flat(
171
+ 1.0, 1.0, 1.0, 1.0, 0.5, 0.15, 0.35, 0.8, 0.05, 0.01, 0.1, 0.6, 0.0, 0.0,
172
+ 0.0, 0.0, 0.4, 0.4, 0.6, 0.19, 0.45, 0.15, 0.25, 0.3, 0.0, 0.0, 0.0, 0.0,
173
+ 0.1, 0.45, 0.05, 0.01, 0.5, 0.84, 0.65, 0.1)
174
+ pgm_factor17 = self.new_factor(pgm_rv17)
175
+ pgm_function_2955280787856 = pgm_factor17.set_dense()
176
+ pgm_function_2955280787856.set_flat(0.5, 0.35, 0.15)
177
+ pgm_factor18 = self.new_factor(pgm_rv18, pgm_rv16, pgm_rv15, pgm_rv17)
178
+ pgm_function_2955280791056 = pgm_factor18.set_dense()
179
+ pgm_function_2955280791056.set_flat(
180
+ 0.5, 0.3, 0.1, 0.75, 0.45, 0.25, 0.8, 0.35, 0.25, 0.7, 0.25, 0.05, 0.3, 0.1,
181
+ 0.05, 0.15, 0.1, 0.05, 0.15, 0.05, 0.05, 0.4, 0.2, 0.05, 0.0, 0.0, 0.0, 0.0,
182
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.02, 0.01, 0.01, 0.48, 0.5, 0.25, 0.22, 0.45, 0.4,
183
+ 0.18, 0.5, 0.35, 0.28, 0.6, 0.35, 0.63, 0.5, 0.2, 0.7, 0.75, 0.5, 0.7, 0.8,
184
+ 0.45, 0.55, 0.65, 0.3, 0.55, 0.4, 0.15, 0.5, 0.4, 0.2, 0.7, 0.5, 0.2, 0.73,
185
+ 0.5, 0.2, 0.02, 0.2, 0.65, 0.03, 0.1, 0.35, 0.02, 0.15, 0.4, 0.02, 0.15,
186
+ 0.6, 0.07, 0.4, 0.75, 0.15, 0.15, 0.45, 0.15, 0.15, 0.5, 0.05, 0.15, 0.65,
187
+ 0.45, 0.6, 0.85, 0.5,
188
+ 0.6, 0.8, 0.3, 0.5, 0.8, 0.25, 0.49, 0.79)
189
+ pgm_factor19 = self.new_factor(pgm_rv19, pgm_rv14, pgm_rv15)
190
+ pgm_function_2955280787936 = pgm_factor19.set_dense()
191
+ pgm_function_2955280787936.set_flat(
192
+ 1.0, 1.0, 1.0, 1.0, 0.3, 0.2, 0.5, 0.8, 0.0, 0.0, 0.1, 0.5, 0.0, 0.0, 0.0,
193
+ 0.0, 0.6, 0.7, 0.46, 0.19, 0.3, 0.2, 0.5, 0.38, 0.0, 0.0, 0.0, 0.0, 0.1,
194
+ 0.1, 0.04, 0.01, 0.7, 0.8, 0.4, 0.12)
195
+ pgm_factor20 = self.new_factor(pgm_rv20, pgm_rv18, pgm_rv19, pgm_rv4, pgm_rv12)
196
+ pgm_function_2955280790896 = pgm_factor20.set_dense()
197
+ pgm_function_2955280790896.set_flat(
198
+ 0.4, 0.1, 0.05, 0.6, 0.4, 0.2, 0.6, 0.45, 0.25, 0.7, 0.65, 0.6, 0.4, 0.25,
199
+ 0.15, 0.65, 0.45, 0.25, 0.65, 0.5, 0.3, 0.75, 0.7, 0.65, 0.45, 0.4, 0.35,
200
+ 0.7, 0.55, 0.4, 0.7, 0.6, 0.55, 0.85, 0.8, 0.75, 0.35, 0.05, 0.03, 0.5, 0.3,
201
+ 0.15, 0.55, 0.4, 0.2, 0.6, 0.6, 0.55, 0.35, 0.1, 0.05, 0.55, 0.35, 0.2, 0.6,
202
+ 0.45, 0.25, 0.65, 0.65, 0.6, 0.4, 0.25, 0.2, 0.65, 0.45, 0.3, 0.65, 0.55,
203
+ 0.5, 0.78, 0.75, 0.7, 0.3, 0.01, 0.01, 0.35, 0.15, 0.1, 0.45, 0.3, 0.15,
204
+ 0.5, 0.48, 0.45, 0.3, 0.05, 0.04, 0.4, 0.2, 0.12, 0.5, 0.35, 0.2, 0.55,
205
+ 0.55, 0.5, 0.3, 0.15, 0.13, 0.5,
206
+ 0.35, 0.2, 0.55, 0.45, 0.4, 0.7, 0.65, 0.6, 0.35, 0.35, 0.3, 0.25, 0.3, 0.5,
207
+ 0.35, 0.4, 0.45, 0.27, 0.3, 0.35, 0.35, 0.3, 0.35, 0.25, 0.3, 0.5, 0.3, 0.4,
208
+ 0.45, 0.23, 0.26, 0.32, 0.3, 0.3, 0.3, 0.22, 0.3, 0.45, 0.27, 0.3, 0.33,
209
+ 0.14, 0.17, 0.23, 0.35, 0.35, 0.25, 0.25, 0.35, 0.45, 0.3, 0.4, 0.4, 0.35,
210
+ 0.3, 0.33, 0.35, 0.35, 0.3, 0.25, 0.35, 0.5, 0.3, 0.4, 0.5, 0.3, 0.3, 0.35,
211
+ 0.35, 0.4, 0.4, 0.25, 0.35, 0.5, 0.3, 0.3, 0.3, 0.18, 0.2, 0.25, 0.3, 0.25,
212
+ 0.2, 0.25, 0.4, 0.35, 0.3, 0.4, 0.4, 0.35, 0.32, 0.35, 0.3, 0.6, 0.27, 0.25,
213
+ 0.4, 0.43, 0.3, 0.4,
214
+ 0.45, 0.35, 0.3, 0.4, 0.35, 0.35, 0.35, 0.25, 0.35, 0.45, 0.35, 0.35, 0.35,
215
+ 0.24, 0.28, 0.3, 0.25, 0.55, 0.65, 0.15, 0.3, 0.3, 0.05, 0.15, 0.3, 0.03,
216
+ 0.05, 0.05, 0.25, 0.45, 0.5, 0.1, 0.25, 0.25, 0.05, 0.1, 0.25, 0.02, 0.04,
217
+ 0.03, 0.25, 0.3, 0.35, 0.08, 0.15, 0.15, 0.03, 0.1, 0.12, 0.01, 0.03, 0.02,
218
+ 0.3, 0.6, 0.72, 0.25, 0.35, 0.4, 0.15, 0.2, 0.4, 0.05, 0.1, 0.12, 0.3, 0.55,
219
+ 0.65, 0.2, 0.3, 0.3, 0.1, 0.15, 0.25, 0.05, 0.05, 0.05, 0.25, 0.35, 0.4,
220
+ 0.1, 0.2, 0.2, 0.05, 0.15, 0.2, 0.04, 0.05, 0.05, 0.4, 0.74, 0.79, 0.4,
221
+ 0.45, 0.55, 0.25, 0.3, 0.45, 0.15, 0.2, 0.2,
222
+ 0.4, 0.35, 0.69, 0.35, 0.4, 0.45, 0.2, 0.25, 0.35, 0.1, 0.15, 0.1, 0.35,
223
+ 0.5, 0.52, 0.25, 0.3, 0.35, 0.1, 0.2, 0.25, 0.06, 0.07, 0.1)
224
+ pgm_factor21 = self.new_factor(pgm_rv21, pgm_rv20)
225
+ pgm_function_2955280789536 = pgm_factor21.set_dense()
226
+ pgm_function_2955280789536.set_flat(0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0)
227
+ pgm_factor22 = self.new_factor(pgm_rv22)
228
+ pgm_function_2955280789616 = pgm_factor22.set_dense()
229
+ pgm_function_2955280789616.set_flat(0.12, 0.28, 0.3, 0.3)
230
+ pgm_factor23 = self.new_factor(pgm_rv23, pgm_rv22, pgm_rv20)
231
+ pgm_function_2955280789456 = pgm_factor23.set_dense()
232
+ pgm_function_2955280789456.set_flat(
233
+ 0.0, 0.0, 0.05, 0.05, 0.1, 0.25, 0.15, 0.2, 0.35, 0.5, 0.8, 0.9, 0.05, 0.12,
234
+ 0.15, 0.15, 0.4, 0.5, 0.5, 0.6, 0.5, 0.4, 0.16, 0.09, 0.95, 0.88, 0.8, 0.8,
235
+ 0.5, 0.25, 0.35, 0.2, 0.15, 0.1, 0.04, 0.01)
236
+ pgm_factor24 = self.new_factor(pgm_rv24, pgm_rv14)
237
+ pgm_function_2955280788016 = pgm_factor24.set_dense()
238
+ pgm_function_2955280788016.set_flat(
239
+ 1.0, 0.48, 0.2, 0.0, 0.5, 0.5, 0.0, 0.02, 0.3)
240
+ pgm_factor25 = self.new_factor(pgm_rv25)
241
+ pgm_function_2955280788096 = pgm_factor25.set_dense()
242
+ pgm_function_2955280788096.set_flat(
243
+ 0.254098, 0.131148, 0.106557, 0.213115, 0.07377, 0.221312)
244
+ pgm_factor26 = self.new_factor(pgm_rv26, pgm_rv25)
245
+ pgm_function_2955280789216 = pgm_factor26.set_dense()
246
+ pgm_function_2955280789216.set_flat(
247
+ 0.1, 0.05, 0.04, 0.04, 0.04, 0.05, 0.16, 0.16, 0.13, 0.13, 0.11, 0.11, 0.1,
248
+ 0.09, 0.1, 0.09, 0.1, 0.1, 0.08, 0.09, 0.08, 0.07, 0.07, 0.08, 0.08, 0.12,
249
+ 0.15, 0.2, 0.17, 0.11, 0.01, 0.02, 0.03, 0.08, 0.05, 0.02, 0.08, 0.13, 0.14,
250
+ 0.06, 0.1, 0.11, 0.1, 0.06, 0.04, 0.05, 0.05, 0.06, 0.09, 0.07, 0.06, 0.07,
251
+ 0.07, 0.08, 0.03, 0.11, 0.15, 0.13, 0.14, 0.11, 0.17, 0.1, 0.08, 0.08, 0.1,
252
+ 0.17)
253
+ pgm_factor27 = self.new_factor(pgm_rv27, pgm_rv26)
254
+ pgm_function_2955280789056 = pgm_factor27.set_dense()
255
+ pgm_function_2955280789056.set_flat(
256
+ 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0,
257
+ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
258
+ pgm_factor28 = self.new_factor(pgm_rv28)
259
+ pgm_function_2955280788256 = pgm_factor28.set_dense()
260
+ pgm_function_2955280788256.set_flat(0.15, 0.57, 0.2, 0.08)
261
+ pgm_factor29 = self.new_factor(pgm_rv29, pgm_rv27, pgm_rv28)
262
+ pgm_function_2955280787776 = pgm_factor29.set_dense()
263
+ pgm_function_2955280787776.set_flat(
264
+ 1.0, 0.6, 0.25, 0.0, 0.75, 0.3, 0.01, 0.0, 0.0, 0.37, 0.45, 0.1, 0.25, 0.6,
265
+ 0.4, 0.03, 0.0, 0.03, 0.3, 0.9, 0.0, 0.1, 0.59, 0.97)
266
+ pgm_factor30 = self.new_factor(pgm_rv30, pgm_rv29, pgm_rv21)
267
+ pgm_function_2955280790176 = pgm_factor30.set_dense()
268
+ pgm_function_2955280790176.set_flat(
269
+ 1.0, 0.98, 0.35, 0.75, 0.03, 0.0, 0.3, 0.0, 0.0, 0.0, 0.02, 0.35, 0.25,
270
+ 0.94, 0.25, 0.35, 0.02, 0.0, 0.0, 0.0, 0.3, 0.0, 0.03, 0.75, 0.35, 0.98,
271
+ 1.0)
272
+ pgm_factor31 = self.new_factor(pgm_rv31, pgm_rv26)
273
+ pgm_function_2955280787216 = pgm_factor31.set_dense()
274
+ pgm_function_2955280787216.set_flat(
275
+ 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0,
276
+ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
277
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
278
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
279
+ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
280
+ pgm_factor32 = self.new_factor(pgm_rv32)
281
+ pgm_function_2955280787536 = pgm_factor32.set_dense()
282
+ pgm_function_2955280787536.set_flat(0.1, 0.52, 0.3, 0.08)
283
+ pgm_factor33 = self.new_factor(pgm_rv33)
284
+ pgm_function_2955280790976 = pgm_factor33.set_dense()
285
+ pgm_function_2955280790976.set_flat(0.3, 0.25, 0.45)
286
+ pgm_factor34 = self.new_factor(pgm_rv34, pgm_rv31, pgm_rv32, pgm_rv33)
287
+ pgm_function_2955280789936 = pgm_factor34.set_dense()
288
+ pgm_function_2955280789936.set_flat(
289
+ 0.6, 0.85, 0.95, 0.3, 0.5, 0.75, 0.06, 0.2, 0.5, 0.01, 0.05, 0.35, 0.4, 0.7,
290
+ 0.9, 0.15, 0.25, 0.6, 0.03, 0.2, 0.45, 0.01, 0.05, 0.25, 0.35, 0.55, 0.85,
291
+ 0.07, 0.2, 0.5, 0.0, 0.05, 0.25, 0.0, 0.0, 0.04, 0.3, 0.5, 0.75, 0.15, 0.2,
292
+ 0.15, 0.07, 0.13, 0.1, 0.02, 0.04, 0.07, 0.35, 0.4, 0.58, 0.1, 0.15, 0.4,
293
+ 0.02, 0.05, 0.15, 0.01, 0.03, 0.08, 0.3, 0.4, 0.5, 0.1, 0.25, 0.3, 0.05,
294
+ 0.1, 0.15, 0.02, 0.04, 0.1, 0.3, 0.13, 0.04, 0.3, 0.3, 0.2, 0.21, 0.4, 0.4,
295
+ 0.04, 0.2, 0.35, 0.3, 0.2, 0.08, 0.3, 0.5, 0.3, 0.17, 0.3, 0.4, 0.04, 0.18,
296
+ 0.4, 0.35, 0.4, 0.13, 0.38,
297
+ 0.6, 0.43, 0.05, 0.35, 0.5, 0.02, 0.05, 0.16, 0.4, 0.3, 0.2, 0.35, 0.6, 0.7,
298
+ 0.23, 0.47, 0.75, 0.18, 0.26, 0.3, 0.45, 0.5, 0.4, 0.25, 0.45, 0.45, 0.18,
299
+ 0.25, 0.35, 0.09, 0.17, 0.32, 0.55, 0.5, 0.43, 0.35, 0.5, 0.5, 0.22, 0.35,
300
+ 0.35, 0.1, 0.16, 0.25, 0.1, 0.02, 0.01, 0.4, 0.2, 0.05, 0.73, 0.4, 0.1,
301
+ 0.95, 0.75, 0.3, 0.3, 0.1, 0.02, 0.55, 0.25, 0.1, 0.8, 0.5, 0.15, 0.95,
302
+ 0.77, 0.35, 0.3, 0.05, 0.02, 0.55, 0.2, 0.07, 0.95, 0.6, 0.25, 0.98, 0.95,
303
+ 0.8, 0.3, 0.2, 0.05, 0.5, 0.2, 0.15, 0.7, 0.4, 0.15, 0.8, 0.7, 0.63, 0.2,
304
+ 0.1, 0.02, 0.65, 0.4, 0.15, 0.8, 0.7,
305
+ 0.5, 0.9, 0.8, 0.6, 0.15, 0.1, 0.07, 0.55, 0.25, 0.2, 0.73, 0.55, 0.5, 0.88,
306
+ 0.8, 0.65)
307
+ pgm_factor35 = self.new_factor(pgm_rv35, pgm_rv34, pgm_rv23)
308
+ pgm_function_2955280788576 = pgm_factor35.set_dense()
309
+ pgm_function_2955280788576.set_flat(
310
+ 1.0, 0.9, 0.4, 0.6, 0.15, 0.0, 0.25, 0.0, 0.0, 0.0, 0.1, 0.35, 0.4, 0.7,
311
+ 0.4, 0.35, 0.1, 0.0, 0.0, 0.0, 0.25, 0.0, 0.15, 0.6, 0.4, 0.9, 1.0)
312
+ pgm_factor36 = self.new_factor(pgm_rv36, pgm_rv26)
313
+ pgm_function_2955280789776 = pgm_factor36.set_dense()
314
+ pgm_function_2955280789776.set_flat(
315
+ 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0,
316
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
317
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,
318
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0)
319
+ pgm_factor37 = self.new_factor(pgm_rv37)
320
+ pgm_function_2955280788336 = pgm_factor37.set_dense()
321
+ pgm_function_2955280788336.set_flat(0.4, 0.4, 0.15, 0.05)
322
+ pgm_factor38 = self.new_factor(pgm_rv38)
323
+ pgm_function_2955280788896 = pgm_factor38.set_dense()
324
+ pgm_function_2955280788896.set_flat(0.12, 0.32, 0.38, 0.18)
325
+ pgm_factor39 = self.new_factor(pgm_rv39, pgm_rv37, pgm_rv38)
326
+ pgm_function_2955280787296 = pgm_factor39.set_dense()
327
+ pgm_function_2955280787296.set_flat(
328
+ 0.7, 0.1, 0.01, 0.0, 0.9, 0.65, 0.25, 0.01, 0.95, 0.75, 0.4, 0.2, 1.0, 0.95,
329
+ 0.75, 0.5, 0.28, 0.5, 0.14, 0.02, 0.09, 0.25, 0.35, 0.15, 0.05, 0.23, 0.4,
330
+ 0.3, 0.0, 0.05, 0.2, 0.35, 0.02, 0.3, 0.35, 0.18, 0.01, 0.09, 0.3, 0.33,
331
+ 0.0, 0.02, 0.18, 0.35, 0.0, 0.0, 0.05, 0.1, 0.0, 0.1, 0.5, 0.8, 0.0, 0.01,
332
+ 0.1, 0.51, 0.0, 0.0, 0.02, 0.15, 0.0, 0.0, 0.0, 0.05)
333
+ pgm_factor40 = self.new_factor(pgm_rv40, pgm_rv26)
334
+ pgm_function_2955280790336 = pgm_factor40.set_dense()
335
+ pgm_function_2955280790336.set_flat(
336
+ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
337
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
338
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
339
+ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
340
+ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
341
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
342
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
343
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
344
+ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
345
+ pgm_factor41 = self.new_factor(pgm_rv41, pgm_rv39, pgm_rv35, pgm_rv30, pgm_rv40)
346
+ pgm_function_2955280790256 = pgm_factor41.set_dense()
347
+ pgm_function_2955280790256.set_flat(
348
+ 0.75, 0.75, 0.9, 0.9, 0.88, 0.92, 0.85, 1.0, 0.9, 0.9, 0.95, 0.75, 0.65,
349
+ 0.9, 0.91, 0.85, 0.9, 0.84, 0.99, 0.88, 0.92, 0.96, 0.75, 0.75, 0.95, 0.93,
350
+ 0.92, 0.87, 0.9, 0.98, 0.92, 0.95, 0.97, 0.5, 0.6, 0.8, 0.85, 0.85, 0.88,
351
+ 0.8, 0.92, 0.8, 0.75, 0.9, 0.35, 0.55, 0.82, 0.82, 0.75, 0.88, 0.75, 0.9,
352
+ 0.7, 0.8, 0.9, 0.5, 0.6, 0.85, 0.85, 0.75, 0.85, 0.75, 0.94, 0.65, 0.83,
353
+ 0.93, 0.35, 0.45, 0.8, 0.72, 0.78, 0.86, 0.65, 0.85, 0.65, 0.72, 0.85, 0.25,
354
+ 0.45, 0.65, 0.55, 0.55, 0.81, 0.6, 0.8, 0.6, 0.75, 0.88, 0.4, 0.45, 0.75,
355
+ 0.65, 0.52, 0.82, 0.65, 0.85, 0.5, 0.77, 0.9, 0.7,
356
+ 0.6, 0.82, 0.85, 0.82, 0.85, 0.8, 0.97, 0.88, 0.86, 0.88, 0.65, 0.58, 0.8,
357
+ 0.85, 0.8, 0.83, 0.77, 0.93, 0.85, 0.85, 0.9, 0.6, 0.65, 0.9, 0.85, 0.82,
358
+ 0.8, 0.8, 0.91, 0.85, 0.9, 0.93, 0.3, 0.55, 0.7, 0.75, 0.62, 0.85, 0.75,
359
+ 0.82, 0.6, 0.68, 0.82, 0.28, 0.48, 0.7, 0.7, 0.6, 0.82, 0.63, 0.8, 0.5, 0.7,
360
+ 0.8, 0.4, 0.5, 0.72, 0.65, 0.55, 0.78, 0.55, 0.85, 0.45, 0.73, 0.85, 0.3,
361
+ 0.4, 0.65, 0.6, 0.6, 0.83, 0.45, 0.7, 0.55, 0.6, 0.72, 0.22, 0.35, 0.45,
362
+ 0.45, 0.48, 0.72, 0.43, 0.68, 0.35, 0.6, 0.74, 0.27, 0.35, 0.55, 0.45, 0.42,
363
+ 0.74, 0.45, 0.77, 0.3, 0.68, 0.75, 0.5, 0.45,
364
+ 0.75, 0.75, 0.72, 0.78, 0.66, 0.88, 0.7, 0.78, 0.8, 0.45, 0.45, 0.7, 0.72,
365
+ 0.7, 0.75, 0.62, 0.85, 0.75, 0.76, 0.8, 0.35, 0.45, 0.75, 0.7, 0.6, 0.72,
366
+ 0.6, 0.8, 0.75, 0.75, 0.88, 0.2, 0.4, 0.7, 0.65, 0.5, 0.74, 0.6, 0.67, 0.35,
367
+ 0.6, 0.75, 0.23, 0.38, 0.58, 0.55, 0.53, 0.73, 0.35, 0.65, 0.3, 0.6, 0.68,
368
+ 0.3, 0.35, 0.55, 0.5, 0.4, 0.7, 0.35, 0.6, 0.35, 0.62, 0.7, 0.25, 0.3, 0.45,
369
+ 0.5, 0.4, 0.72, 0.25, 0.57, 0.25, 0.48, 0.6, 0.19, 0.25, 0.35, 0.35, 0.35,
370
+ 0.65, 0.22, 0.45, 0.25, 0.48, 0.58, 0.15, 0.25, 0.4, 0.3, 0.25, 0.6, 0.18,
371
+ 0.47, 0.25, 0.5, 0.5, 0.4, 0.35, 0.6,
372
+ 0.6, 0.55, 0.69, 0.54, 0.75, 0.55, 0.7, 0.7, 0.35, 0.35, 0.55, 0.55, 0.5,
373
+ 0.65, 0.38, 0.7, 0.65, 0.67, 0.7, 0.2, 0.3, 0.55, 0.5, 0.45, 0.6, 0.28,
374
+ 0.65, 0.63, 0.62, 0.8, 0.16, 0.3, 0.45, 0.52, 0.35, 0.65, 0.48, 0.58, 0.25,
375
+ 0.5, 0.65, 0.18, 0.3, 0.45, 0.45, 0.35, 0.62, 0.2, 0.52, 0.23, 0.47, 0.55,
376
+ 0.23, 0.25, 0.4, 0.4, 0.3, 0.57, 0.15, 0.5, 0.25, 0.5, 0.55, 0.18, 0.2, 0.3,
377
+ 0.4, 0.25, 0.63, 0.15, 0.4, 0.2, 0.3, 0.5, 0.15, 0.18, 0.25, 0.25, 0.25,
378
+ 0.58, 0.13, 0.3, 0.22, 0.35, 0.5, 0.1, 0.2, 0.2, 0.23, 0.15, 0.5, 0.1, 0.28,
379
+ 0.2, 0.3, 0.38, 0.2, 0.2, 0.08, 0.06,
380
+ 0.1, 0.08, 0.13, 0.0, 0.08, 0.08, 0.04, 0.2, 0.3, 0.08, 0.05, 0.13, 0.1,
381
+ 0.12, 0.01, 0.1, 0.06, 0.03, 0.2, 0.2, 0.04, 0.04, 0.06, 0.13, 0.06, 0.02,
382
+ 0.06, 0.04, 0.02, 0.3, 0.3, 0.14, 0.09, 0.1, 0.11, 0.17, 0.06, 0.12, 0.22,
383
+ 0.08, 0.3, 0.3, 0.13, 0.1, 0.18, 0.11, 0.2, 0.07, 0.2, 0.15, 0.08, 0.2,
384
+ 0.25, 0.1, 0.07, 0.15, 0.14, 0.2, 0.05, 0.22, 0.1, 0.06, 0.2, 0.35, 0.1,
385
+ 0.14, 0.15, 0.12, 0.25, 0.1, 0.2, 0.2, 0.1, 0.15, 0.35, 0.2, 0.2, 0.25,
386
+ 0.17, 0.28, 0.13, 0.2, 0.15, 0.08, 0.08, 0.25, 0.1, 0.15, 0.25, 0.16, 0.27,
387
+ 0.09, 0.2, 0.1, 0.07, 0.25, 0.33, 0.13, 0.1, 0.15,
388
+ 0.14, 0.17, 0.02, 0.1, 0.1, 0.1, 0.25, 0.32, 0.15, 0.1, 0.16, 0.16, 0.17,
389
+ 0.06, 0.12, 0.1, 0.08, 0.3, 0.28, 0.08, 0.1, 0.13, 0.19, 0.13, 0.08, 0.12,
390
+ 0.08, 0.06, 0.4, 0.34, 0.2, 0.15, 0.28, 0.14, 0.2, 0.14, 0.25, 0.22, 0.15,
391
+ 0.37, 0.35, 0.2, 0.17, 0.29, 0.16, 0.3, 0.15, 0.3, 0.2, 0.16, 0.28, 0.25,
392
+ 0.18, 0.2, 0.3, 0.2, 0.35, 0.12, 0.3, 0.15, 0.12, 0.25, 0.36, 0.2, 0.2,
393
+ 0.28, 0.14, 0.4, 0.18, 0.25, 0.25, 0.2, 0.17, 0.37, 0.3, 0.25, 0.29, 0.25,
394
+ 0.4, 0.2, 0.3, 0.2, 0.16, 0.1, 0.3, 0.22, 0.25, 0.3, 0.22, 0.4, 0.13, 0.25,
395
+ 0.15, 0.15, 0.4, 0.42, 0.18, 0.15, 0.22, 0.21,
396
+ 0.27, 0.1, 0.22, 0.16, 0.16, 0.35, 0.35, 0.2, 0.17, 0.22, 0.24, 0.3, 0.12,
397
+ 0.15, 0.17, 0.16, 0.4, 0.4, 0.19, 0.2, 0.3, 0.27, 0.3, 0.16, 0.17, 0.2, 0.1,
398
+ 0.45, 0.4, 0.2, 0.22, 0.34, 0.24, 0.3, 0.24, 0.4, 0.25, 0.2, 0.4, 0.35,
399
+ 0.25, 0.25, 0.32, 0.25, 0.53, 0.24, 0.4, 0.24, 0.24, 0.34, 0.35, 0.25, 0.27,
400
+ 0.38, 0.28, 0.5, 0.25, 0.35, 0.22, 0.22, 0.28, 0.38, 0.3, 0.25, 0.35, 0.24,
401
+ 0.57, 0.28, 0.35, 0.26, 0.26, 0.18, 0.4, 0.3, 0.3, 0.35, 0.3, 0.58, 0.35,
402
+ 0.34, 0.26, 0.25, 0.16, 0.3, 0.3, 0.3, 0.4, 0.34, 0.62, 0.3, 0.3, 0.22,
403
+ 0.27, 0.45, 0.45, 0.27, 0.22, 0.32, 0.29, 0.36,
404
+ 0.2, 0.3, 0.22, 0.25, 0.4, 0.4, 0.3, 0.27, 0.35, 0.33, 0.5, 0.24, 0.2, 0.23,
405
+ 0.25, 0.45, 0.45, 0.3, 0.3, 0.38, 0.38, 0.57, 0.28, 0.25, 0.28, 0.17, 0.47,
406
+ 0.45, 0.32, 0.26, 0.45, 0.32, 0.39, 0.3, 0.45, 0.28, 0.27, 0.45, 0.35, 0.3,
407
+ 0.3, 0.43, 0.35, 0.65, 0.33, 0.42, 0.3, 0.3, 0.4, 0.4, 0.3, 0.3, 0.45, 0.4,
408
+ 0.65, 0.33, 0.36, 0.28, 0.3, 0.3, 0.4, 0.3, 0.3, 0.48, 0.32, 0.63, 0.38,
409
+ 0.37, 0.35, 0.32, 0.2, 0.4, 0.35, 0.35, 0.42, 0.36, 0.62, 0.45, 0.35, 0.32,
410
+ 0.3, 0.2, 0.3, 0.4, 0.3, 0.45, 0.42, 0.65, 0.4, 0.32, 0.28, 0.32, 0.05,
411
+ 0.05, 0.02, 0.04, 0.02, 0.0, 0.02, 0.0,
412
+ 0.02, 0.02, 0.01, 0.05, 0.05, 0.02, 0.04, 0.02, 0.0, 0.04, 0.0, 0.02, 0.02,
413
+ 0.01, 0.05, 0.05, 0.01, 0.03, 0.02, 0.0, 0.04, 0.0, 0.02, 0.01, 0.01, 0.2,
414
+ 0.1, 0.06, 0.06, 0.05, 0.01, 0.03, 0.02, 0.08, 0.03, 0.02, 0.35, 0.15, 0.05,
415
+ 0.08, 0.07, 0.01, 0.05, 0.03, 0.1, 0.05, 0.02, 0.3, 0.15, 0.05, 0.08, 0.1,
416
+ 0.01, 0.05, 0.01, 0.13, 0.07, 0.01, 0.45, 0.2, 0.1, 0.14, 0.07, 0.02, 0.1,
417
+ 0.05, 0.15, 0.08, 0.05, 0.6, 0.2, 0.15, 0.25, 0.2, 0.02, 0.12, 0.07, 0.2,
418
+ 0.1, 0.04, 0.52, 0.3, 0.15, 0.2, 0.23, 0.02, 0.08, 0.06, 0.3, 0.13, 0.03,
419
+ 0.05, 0.07, 0.05, 0.05, 0.03, 0.01, 0.03, 0.01, 0.02,
420
+ 0.04, 0.02, 0.1, 0.1, 0.05, 0.05, 0.04, 0.01, 0.06, 0.01, 0.03, 0.05, 0.02,
421
+ 0.1, 0.07, 0.02, 0.05, 0.05, 0.01, 0.07, 0.01, 0.03, 0.02, 0.01, 0.3, 0.11,
422
+ 0.1, 0.1, 0.1, 0.01, 0.05, 0.04, 0.15, 0.1, 0.03, 0.35, 0.17, 0.1, 0.13,
423
+ 0.11, 0.02, 0.07, 0.05, 0.2, 0.1, 0.04, 0.32, 0.25, 0.1, 0.15, 0.15, 0.02,
424
+ 0.1, 0.03, 0.25, 0.12, 0.03, 0.45, 0.24, 0.15, 0.2, 0.12, 0.03, 0.15, 0.12,
425
+ 0.2, 0.15, 0.08, 0.61, 0.28, 0.25, 0.3, 0.23, 0.03, 0.17, 0.12, 0.35, 0.2,
426
+ 0.1, 0.63, 0.35, 0.23, 0.3, 0.28, 0.04, 0.15, 0.1, 0.45, 0.17, 0.1, 0.1,
427
+ 0.13, 0.07, 0.1, 0.06, 0.01, 0.07, 0.02, 0.08, 0.06,
428
+ 0.04, 0.2, 0.2, 0.1, 0.11, 0.08, 0.01, 0.08, 0.03, 0.1, 0.07, 0.04, 0.25,
429
+ 0.15, 0.06, 0.1, 0.1, 0.01, 0.1, 0.04, 0.08, 0.05, 0.02, 0.35, 0.2, 0.1,
430
+ 0.13, 0.16, 0.02, 0.1, 0.09, 0.25, 0.15, 0.05, 0.37, 0.27, 0.17, 0.2, 0.15,
431
+ 0.02, 0.12, 0.11, 0.3, 0.16, 0.08, 0.36, 0.3, 0.2, 0.23, 0.22, 0.02, 0.15,
432
+ 0.15, 0.3, 0.16, 0.08, 0.47, 0.32, 0.25, 0.25, 0.25, 0.04, 0.18, 0.15, 0.4,
433
+ 0.26, 0.14, 0.63, 0.35, 0.35, 0.35, 0.3, 0.05, 0.2, 0.2, 0.41, 0.26, 0.17,
434
+ 0.69, 0.45, 0.3, 0.4, 0.35, 0.06, 0.2, 0.23, 0.45, 0.28, 0.23, 0.15, 0.2,
435
+ 0.13, 0.18, 0.13, 0.02, 0.1, 0.05, 0.15, 0.08, 0.05,
436
+ 0.25, 0.25, 0.15, 0.18, 0.15, 0.02, 0.12, 0.06, 0.15, 0.1, 0.05, 0.35, 0.25,
437
+ 0.15, 0.2, 0.17, 0.02, 0.15, 0.07, 0.12, 0.1, 0.03, 0.37, 0.25, 0.23, 0.22,
438
+ 0.2, 0.03, 0.13, 0.12, 0.3, 0.22, 0.08, 0.37, 0.35, 0.25, 0.25, 0.22, 0.03,
439
+ 0.15, 0.15, 0.35, 0.23, 0.15, 0.37, 0.35, 0.3, 0.3, 0.25, 0.03, 0.2, 0.17,
440
+ 0.39, 0.22, 0.15, 0.52, 0.4, 0.4, 0.3, 0.27, 0.05, 0.22, 0.22, 0.43, 0.35,
441
+ 0.18, 0.65, 0.42, 0.4, 0.4, 0.33, 0.06, 0.25, 0.25, 0.43, 0.33, 0.2, 0.7,
442
+ 0.5, 0.4, 0.47, 0.4, 0.08, 0.25, 0.32, 0.48, 0.42, 0.3)
443
+ pgm_factor42 = self.new_factor(pgm_rv42, pgm_rv36, pgm_rv41)
444
+ pgm_function_2955280787376 = pgm_factor42.set_dense()
445
+ pgm_function_2955280787376.set_flat(
446
+ 0.94, 0.06, 0.01, 0.98, 0.04, 0.0, 0.92, 0.01, 0.0, 0.92, 0.03, 0.01, 0.99,
447
+ 0.09, 0.03, 0.05, 0.89, 0.05, 0.02, 0.94, 0.03, 0.06, 0.89, 0.01, 0.06,
448
+ 0.92, 0.04, 0.01, 0.9, 0.12, 0.01, 0.05, 0.94, 0.0, 0.02, 0.97, 0.02, 0.1,
449
+ 0.99, 0.02, 0.05, 0.95, 0.0, 0.01, 0.85)
450
+ pgm_factor43 = self.new_factor(pgm_rv43, pgm_rv24, pgm_rv42)
451
+ pgm_function_2955280788976 = pgm_factor43.set_dense()
452
+ pgm_function_2955280788976.set_flat(
453
+ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0,
454
+ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0)
455
+ pgm_factor44 = self.new_factor(pgm_rv44, pgm_rv26)
456
+ pgm_function_2955280788656 = pgm_factor44.set_dense()
457
+ pgm_function_2955280788656.set_flat(
458
+ 0.04, 0.05, 0.4, 0.13, 0.15, 0.0, 0.5, 0.0, 0.0, 0.1, 0.1, 0.05, 0.07, 0.25,
459
+ 0.22, 0.2, 0.0, 0.27, 0.02, 0.02, 0.45, 0.1, 0.15, 0.15, 0.0, 0.18, 0.2,
460
+ 0.0, 0.15, 0.1, 0.7, 0.1, 0.1, 0.05, 0.1, 0.15, 0.07, 0.18, 0.0, 0.02, 0.05,
461
+ 0.0, 0.05, 0.2, 0.19, 0.3, 0.05, 0.34, 0.11, 0.0, 0.02, 0.5, 0.2, 0.26,
462
+ 0.05, 0.3, 0.27, 0.02, 0.03, 0.11, 0.98, 0.0, 0.2, 0.04, 0.02, 0.1, 0.22,
463
+ 0.06, 0.13, 0.03, 0.05, 0.02, 0.04, 0.13, 0.04, 0.02, 0.35)
464
+ pgm_factor45 = self.new_factor(pgm_rv45, pgm_rv26)
465
+ pgm_function_2955280790096 = pgm_factor45.set_dense()
466
+ pgm_function_2955280790096.set_flat(
467
+ 0.04, 0.07, 0.35, 0.4, 0.45, 0.01, 0.78, 0.0, 0.22, 0.13, 0.09, 0.25, 0.31,
468
+ 0.47, 0.4, 0.35, 0.35, 0.19, 0.02, 0.4, 0.4, 0.4, 0.35, 0.31, 0.14, 0.13,
469
+ 0.15, 0.45, 0.03, 0.33, 0.3, 0.35, 0.33, 0.36, 0.31, 0.04, 0.07, 0.05, 0.19,
470
+ 0.0, 0.65, 0.08, 0.12, 0.18)
471
+ pgm_factor46 = self.new_factor(pgm_rv46, pgm_rv26)
472
+ pgm_function_2955280790576 = pgm_factor46.set_dense()
473
+ pgm_function_2955280790576.set_flat(
474
+ 0.33, 0.4, 0.05, 0.1, 0.05, 1.0, 0.0, 0.4, 0.2, 0.05, 0.2, 0.5, 0.4, 0.45,
475
+ 0.5, 0.65, 0.0, 0.07, 0.55, 0.45, 0.55, 0.4, 0.17, 0.2, 0.5, 0.4, 0.3, 0.0,
476
+ 0.93, 0.05, 0.35, 0.4, 0.4)
477
+ pgm_factor47 = self.new_factor(pgm_rv47, pgm_rv26)
478
+ pgm_function_2955280789136 = pgm_factor47.set_dense()
479
+ pgm_function_2955280789136.set_flat(
480
+ 0.25, 0.25, 0.4, 0.43, 0.02, 0.0, 0.84, 0.25, 0.41, 0.23, 0.16, 0.55, 0.5,
481
+ 0.38, 0.37, 0.38, 0.1, 0.16, 0.31, 0.29, 0.42, 0.28, 0.2, 0.25, 0.22, 0.2,
482
+ 0.6, 0.9, 0.0, 0.44, 0.3, 0.35, 0.56)
483
+ pgm_factor48 = self.new_factor(pgm_rv48, pgm_rv26)
484
+ pgm_function_2955280787456 = pgm_factor48.set_dense()
485
+ pgm_function_2955280787456.set_flat(
486
+ 0.25, 0.05, 0.1, 0.18, 0.02, 0.05, 0.1, 0.0, 0.2, 0.04, 0.5, 0.55, 0.1, 0.3,
487
+ 0.38, 0.02, 0.07, 0.25, 0.6, 0.1, 0.0, 0.35, 0.2, 0.1, 0.3, 0.34, 0.26,
488
+ 0.05, 0.15, 0.1, 0.2, 0.04, 0.09, 0.0, 0.75, 0.3, 0.1, 0.7, 0.83, 0.5, 0.3,
489
+ 0.5, 0.92, 0.06)
490
+ pgm_factor49 = self.new_factor(pgm_rv49, pgm_rv26)
491
+ pgm_function_2955280788416 = pgm_factor49.set_dense()
492
+ pgm_function_2955280788416.set_flat(
493
+ 0.05, 0.1, 0.4, 0.2, 0.8, 0.0, 0.6, 0.0, 0.1, 0.4, 0.15, 0.5, 0.5, 0.15,
494
+ 0.45, 0.05, 0.0, 0.0, 0.7, 0.7, 0.4, 0.45, 0.45, 0.4, 0.45, 0.35, 0.15, 1.0,
495
+ 0.4, 0.3, 0.2, 0.2, 0.4)
496
+ pgm_factor50 = self.new_factor(pgm_rv50, pgm_rv26)
497
+ pgm_function_2955280788496 = pgm_factor50.set_dense()
498
+ pgm_function_2955280788496.set_flat(
499
+ 0.65, 0.65, 0.0, 0.12, 0.06, 0.1, 0.02, 0.01, 0.02, 0.06, 0.05, 0.05, 0.05,
500
+ 0.65, 0.02, 0.14, 0.1, 0.05, 0.1, 0.1, 0.08, 0.13, 0.1, 0.1, 0.2, 0.02,
501
+ 0.04, 0.1, 0.05, 0.15, 0.5, 0.04, 0.05, 0.08, 0.1, 0.02, 0.02, 0.04, 0.02,
502
+ 0.0, 0.4, 0.3, 0.02, 0.39, 0.04, 0.02, 0.06, 0.45, 0.25, 0.0, 0.35, 0.0,
503
+ 0.01, 0.6, 0.13, 0.07, 0.07, 0.05, 0.27, 0.4, 0.56, 0.33, 0.23, 0.02, 0.14,
504
+ 0.15, 0.01, 0.01, 0.02, 0.1, 0.07, 0.12, 0.2, 0.11, 0.05, 0.06, 0.1)
505
+ pgm_factor51 = self.new_factor(pgm_rv51, pgm_rv26)
506
+ pgm_function_2955280789296 = pgm_factor51.set_dense()
507
+ pgm_function_2955280789296.set_flat(
508
+ 0.35, 0.06, 0.1, 0.35, 0.15, 0.15, 0.15, 0.25, 0.25, 0.01, 0.2, 0.25, 0.1,
509
+ 0.27, 0.2, 0.15, 0.1, 0.1, 0.25, 0.2, 0.05, 0.2, 0.0, 0.06, 0.4, 0.1, 0.1,
510
+ 0.05, 0.1, 0.25, 0.15, 0.01, 0.35, 0.35, 0.3, 0.08, 0.25, 0.15, 0.15, 0.25,
511
+ 0.15, 0.2, 0.05, 0.15, 0.05, 0.48, 0.15, 0.1, 0.45, 0.55, 0.4, 0.1, 0.2,
512
+ 0.88, 0.1)
513
+ pgm_factor52 = self.new_factor(pgm_rv52, pgm_rv26)
514
+ pgm_function_2955280789856 = pgm_factor52.set_dense()
515
+ pgm_function_2955280789856.set_flat(
516
+ 0.13, 0.15, 0.12, 0.1, 0.04, 0.05, 0.03, 0.05, 0.8, 0.1, 0.2, 0.15, 0.15,
517
+ 0.1, 0.15, 0.04, 0.12, 0.03, 0.4, 0.19, 0.05, 0.3, 0.1, 0.25, 0.35, 0.4,
518
+ 0.82, 0.75, 0.84, 0.5, 0.0, 0.4, 0.3, 0.62, 0.45, 0.43, 0.35, 0.1, 0.08,
519
+ 0.1, 0.05, 0.01, 0.45, 0.2)
520
+ pgm_factor53 = self.new_factor(pgm_rv53, pgm_rv26)
521
+ pgm_function_2955280790416 = pgm_factor53.set_dense()
522
+ pgm_function_2955280790416.set_flat(
523
+ 0.0, 0.2, 0.05, 0.03, 0.07, 0.5, 0.25, 0.2, 0.2, 0.96, 0.03, 0.95, 0.3,
524
+ 0.09, 0.32, 0.66, 0.0, 0.3, 0.14, 0.41, 0.0, 0.08, 0.01, 0.2, 0.59, 0.42,
525
+ 0.02, 0.0, 0.25, 0.43, 0.1, 0.0, 0.33, 0.04, 0.3, 0.27, 0.23, 0.25, 0.5,
526
+ 0.2, 0.23, 0.29, 0.04, 0.56)
527
+ pgm_factor54 = self.new_factor(pgm_rv54, pgm_rv26)
528
+ pgm_function_2955280790016 = pgm_factor54.set_dense()
529
+ pgm_function_2955280790016.set_flat(
530
+ 0.8, 0.35, 0.75, 0.7, 0.65, 0.15, 0.7, 0.3, 0.5, 0.01, 0.7, 0.2, 0.65, 0.25,
531
+ 0.3, 0.35, 0.85, 0.3, 0.7, 0.5, 0.99, 0.3)
532
+ pgm_factor55 = self.new_factor(pgm_rv55, pgm_rv26)
533
+ pgm_function_2955280790496 = pgm_factor55.set_dense()
534
+ pgm_function_2955280790496.set_flat(
535
+ 0.05, 0.08, 0.1, 0.1, 0.43, 0.6, 0.25, 0.04, 0.2, 0.6, 0.1, 0.6, 0.6, 0.0,
536
+ 0.15, 0.1, 0.07, 0.01, 0.02, 0.3, 0.08, 0.05, 0.02, 0.02, 0.75, 0.2, 0.15,
537
+ 0.01, 0.3, 0.04, 0.05, 0.07, 0.1, 0.1, 0.1, 0.0, 0.05, 0.06, 0.12, 0.01,
538
+ 0.8, 0.37, 0.03, 0.05, 0.23, 0.2, 0.0, 0.3, 0.06, 0.2, 0.03, 0.1, 0.07, 0.2,
539
+ 0.2, 0.0, 0.0, 0.15, 0.2, 0.2, 0.0, 0.4, 0.0, 0.01, 0.02, 0.5)