combatlearn 1.1.2__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: combatlearn
3
- Version: 1.1.2
3
+ Version: 1.2.0
4
4
  Summary: Batch-effect harmonization for machine learning frameworks.
5
5
  Author-email: Ettore Rocchi <ettoreroc@gmail.com>
6
6
  License: MIT
@@ -61,8 +61,8 @@ pip install combatlearn
61
61
  **Full documentation is available at [combatlearn.readthedocs.io](https://combatlearn.readthedocs.io)**
62
62
 
63
63
  The documentation includes:
64
- - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods/)
65
- - [API Reference](https://combatlearn.readthedocs.io/en/latest/api/)
64
+ - [Methods Guide](https://combatlearn.readthedocs.io/en/latest/methods.html)
65
+ - [API Reference](https://combatlearn.readthedocs.io/en/latest/api.html)
66
66
 
67
67
  ## Quick start
68
68
 
@@ -158,21 +158,31 @@ Pull requests, bug reports, and feature ideas are welcome: feel free to open a P
158
158
 
159
159
  [Google Scholar](https://scholar.google.com/citations?user=MKHoGnQAAAAJ) | [Scopus](https://www.scopus.com/authid/detail.uri?authorId=57220152522)
160
160
 
161
- ## Acknowledgements
162
161
 
163
- This project builds on the excellent work of the ComBat family of harmonisation methods.
164
- We gratefully acknowledge:
162
+ ## Citation
165
163
 
166
- - [**ComBat**](https://rdrr.io/bioc/sva/man/ComBat.html)
167
- - [**neuroCombat**](https://github.com/Jfortin1/neuroCombat)
168
- - [**CovBat**](https://github.com/andy1764/CovBat_Harmonization)
164
+ If **combatlearn** is useful in your research, please cite the paper introducing this Python package:
169
165
 
170
- ## Citation
166
+ > Rocchi, E., Nicitra, E., Calvo, M. et al. Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy. BMC Microbiol (2026). https://doi.org/10.1186/s12866-025-04657-2
167
+
168
+ ```bibtex
169
+ @article{Rocchi2026,
170
+ author = {Rocchi, Ettore and Nicitra, Emanuele and Calvo, Maddalena and Cento, Valeria and Peiretti, Laura and Asif, Zian and Menchinelli, Giulia and Posteraro, Brunella and Sala, Claudia and Colosimo, Claudia and Cricca, Monica and Sambri, Vittorio and Sanguinetti, Maurizio and Castellani, Gastone and Stefani, Stefania},
171
+ title = {Combining mass spectrometry and machine learning models for predicting Klebsiella pneumoniae antimicrobial resistance: a multicenter experience from clinical isolates in Italy},
172
+ journal = {BMC Microbiology},
173
+ year = {2026},
174
+ doi = {10.1186/s12866-025-04657-2},
175
+ url = {https://doi.org/10.1186/s12866-025-04657-2}
176
+ }
177
+ ```
171
178
 
172
- If **combatlearn** is useful in your research, please cite the original papers:
179
+ ## Acknowledgements
180
+
181
+ This project builds on the excellent work of the ComBat family of harmonisation methods.
182
+ Please consider citing the original papers:
173
183
 
174
- - Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. _Biostatistics_. 2007 Jan;8(1):118-27. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
184
+ - [**ComBat**](https://rdrr.io/bioc/sva/man/ComBat.html) - Johnson WE, Li C, Rabinovic A. _Biostatistics_. 2007. doi: [10.1093/biostatistics/kxj037](https://doi.org/10.1093/biostatistics/kxj037)
175
185
 
176
- - Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weissman MM, Shinohara RT. Harmonization of cortical thickness measurements across scanners and sites. _Neuroimage_. 2018 Feb 15;167:104-120. doi: [10.1016/j.neuroimage.2017.11.024](https://doi.org/10.1016/j.neuroimage.2017.11.024)
186
+ - [**neuroCombat**](https://github.com/Jfortin1/neuroCombat) - Fortin JP et al. _Neuroimage_. 2018. doi: [10.1016/j.neuroimage.2017.11.024](https://doi.org/10.1016/j.neuroimage.2017.11.024)
177
187
 
178
- - Chen AA, Beer JC, Tustison NJ, Cook PA, Shinohara RT, Shou H; Alzheimer's Disease Neuroimaging Initiative. Mitigating site effects in covariance for machine learning in neuroimaging data. _Hum Brain Mapp_. 2022 Mar;43(4):1179-1195. doi: [10.1002/hbm.25688](https://doi.org/10.1002/hbm.25688)
188
+ - [**CovBat**](https://github.com/andy1764/CovBat_Harmonization) - Chen AA et al. _Hum Brain Mapp_. 2022. doi: [10.1002/hbm.25688](https://doi.org/10.1002/hbm.25688)
@@ -0,0 +1,10 @@
1
+ combatlearn/__init__.py,sha256=pDZGMgVJIVdUzT283DyjedKaF_f4rtXKZwwd4six3hs,105
2
+ combatlearn/core.py,sha256=HW-LuvEv8LxA7M67N-w6dSzImrJ8Uj94NFs4GHmG_v4,22023
3
+ combatlearn/metrics.py,sha256=tzxNkBaAf7PEyMtUVeBt9CqqSTjDMu0uay4eLkIZWI4,23163
4
+ combatlearn/sklearn_api.py,sha256=S_Dr6a5qTBCj8D2DOvBsMvxGxu4MJGVrRvpEh-Fh4yo,5093
5
+ combatlearn/visualization.py,sha256=tlJvGT7J-NADAdeRMledcEetkHULt3fjcNMua5EOdkI,18766
6
+ combatlearn-1.2.0.dist-info/licenses/LICENSE,sha256=O34CBRTmdL59PxDYOa6nq1N0-2A9xyXGkBXKbsL1NeY,1070
7
+ combatlearn-1.2.0.dist-info/METADATA,sha256=vgnYo526JKbovmWtKbiGVTF1jkUQOQXuR6deDFQg5Zc,9490
8
+ combatlearn-1.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
9
+ combatlearn-1.2.0.dist-info/top_level.txt,sha256=3cFQv4oj2sh_NKra45cPy8Go0v8W9x9-zkkUibqZCMk,12
10
+ combatlearn-1.2.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5