combatlearn 0.1.2__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- combatlearn/__init__.py +1 -1
- combatlearn/combat.py +328 -0
- {combatlearn-0.1.2.dist-info → combatlearn-0.2.0.dist-info}/METADATA +13 -3
- combatlearn-0.2.0.dist-info/RECORD +7 -0
- combatlearn-0.1.2.dist-info/RECORD +0 -7
- {combatlearn-0.1.2.dist-info → combatlearn-0.2.0.dist-info}/WHEEL +0 -0
- {combatlearn-0.1.2.dist-info → combatlearn-0.2.0.dist-info}/licenses/LICENSE +0 -0
- {combatlearn-0.1.2.dist-info → combatlearn-0.2.0.dist-info}/top_level.txt +0 -0
combatlearn/__init__.py
CHANGED
combatlearn/combat.py
CHANGED
|
@@ -16,10 +16,25 @@ import pandas as pd
|
|
|
16
16
|
from sklearn.base import BaseEstimator, TransformerMixin
|
|
17
17
|
from sklearn.utils.validation import check_is_fitted
|
|
18
18
|
from sklearn.decomposition import PCA
|
|
19
|
+
from sklearn.manifold import TSNE
|
|
20
|
+
import matplotlib.pyplot as plt
|
|
19
21
|
from typing import Literal, Optional, Union, Dict, Tuple, Any, cast
|
|
20
22
|
import numpy.typing as npt
|
|
21
23
|
import warnings
|
|
22
24
|
|
|
25
|
+
try:
|
|
26
|
+
import umap
|
|
27
|
+
UMAP_AVAILABLE = True
|
|
28
|
+
except ImportError:
|
|
29
|
+
UMAP_AVAILABLE = False
|
|
30
|
+
|
|
31
|
+
try:
|
|
32
|
+
import plotly.graph_objects as go
|
|
33
|
+
from plotly.subplots import make_subplots
|
|
34
|
+
PLOTLY_AVAILABLE = True
|
|
35
|
+
except ImportError:
|
|
36
|
+
PLOTLY_AVAILABLE = False
|
|
37
|
+
|
|
23
38
|
__author__ = "Ettore Rocchi"
|
|
24
39
|
|
|
25
40
|
ArrayLike = Union[pd.DataFrame, pd.Series, npt.NDArray[Any]]
|
|
@@ -659,6 +674,7 @@ class ComBat(BaseEstimator, TransformerMixin):
|
|
|
659
674
|
discrete_covariates=disc,
|
|
660
675
|
continuous_covariates=cont,
|
|
661
676
|
)
|
|
677
|
+
self._fitted_batch = batch_vec
|
|
662
678
|
return self
|
|
663
679
|
|
|
664
680
|
def transform(self, X: ArrayLike) -> pd.DataFrame:
|
|
@@ -689,3 +705,315 @@ class ComBat(BaseEstimator, TransformerMixin):
|
|
|
689
705
|
return pd.Series(obj, index=idx)
|
|
690
706
|
else:
|
|
691
707
|
return pd.DataFrame(obj, index=idx)
|
|
708
|
+
|
|
709
|
+
def plot_transformation(
|
|
710
|
+
self,
|
|
711
|
+
X: ArrayLike, *,
|
|
712
|
+
reduction_method: Literal['pca', 'tsne', 'umap'] = 'pca',
|
|
713
|
+
n_components: Literal[2, 3] = 2,
|
|
714
|
+
plot_type: Literal['static', 'interactive'] = 'static',
|
|
715
|
+
figsize: Tuple[int, int] = (12, 5),
|
|
716
|
+
alpha: float = 0.7,
|
|
717
|
+
point_size: int = 50,
|
|
718
|
+
cmap: str = 'Set1',
|
|
719
|
+
title: Optional[str] = None,
|
|
720
|
+
show_legend: bool = True,
|
|
721
|
+
return_embeddings: bool = False,
|
|
722
|
+
**reduction_kwargs) -> Union[Any, Tuple[Any, Dict[str, FloatArray]]]:
|
|
723
|
+
"""
|
|
724
|
+
Visualize the ComBat transformation effect using dimensionality reduction.
|
|
725
|
+
|
|
726
|
+
It shows a before/after comparison of data transformed by `ComBat` using
|
|
727
|
+
PCA, t-SNE, or UMAP to reduce dimensions for visualization.
|
|
728
|
+
|
|
729
|
+
Parameters
|
|
730
|
+
----------
|
|
731
|
+
X : array-like of shape (n_samples, n_features)
|
|
732
|
+
Input data to transform and visualize.
|
|
733
|
+
|
|
734
|
+
reduction_method : {`'pca'`, `'tsne'`, `'umap'`}, default=`'pca'`
|
|
735
|
+
Dimensionality reduction method.
|
|
736
|
+
|
|
737
|
+
n_components : {2, 3}, default=2
|
|
738
|
+
Number of components for dimensionality reduction.
|
|
739
|
+
|
|
740
|
+
plot_type : {`'static'`, `'interactive'`}, default=`'static'`
|
|
741
|
+
Visualization type:
|
|
742
|
+
- `'static'`: matplotlib plots (can be saved as images)
|
|
743
|
+
- `'interactive'`: plotly plots (explorable, requires plotly)
|
|
744
|
+
|
|
745
|
+
return_embeddings : bool, default=False
|
|
746
|
+
If `True`, return embeddings along with the plot.
|
|
747
|
+
|
|
748
|
+
**reduction_kwargs : dict
|
|
749
|
+
Additional parameters for reduction methods.
|
|
750
|
+
|
|
751
|
+
Returns
|
|
752
|
+
-------
|
|
753
|
+
fig : matplotlib.figure.Figure or plotly.graph_objects.Figure
|
|
754
|
+
The figure object containing the plots.
|
|
755
|
+
|
|
756
|
+
embeddings : dict, optional
|
|
757
|
+
If `return_embeddings=True`, dictionary with:
|
|
758
|
+
- `'original'`: embedding of original data
|
|
759
|
+
- `'transformed'`: embedding of ComBat-transformed data
|
|
760
|
+
"""
|
|
761
|
+
check_is_fitted(self._model, ["_gamma_star"])
|
|
762
|
+
|
|
763
|
+
if n_components not in [2, 3]:
|
|
764
|
+
raise ValueError(f"n_components must be 2 or 3, got {n_components}")
|
|
765
|
+
if reduction_method not in ['pca', 'tsne', 'umap']:
|
|
766
|
+
raise ValueError(f"reduction_method must be 'pca', 'tsne', or 'umap', got '{reduction_method}'")
|
|
767
|
+
if plot_type not in ['static', 'interactive']:
|
|
768
|
+
raise ValueError(f"plot_type must be 'static' or 'interactive', got '{plot_type}'")
|
|
769
|
+
|
|
770
|
+
if reduction_method == 'umap' and not UMAP_AVAILABLE:
|
|
771
|
+
raise ImportError("UMAP is not installed. Install with: pip install umap-learn")
|
|
772
|
+
if plot_type == 'interactive' and not PLOTLY_AVAILABLE:
|
|
773
|
+
raise ImportError("Plotly is not installed. Install with: pip install plotly")
|
|
774
|
+
|
|
775
|
+
if not isinstance(X, pd.DataFrame):
|
|
776
|
+
X = pd.DataFrame(X)
|
|
777
|
+
|
|
778
|
+
idx = X.index
|
|
779
|
+
batch_vec = self._subset(self.batch, idx)
|
|
780
|
+
if batch_vec is None:
|
|
781
|
+
raise ValueError("Batch information is required for visualization")
|
|
782
|
+
|
|
783
|
+
X_transformed = self.transform(X)
|
|
784
|
+
|
|
785
|
+
X_np = X.values
|
|
786
|
+
X_trans_np = X_transformed.values
|
|
787
|
+
|
|
788
|
+
if reduction_method == 'pca':
|
|
789
|
+
reducer_orig = PCA(n_components=n_components, **reduction_kwargs)
|
|
790
|
+
reducer_trans = PCA(n_components=n_components, **reduction_kwargs)
|
|
791
|
+
elif reduction_method == 'tsne':
|
|
792
|
+
tsne_params = {'perplexity': 30, 'max_iter': 1000, 'random_state': 42}
|
|
793
|
+
tsne_params.update(reduction_kwargs)
|
|
794
|
+
reducer_orig = TSNE(n_components=n_components, **tsne_params)
|
|
795
|
+
reducer_trans = TSNE(n_components=n_components, **tsne_params)
|
|
796
|
+
else:
|
|
797
|
+
umap_params = {'random_state': 42}
|
|
798
|
+
umap_params.update(reduction_kwargs)
|
|
799
|
+
reducer_orig = umap.UMAP(n_components=n_components, **reduction_kwargs)
|
|
800
|
+
reducer_trans = umap.UMAP(n_components=n_components, **reduction_kwargs)
|
|
801
|
+
|
|
802
|
+
X_embedded_orig = reducer_orig.fit_transform(X_np)
|
|
803
|
+
X_embedded_trans = reducer_trans.fit_transform(X_trans_np)
|
|
804
|
+
|
|
805
|
+
if plot_type == 'static':
|
|
806
|
+
fig = self._create_static_plot(
|
|
807
|
+
X_embedded_orig, X_embedded_trans, batch_vec,
|
|
808
|
+
reduction_method, n_components, figsize, alpha,
|
|
809
|
+
point_size, cmap, title, show_legend
|
|
810
|
+
)
|
|
811
|
+
else:
|
|
812
|
+
fig = self._create_interactive_plot(
|
|
813
|
+
X_embedded_orig, X_embedded_trans, batch_vec,
|
|
814
|
+
reduction_method, n_components, title, show_legend
|
|
815
|
+
)
|
|
816
|
+
|
|
817
|
+
if return_embeddings:
|
|
818
|
+
embeddings = {
|
|
819
|
+
'original': X_embedded_orig,
|
|
820
|
+
'transformed': X_embedded_trans
|
|
821
|
+
}
|
|
822
|
+
return fig, embeddings
|
|
823
|
+
else:
|
|
824
|
+
return fig
|
|
825
|
+
|
|
826
|
+
def _create_static_plot(
|
|
827
|
+
self,
|
|
828
|
+
X_orig: FloatArray,
|
|
829
|
+
X_trans: FloatArray,
|
|
830
|
+
batch_labels: pd.Series,
|
|
831
|
+
method: str,
|
|
832
|
+
n_components: int,
|
|
833
|
+
figsize: Tuple[int, int],
|
|
834
|
+
alpha: float,
|
|
835
|
+
point_size: int,
|
|
836
|
+
cmap: str,
|
|
837
|
+
title: Optional[str],
|
|
838
|
+
show_legend: bool) -> Any:
|
|
839
|
+
"""Create static plots using matplotlib."""
|
|
840
|
+
|
|
841
|
+
fig = plt.figure(figsize=figsize)
|
|
842
|
+
|
|
843
|
+
unique_batches = batch_labels.drop_duplicates()
|
|
844
|
+
n_batches = len(unique_batches)
|
|
845
|
+
|
|
846
|
+
if n_batches <= 10:
|
|
847
|
+
colors = plt.cm.get_cmap(cmap)(np.linspace(0, 1, n_batches))
|
|
848
|
+
else:
|
|
849
|
+
colors = plt.cm.get_cmap('tab20')(np.linspace(0, 1, n_batches))
|
|
850
|
+
|
|
851
|
+
if n_components == 2:
|
|
852
|
+
ax1 = plt.subplot(1, 2, 1)
|
|
853
|
+
ax2 = plt.subplot(1, 2, 2)
|
|
854
|
+
else:
|
|
855
|
+
ax1 = fig.add_subplot(121, projection='3d')
|
|
856
|
+
ax2 = fig.add_subplot(122, projection='3d')
|
|
857
|
+
|
|
858
|
+
for i, batch in enumerate(unique_batches):
|
|
859
|
+
mask = batch_labels == batch
|
|
860
|
+
if n_components == 2:
|
|
861
|
+
ax1.scatter(
|
|
862
|
+
X_orig[mask, 0], X_orig[mask, 1],
|
|
863
|
+
c=[colors[i]],
|
|
864
|
+
s=point_size,
|
|
865
|
+
alpha=alpha,
|
|
866
|
+
label=f'Batch {batch}',
|
|
867
|
+
edgecolors='black',
|
|
868
|
+
linewidth=0.5
|
|
869
|
+
)
|
|
870
|
+
else:
|
|
871
|
+
ax1.scatter(
|
|
872
|
+
X_orig[mask, 0], X_orig[mask, 1], X_orig[mask, 2],
|
|
873
|
+
c=[colors[i]],
|
|
874
|
+
s=point_size,
|
|
875
|
+
alpha=alpha,
|
|
876
|
+
label=f'Batch {batch}',
|
|
877
|
+
edgecolors='black',
|
|
878
|
+
linewidth=0.5
|
|
879
|
+
)
|
|
880
|
+
|
|
881
|
+
ax1.set_title(f'Before ComBat correction\n({method.upper()})')
|
|
882
|
+
ax1.set_xlabel(f'{method.upper()}1')
|
|
883
|
+
ax1.set_ylabel(f'{method.upper()}2')
|
|
884
|
+
if n_components == 3:
|
|
885
|
+
ax1.set_zlabel(f'{method.upper()}3')
|
|
886
|
+
|
|
887
|
+
for i, batch in enumerate(unique_batches):
|
|
888
|
+
mask = batch_labels == batch
|
|
889
|
+
if n_components == 2:
|
|
890
|
+
ax2.scatter(
|
|
891
|
+
X_trans[mask, 0], X_trans[mask, 1],
|
|
892
|
+
c=[colors[i]],
|
|
893
|
+
s=point_size,
|
|
894
|
+
alpha=alpha,
|
|
895
|
+
label=f'Batch {batch}',
|
|
896
|
+
edgecolors='black',
|
|
897
|
+
linewidth=0.5
|
|
898
|
+
)
|
|
899
|
+
else:
|
|
900
|
+
ax2.scatter(
|
|
901
|
+
X_trans[mask, 0], X_trans[mask, 1], X_trans[mask, 2],
|
|
902
|
+
c=[colors[i]],
|
|
903
|
+
s=point_size,
|
|
904
|
+
alpha=alpha,
|
|
905
|
+
label=f'Batch {batch}',
|
|
906
|
+
edgecolors='black',
|
|
907
|
+
linewidth=0.5
|
|
908
|
+
)
|
|
909
|
+
|
|
910
|
+
ax2.set_title(f'After ComBat correction\n({method.upper()})')
|
|
911
|
+
ax2.set_xlabel(f'{method.upper()}1')
|
|
912
|
+
ax2.set_ylabel(f'{method.upper()}2')
|
|
913
|
+
if n_components == 3:
|
|
914
|
+
ax2.set_zlabel(f'{method.upper()}3')
|
|
915
|
+
|
|
916
|
+
if show_legend and n_batches <= 20:
|
|
917
|
+
ax2.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
|
918
|
+
|
|
919
|
+
if title is None:
|
|
920
|
+
title = f'ComBat correction effect visualized with {method.upper()}'
|
|
921
|
+
fig.suptitle(title, fontsize=14, fontweight='bold')
|
|
922
|
+
|
|
923
|
+
plt.tight_layout()
|
|
924
|
+
return fig
|
|
925
|
+
|
|
926
|
+
def _create_interactive_plot(
|
|
927
|
+
self,
|
|
928
|
+
X_orig: FloatArray,
|
|
929
|
+
X_trans: FloatArray,
|
|
930
|
+
batch_labels: pd.Series,
|
|
931
|
+
method: str,
|
|
932
|
+
n_components: int,
|
|
933
|
+
title: Optional[str],
|
|
934
|
+
show_legend: bool) -> Any:
|
|
935
|
+
"""Create interactive plots using plotly."""
|
|
936
|
+
if n_components == 2:
|
|
937
|
+
fig = make_subplots(
|
|
938
|
+
rows=1, cols=2,
|
|
939
|
+
subplot_titles=(
|
|
940
|
+
f'Before ComBat correction ({method.upper()})',
|
|
941
|
+
f'After ComBat correction ({method.upper()})'
|
|
942
|
+
)
|
|
943
|
+
)
|
|
944
|
+
else:
|
|
945
|
+
fig = make_subplots(
|
|
946
|
+
rows=1, cols=2,
|
|
947
|
+
specs=[[{'type': 'scatter3d'}, {'type': 'scatter3d'}]],
|
|
948
|
+
subplot_titles=(
|
|
949
|
+
f'Before ComBat correction ({method.upper()})',
|
|
950
|
+
f'After ComBat correction ({method.upper()})'
|
|
951
|
+
)
|
|
952
|
+
)
|
|
953
|
+
|
|
954
|
+
unique_batches = batch_labels.drop_duplicates()
|
|
955
|
+
|
|
956
|
+
for batch in unique_batches:
|
|
957
|
+
mask = batch_labels == batch
|
|
958
|
+
|
|
959
|
+
if n_components == 2:
|
|
960
|
+
fig.add_trace(
|
|
961
|
+
go.Scatter(x=X_orig[mask, 0], y=X_orig[mask, 1],
|
|
962
|
+
mode='markers',
|
|
963
|
+
name=f'Batch {batch}',
|
|
964
|
+
marker=dict(size=8, line=dict(width=1, color='black')),
|
|
965
|
+
showlegend=False),
|
|
966
|
+
row=1, col=1
|
|
967
|
+
)
|
|
968
|
+
|
|
969
|
+
fig.add_trace(
|
|
970
|
+
go.Scatter(x=X_trans[mask, 0], y=X_trans[mask, 1],
|
|
971
|
+
mode='markers',
|
|
972
|
+
name=f'Batch {batch}',
|
|
973
|
+
marker=dict(size=8, line=dict(width=1, color='black')),
|
|
974
|
+
showlegend=show_legend),
|
|
975
|
+
row=1, col=2
|
|
976
|
+
)
|
|
977
|
+
else:
|
|
978
|
+
fig.add_trace(
|
|
979
|
+
go.Scatter3d(x=X_orig[mask, 0], y=X_orig[mask, 1], z=X_orig[mask, 2],
|
|
980
|
+
mode='markers',
|
|
981
|
+
name=f'Batch {batch}',
|
|
982
|
+
marker=dict(size=5, line=dict(width=0.5, color='black')),
|
|
983
|
+
showlegend=False),
|
|
984
|
+
row=1, col=1
|
|
985
|
+
)
|
|
986
|
+
|
|
987
|
+
fig.add_trace(
|
|
988
|
+
go.Scatter3d(x=X_trans[mask, 0], y=X_trans[mask, 1], z=X_trans[mask, 2],
|
|
989
|
+
mode='markers',
|
|
990
|
+
name=f'Batch {batch}',
|
|
991
|
+
marker=dict(size=5, line=dict(width=0.5, color='black')),
|
|
992
|
+
showlegend=show_legend),
|
|
993
|
+
row=1, col=2
|
|
994
|
+
)
|
|
995
|
+
|
|
996
|
+
if title is None:
|
|
997
|
+
title = f'ComBat correction effect visualized with {method.upper()}'
|
|
998
|
+
|
|
999
|
+
fig.update_layout(
|
|
1000
|
+
title=title,
|
|
1001
|
+
title_font_size=16,
|
|
1002
|
+
height=600,
|
|
1003
|
+
showlegend=show_legend,
|
|
1004
|
+
hovermode='closest'
|
|
1005
|
+
)
|
|
1006
|
+
|
|
1007
|
+
axis_labels = [f'{method.upper()}{i+1}' for i in range(n_components)]
|
|
1008
|
+
|
|
1009
|
+
if n_components == 2:
|
|
1010
|
+
fig.update_xaxes(title_text=axis_labels[0])
|
|
1011
|
+
fig.update_yaxes(title_text=axis_labels[1])
|
|
1012
|
+
else:
|
|
1013
|
+
fig.update_scenes(
|
|
1014
|
+
xaxis_title=axis_labels[0],
|
|
1015
|
+
yaxis_title=axis_labels[1],
|
|
1016
|
+
zaxis_title=axis_labels[2]
|
|
1017
|
+
)
|
|
1018
|
+
|
|
1019
|
+
return fig
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: combatlearn
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.2.0
|
|
4
4
|
Summary: Batch-effect harmonization for machine learning frameworks.
|
|
5
5
|
Author-email: Ettore Rocchi <ettoreroc@gmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -37,6 +37,9 @@ License-File: LICENSE
|
|
|
37
37
|
Requires-Dist: pandas>=1.3
|
|
38
38
|
Requires-Dist: numpy>=1.21
|
|
39
39
|
Requires-Dist: scikit-learn>=1.2
|
|
40
|
+
Requires-Dist: plotly>=5.0
|
|
41
|
+
Requires-Dist: nbformat>=4.2
|
|
42
|
+
Requires-Dist: umap-learn>=0.5
|
|
40
43
|
Requires-Dist: pytest>=7
|
|
41
44
|
Dynamic: license-file
|
|
42
45
|
|
|
@@ -111,7 +114,7 @@ print("Best parameters:", grid.best_params_)
|
|
|
111
114
|
print(f"Best CV AUROC: {grid.best_score_:.3f}")
|
|
112
115
|
```
|
|
113
116
|
|
|
114
|
-
For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/demo/combatlearn_demo.ipynb)
|
|
117
|
+
For a full example of how to use **combatlearn** see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb)
|
|
115
118
|
|
|
116
119
|
## `ComBat` parameters
|
|
117
120
|
|
|
@@ -136,6 +139,13 @@ The following section provides a detailed explanation of all parameters availabl
|
|
|
136
139
|
| `covbat_cov_thresh` | float, int | `0.9` | For `"chen"` method only: Cumulative variance threshold $]0,1[$ to retain PCs in PCA space (e.g., 0.9 = retain 90% explained variance). If an integer is provided, it represents the number of principal components to use. |
|
|
137
140
|
| `eps` | float | `1e-8` | Small jitter value added to variances to prevent divide-by-zero errors during standardization. |
|
|
138
141
|
|
|
142
|
+
|
|
143
|
+
### Batch Effect Correction Visualization
|
|
144
|
+
|
|
145
|
+
The `plot_transformation` method allows to visualize the **ComBat** transformation effect using dimensionality reduction, showing the before/after comparison of data transformed by `ComBat` using PCA, t-SNE, or UMAP to reduce dimensions for visualization.
|
|
146
|
+
|
|
147
|
+
For further details see the [notebook demo](https://github.com/EttoreRocchi/combatlearn/blob/main/docs/demo/combatlearn_demo.ipynb).
|
|
148
|
+
|
|
139
149
|
## Contributing
|
|
140
150
|
|
|
141
151
|
Pull requests, bug reports, and feature ideas are welcome: feel free to open a PR!
|
|
@@ -144,7 +154,7 @@ Pull requests, bug reports, and feature ideas are welcome: feel free to open a P
|
|
|
144
154
|
|
|
145
155
|
[**Ettore Rocchi**](https://github.com/ettorerocchi) @ University of Bologna
|
|
146
156
|
|
|
147
|
-
[Google Scholar](https://scholar.google.com/citations?user=MKHoGnQAAAAJ)
|
|
157
|
+
[Google Scholar](https://scholar.google.com/citations?user=MKHoGnQAAAAJ) | [Scopus](https://www.scopus.com/authid/detail.uri?authorId=57220152522)
|
|
148
158
|
|
|
149
159
|
## Acknowledgements
|
|
150
160
|
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
combatlearn/__init__.py,sha256=wJ5E-Nrz6s7KLCHDY_p1kpUwMws-Q6Xd_1cK3JksNxU,98
|
|
2
|
+
combatlearn/combat.py,sha256=g6YnCVWq40j_fMU2OcXrJ1O0MCSyt2owCaZ4gfyF-Pw,37268
|
|
3
|
+
combatlearn-0.2.0.dist-info/licenses/LICENSE,sha256=O34CBRTmdL59PxDYOa6nq1N0-2A9xyXGkBXKbsL1NeY,1070
|
|
4
|
+
combatlearn-0.2.0.dist-info/METADATA,sha256=oEL_LK1fJUUeacf0k09I5HlEOVejeUWEGu3i-QJhL3Y,8735
|
|
5
|
+
combatlearn-0.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
6
|
+
combatlearn-0.2.0.dist-info/top_level.txt,sha256=3cFQv4oj2sh_NKra45cPy8Go0v8W9x9-zkkUibqZCMk,12
|
|
7
|
+
combatlearn-0.2.0.dist-info/RECORD,,
|
|
@@ -1,7 +0,0 @@
|
|
|
1
|
-
combatlearn/__init__.py,sha256=PHezKTkdkd2fnyqihhayxRN8hducHCXug7iQ5-UsfSc,98
|
|
2
|
-
combatlearn/combat.py,sha256=ghc83DTLC4ukLJN_xqpoWZTPPTxFa4DVtT6C5SVUjFA,25024
|
|
3
|
-
combatlearn-0.1.2.dist-info/licenses/LICENSE,sha256=O34CBRTmdL59PxDYOa6nq1N0-2A9xyXGkBXKbsL1NeY,1070
|
|
4
|
-
combatlearn-0.1.2.dist-info/METADATA,sha256=VxQpyJAwOSQqw8ypiSUxq4dmszCDRW3AsO_0XBQq6pk,8213
|
|
5
|
-
combatlearn-0.1.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
6
|
-
combatlearn-0.1.2.dist-info/top_level.txt,sha256=3cFQv4oj2sh_NKra45cPy8Go0v8W9x9-zkkUibqZCMk,12
|
|
7
|
-
combatlearn-0.1.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|