cognite-neat 0.87.6__py3-none-any.whl → 0.88.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cognite-neat might be problematic. Click here for more details.

Files changed (125) hide show
  1. cognite/neat/_version.py +1 -1
  2. cognite/neat/app/api/data_classes/rest.py +0 -19
  3. cognite/neat/app/api/explorer.py +6 -4
  4. cognite/neat/app/api/routers/crud.py +11 -21
  5. cognite/neat/app/api/routers/workflows.py +24 -94
  6. cognite/neat/graph/stores/_base.py +5 -0
  7. cognite/neat/rules/importers/_inference2rules.py +31 -35
  8. cognite/neat/workflows/steps/data_contracts.py +17 -43
  9. cognite/neat/workflows/steps/lib/current/graph_extractor.py +28 -24
  10. cognite/neat/workflows/steps/lib/current/graph_loader.py +4 -21
  11. cognite/neat/workflows/steps/lib/current/graph_store.py +18 -134
  12. cognite/neat/workflows/steps_registry.py +5 -7
  13. {cognite_neat-0.87.6.dist-info → cognite_neat-0.88.0.dist-info}/METADATA +1 -1
  14. {cognite_neat-0.87.6.dist-info → cognite_neat-0.88.0.dist-info}/RECORD +17 -125
  15. cognite/neat/app/api/routers/core.py +0 -91
  16. cognite/neat/app/api/routers/data_exploration.py +0 -336
  17. cognite/neat/app/api/routers/rules.py +0 -203
  18. cognite/neat/legacy/__init__.py +0 -0
  19. cognite/neat/legacy/graph/__init__.py +0 -3
  20. cognite/neat/legacy/graph/examples/Knowledge-Graph-Nordic44-dirty.xml +0 -20182
  21. cognite/neat/legacy/graph/examples/Knowledge-Graph-Nordic44.xml +0 -20163
  22. cognite/neat/legacy/graph/examples/__init__.py +0 -10
  23. cognite/neat/legacy/graph/examples/skos-capturing-sheet-wind-topics.xlsx +0 -0
  24. cognite/neat/legacy/graph/exceptions.py +0 -90
  25. cognite/neat/legacy/graph/extractors/__init__.py +0 -6
  26. cognite/neat/legacy/graph/extractors/_base.py +0 -14
  27. cognite/neat/legacy/graph/extractors/_dexpi.py +0 -44
  28. cognite/neat/legacy/graph/extractors/_graph_capturing_sheet.py +0 -403
  29. cognite/neat/legacy/graph/extractors/_mock_graph_generator.py +0 -361
  30. cognite/neat/legacy/graph/loaders/__init__.py +0 -23
  31. cognite/neat/legacy/graph/loaders/_asset_loader.py +0 -511
  32. cognite/neat/legacy/graph/loaders/_base.py +0 -67
  33. cognite/neat/legacy/graph/loaders/_exceptions.py +0 -85
  34. cognite/neat/legacy/graph/loaders/core/__init__.py +0 -0
  35. cognite/neat/legacy/graph/loaders/core/labels.py +0 -58
  36. cognite/neat/legacy/graph/loaders/core/models.py +0 -136
  37. cognite/neat/legacy/graph/loaders/core/rdf_to_assets.py +0 -1046
  38. cognite/neat/legacy/graph/loaders/core/rdf_to_relationships.py +0 -559
  39. cognite/neat/legacy/graph/loaders/rdf_to_dms.py +0 -309
  40. cognite/neat/legacy/graph/loaders/validator.py +0 -87
  41. cognite/neat/legacy/graph/models.py +0 -6
  42. cognite/neat/legacy/graph/stores/__init__.py +0 -13
  43. cognite/neat/legacy/graph/stores/_base.py +0 -400
  44. cognite/neat/legacy/graph/stores/_graphdb_store.py +0 -52
  45. cognite/neat/legacy/graph/stores/_memory_store.py +0 -43
  46. cognite/neat/legacy/graph/stores/_oxigraph_store.py +0 -151
  47. cognite/neat/legacy/graph/stores/_oxrdflib.py +0 -247
  48. cognite/neat/legacy/graph/stores/_rdf_to_graph.py +0 -42
  49. cognite/neat/legacy/graph/transformations/__init__.py +0 -0
  50. cognite/neat/legacy/graph/transformations/entity_matcher.py +0 -101
  51. cognite/neat/legacy/graph/transformations/query_generator/__init__.py +0 -3
  52. cognite/neat/legacy/graph/transformations/query_generator/sparql.py +0 -575
  53. cognite/neat/legacy/graph/transformations/transformer.py +0 -322
  54. cognite/neat/legacy/rules/__init__.py +0 -0
  55. cognite/neat/legacy/rules/analysis.py +0 -231
  56. cognite/neat/legacy/rules/examples/Rules-Nordic44-to-graphql.xlsx +0 -0
  57. cognite/neat/legacy/rules/examples/Rules-Nordic44.xlsx +0 -0
  58. cognite/neat/legacy/rules/examples/__init__.py +0 -18
  59. cognite/neat/legacy/rules/examples/power-grid-containers.yaml +0 -124
  60. cognite/neat/legacy/rules/examples/power-grid-example.xlsx +0 -0
  61. cognite/neat/legacy/rules/examples/power-grid-model.yaml +0 -224
  62. cognite/neat/legacy/rules/examples/rules-template.xlsx +0 -0
  63. cognite/neat/legacy/rules/examples/sheet2cdf-transformation-rules.xlsx +0 -0
  64. cognite/neat/legacy/rules/examples/skos-rules.xlsx +0 -0
  65. cognite/neat/legacy/rules/examples/source-to-solution-mapping-rules.xlsx +0 -0
  66. cognite/neat/legacy/rules/examples/wind-energy.owl +0 -1511
  67. cognite/neat/legacy/rules/exceptions.py +0 -2972
  68. cognite/neat/legacy/rules/exporters/__init__.py +0 -20
  69. cognite/neat/legacy/rules/exporters/_base.py +0 -45
  70. cognite/neat/legacy/rules/exporters/_core/__init__.py +0 -5
  71. cognite/neat/legacy/rules/exporters/_core/rules2labels.py +0 -24
  72. cognite/neat/legacy/rules/exporters/_rules2dms.py +0 -885
  73. cognite/neat/legacy/rules/exporters/_rules2excel.py +0 -213
  74. cognite/neat/legacy/rules/exporters/_rules2graphql.py +0 -183
  75. cognite/neat/legacy/rules/exporters/_rules2ontology.py +0 -524
  76. cognite/neat/legacy/rules/exporters/_rules2pydantic_models.py +0 -748
  77. cognite/neat/legacy/rules/exporters/_rules2rules.py +0 -105
  78. cognite/neat/legacy/rules/exporters/_rules2triples.py +0 -38
  79. cognite/neat/legacy/rules/exporters/_validation.py +0 -146
  80. cognite/neat/legacy/rules/importers/__init__.py +0 -22
  81. cognite/neat/legacy/rules/importers/_base.py +0 -66
  82. cognite/neat/legacy/rules/importers/_dict2rules.py +0 -158
  83. cognite/neat/legacy/rules/importers/_dms2rules.py +0 -194
  84. cognite/neat/legacy/rules/importers/_graph2rules.py +0 -308
  85. cognite/neat/legacy/rules/importers/_json2rules.py +0 -39
  86. cognite/neat/legacy/rules/importers/_owl2rules/__init__.py +0 -3
  87. cognite/neat/legacy/rules/importers/_owl2rules/_owl2classes.py +0 -239
  88. cognite/neat/legacy/rules/importers/_owl2rules/_owl2metadata.py +0 -260
  89. cognite/neat/legacy/rules/importers/_owl2rules/_owl2properties.py +0 -217
  90. cognite/neat/legacy/rules/importers/_owl2rules/_owl2rules.py +0 -290
  91. cognite/neat/legacy/rules/importers/_spreadsheet2rules.py +0 -45
  92. cognite/neat/legacy/rules/importers/_xsd2rules.py +0 -20
  93. cognite/neat/legacy/rules/importers/_yaml2rules.py +0 -39
  94. cognite/neat/legacy/rules/models/__init__.py +0 -5
  95. cognite/neat/legacy/rules/models/_base.py +0 -151
  96. cognite/neat/legacy/rules/models/raw_rules.py +0 -316
  97. cognite/neat/legacy/rules/models/rdfpath.py +0 -237
  98. cognite/neat/legacy/rules/models/rules.py +0 -1289
  99. cognite/neat/legacy/rules/models/tables.py +0 -9
  100. cognite/neat/legacy/rules/models/value_types.py +0 -118
  101. cognite/neat/legacy/workflows/examples/Export_DMS/workflow.yaml +0 -89
  102. cognite/neat/legacy/workflows/examples/Export_Rules_to_Ontology/workflow.yaml +0 -152
  103. cognite/neat/legacy/workflows/examples/Extract_DEXPI_Graph_and_Export_Rules/workflow.yaml +0 -139
  104. cognite/neat/legacy/workflows/examples/Extract_RDF_Graph_and_Generate_Assets/workflow.yaml +0 -270
  105. cognite/neat/legacy/workflows/examples/Import_DMS/workflow.yaml +0 -65
  106. cognite/neat/legacy/workflows/examples/Ontology_to_Data_Model/workflow.yaml +0 -116
  107. cognite/neat/legacy/workflows/examples/Validate_Rules/workflow.yaml +0 -67
  108. cognite/neat/legacy/workflows/examples/Validate_Solution_Model/workflow.yaml +0 -64
  109. cognite/neat/legacy/workflows/examples/Visualize_Data_Model_Using_Mock_Graph/workflow.yaml +0 -95
  110. cognite/neat/legacy/workflows/examples/Visualize_Semantic_Data_Model/workflow.yaml +0 -111
  111. cognite/neat/workflows/examples/Extract_RDF_Graph_and_Generate_Assets/workflow.yaml +0 -270
  112. cognite/neat/workflows/migration/__init__.py +0 -0
  113. cognite/neat/workflows/migration/steps.py +0 -91
  114. cognite/neat/workflows/migration/wf_manifests.py +0 -33
  115. cognite/neat/workflows/steps/lib/legacy/__init__.py +0 -7
  116. cognite/neat/workflows/steps/lib/legacy/graph_contextualization.py +0 -82
  117. cognite/neat/workflows/steps/lib/legacy/graph_extractor.py +0 -746
  118. cognite/neat/workflows/steps/lib/legacy/graph_loader.py +0 -606
  119. cognite/neat/workflows/steps/lib/legacy/graph_store.py +0 -307
  120. cognite/neat/workflows/steps/lib/legacy/graph_transformer.py +0 -58
  121. cognite/neat/workflows/steps/lib/legacy/rules_exporter.py +0 -511
  122. cognite/neat/workflows/steps/lib/legacy/rules_importer.py +0 -612
  123. {cognite_neat-0.87.6.dist-info → cognite_neat-0.88.0.dist-info}/LICENSE +0 -0
  124. {cognite_neat-0.87.6.dist-info → cognite_neat-0.88.0.dist-info}/WHEEL +0 -0
  125. {cognite_neat-0.87.6.dist-info → cognite_neat-0.88.0.dist-info}/entry_points.txt +0 -0
@@ -1,217 +0,0 @@
1
- from typing import cast
2
-
3
- import numpy as np
4
- import pandas as pd
5
- from rdflib import Graph
6
-
7
- from cognite.neat.utils.rdf_ import remove_namespace_from_uri
8
-
9
- from ._owl2classes import _data_type_property_class, _object_property_class, _thing_class
10
-
11
-
12
- def parse_owl_properties(graph: Graph, make_compliant: bool = False, language: str = "en") -> pd.DataFrame:
13
- """Get all properties from the OWL ontology
14
-
15
- Parameters
16
- ----------
17
- graph : Graph
18
- Graph to query
19
- parsing_config : dict, optional
20
- Configuration for parsing the dataframe, by default None
21
-
22
- Returns
23
- -------
24
- pd.DataFrame
25
- Dataframe with columns: class, property, name, ...
26
- """
27
-
28
- query = """
29
-
30
- SELECT ?class ?property ?name ?description ?type ?minCount ?maxCount
31
- ?deprecated ?deprecationDate ?replacedBy ?source ?sourceEntity
32
- ?match ?comment ?propertyType
33
- WHERE {
34
- ?property a ?propertyType.
35
- FILTER (?propertyType IN (owl:ObjectProperty, owl:DatatypeProperty ) )
36
- OPTIONAL {?property rdfs:domain ?class }.
37
- OPTIONAL {?property rdfs:range ?type }.
38
- OPTIONAL {?property rdfs:label ?name }.
39
- OPTIONAL {?property rdfs:comment ?description} .
40
- OPTIONAL {?property owl:maxCardinality ?maxCount} .
41
- OPTIONAL {?property owl:minCardinality ?minCount} .
42
- FILTER (!isBlank(?property))
43
- FILTER (!bound(?type) || !isBlank(?type))
44
- FILTER (!bound(?class) || !isBlank(?class))
45
- FILTER (!bound(?name) || LANG(?name) = "" || LANGMATCHES(LANG(?name), "en"))
46
- FILTER (!bound(?description) || LANG(?description) = "" || LANGMATCHES(LANG(?description), "en"))
47
- OPTIONAL {?property owl:deprecated ?deprecated} .
48
- }
49
- """
50
-
51
- raw_df = _parse_raw_dataframe(cast(list[tuple], list(graph.query(query.replace("en", language)))))
52
- if raw_df.empty:
53
- return pd.concat([raw_df, pd.DataFrame([len(raw_df) * [""]])], ignore_index=True)
54
-
55
- # group values and clean up
56
- processed_df = _clean_up_properties(raw_df)
57
-
58
- # make compliant
59
- if make_compliant:
60
- processed_df = make_properties_compliant(processed_df)
61
-
62
- # drop column _property_type, which was a helper column:
63
- processed_df.drop(columns=["_property_type"], inplace=True)
64
-
65
- return processed_df
66
-
67
-
68
- def _parse_raw_dataframe(query_results: list[tuple]) -> pd.DataFrame:
69
- df = pd.DataFrame(
70
- query_results,
71
- columns=[
72
- "Class",
73
- "Property",
74
- "Name",
75
- "Description",
76
- "Type",
77
- "Min Count",
78
- "Max Count",
79
- "Deprecated",
80
- "Deprecation Date",
81
- "Replaced By",
82
- "Source",
83
- "Source Entity Name",
84
- "Match Type",
85
- "Comment",
86
- "_property_type",
87
- ],
88
- )
89
- if df.empty:
90
- return df
91
-
92
- df.replace(np.nan, "", regex=True, inplace=True)
93
-
94
- df.Source = df.Property
95
- df.Class = df.Class.apply(lambda x: remove_namespace_from_uri(x))
96
- df.Property = df.Property.apply(lambda x: remove_namespace_from_uri(x))
97
- df.Type = df.Type.apply(lambda x: remove_namespace_from_uri(x))
98
- df["Source Entity Name"] = df.Property
99
- df["Match Type"] = len(df) * ["exact"]
100
- df["_property_type"] = df["_property_type"].apply(lambda x: remove_namespace_from_uri(x))
101
-
102
- return df
103
-
104
-
105
- def _clean_up_properties(df: pd.DataFrame) -> pd.DataFrame:
106
- class_grouped_dfs = df.groupby("Class")
107
-
108
- clean_list = []
109
-
110
- for class_, class_grouped_df in class_grouped_dfs:
111
- property_grouped_dfs = class_grouped_df.groupby("Property")
112
- for property_, property_grouped_df in property_grouped_dfs:
113
- clean_list += [
114
- {
115
- "Class": class_,
116
- "Property": property_,
117
- "Name": property_grouped_df["Name"].unique()[0],
118
- "Description": "\n".join(list(property_grouped_df.Description.unique()))[:1024],
119
- "Type": property_grouped_df.Type.unique()[0],
120
- "Min Count": property_grouped_df["Min Count"].unique()[0],
121
- "Max Count": property_grouped_df["Max Count"].unique()[0],
122
- "Deprecated": property_grouped_df.Deprecated.unique()[0],
123
- "Deprecation Date": property_grouped_df["Deprecation Date"].unique()[0],
124
- "Replaced By": property_grouped_df["Replaced By"].unique()[0],
125
- "Source": property_grouped_df["Source"].unique()[0],
126
- "Source Entity Name": property_grouped_df["Source Entity Name"].unique()[0],
127
- "Match Type": property_grouped_df["Match Type"].unique()[0],
128
- "Comment": property_grouped_df["Comment"].unique()[0],
129
- "_property_type": property_grouped_df["_property_type"].unique()[0],
130
- }
131
- ]
132
-
133
- df = pd.DataFrame(clean_list)
134
- df.replace("", None, inplace=True)
135
-
136
- return df
137
-
138
-
139
- def make_properties_compliant(properties: pd.DataFrame) -> pd.DataFrame:
140
- # default to None if "Min Count" is not specified
141
- properties["Min Count"] = properties["Min Count"].apply(lambda x: None if not isinstance(x, int) or x == "" else x)
142
-
143
- # default to None if "Max Count" is not specified
144
- properties["Max Count"] = properties["Max Count"].apply(lambda x: 1 if not isinstance(x, int) or x == "" else x)
145
-
146
- # Replace empty or non-string values in "Match Type" column with "exact"
147
- properties["Match Type"] = properties["Match Type"].fillna("exact")
148
- properties["Match Type"] = properties["Match Type"].apply(
149
- lambda x: "exact" if not isinstance(x, str) or len(x) == 0 else x
150
- )
151
-
152
- # Replace empty or non-string values in "Comment" column with a default value
153
- properties["Comment"] = properties["Comment"].fillna("Imported from Ontology by NEAT")
154
- properties["Comment"] = properties["Comment"].apply(
155
- lambda x: "Imported from Ontology by NEAT" if not isinstance(x, str) or len(x) == 0 else x
156
- )
157
-
158
- # Replace empty or non-boolean values in "Deprecated" column with False
159
- properties["Deprecated"] = properties["Deprecated"].fillna(False)
160
- properties["Deprecated"] = properties["Deprecated"].apply(lambda x: False if not isinstance(x, bool) else x)
161
-
162
- # Reduce length of elements in the "Description" column to 1024 characters
163
- properties["Description"] = properties["Description"].apply(lambda x: x[:1024] if isinstance(x, str) else None)
164
-
165
- # fixes and additions
166
- properties = fix_dangling_properties(properties)
167
- properties = fix_missing_property_value_type(properties)
168
-
169
- return properties
170
-
171
-
172
- def fix_dangling_properties(properties: pd.DataFrame) -> pd.DataFrame:
173
- """This method fixes properties which are missing a domain definition in the ontology.
174
-
175
- Args:
176
- properties: Dataframe containing properties
177
-
178
- Returns:
179
- Dataframe containing properties with fixed domain
180
- """
181
- domain = {
182
- "ObjectProperty": _object_property_class()["Class"],
183
- "DatatypeProperty": _data_type_property_class()["Class"],
184
- }
185
-
186
- # apply missing range
187
- properties["Class"] = properties.apply(
188
- lambda row: domain[row._property_type]
189
- if row._property_type == "ObjectProperty" and pd.isna(row["Class"])
190
- else domain["DatatypeProperty"]
191
- if pd.isna(row["Class"])
192
- else row["Class"],
193
- axis=1,
194
- )
195
- return properties
196
-
197
-
198
- def fix_missing_property_value_type(properties: pd.DataFrame) -> pd.DataFrame:
199
- """This method fixes properties which are missing a range definition in the ontology.
200
-
201
- Args:
202
- properties: Dataframe containing properties
203
-
204
- Returns:
205
- Dataframe containing properties with fixed range
206
- """
207
- # apply missing range
208
- properties["Type"] = properties.apply(
209
- lambda row: _thing_class()["Class"]
210
- if row._property_type == "ObjectProperty" and pd.isna(row["Type"])
211
- else "string"
212
- if pd.isna(row["Type"])
213
- else row["Type"],
214
- axis=1,
215
- )
216
-
217
- return properties
@@ -1,290 +0,0 @@
1
- """This module performs importing of various formats to one of serializations for which
2
- there are loaders to TransformationRules pydantic class."""
3
-
4
- # TODO: if this module grows too big, split it into several files and place under ./converter directory
5
-
6
- from pathlib import Path
7
-
8
- import pandas as pd
9
- from pydantic_core import ErrorDetails
10
- from rdflib import DC, DCTERMS, OWL, RDF, RDFS, SKOS, Graph
11
-
12
- from cognite.neat.legacy.rules.importers._base import BaseImporter
13
- from cognite.neat.legacy.rules.models.raw_rules import RawRules
14
- from cognite.neat.legacy.rules.models.rules import Rules
15
- from cognite.neat.legacy.rules.models.tables import Tables
16
- from cognite.neat.legacy.rules.models.value_types import XSD_VALUE_TYPE_MAPPINGS
17
-
18
- from ._owl2classes import parse_owl_classes
19
- from ._owl2metadata import parse_owl_metadata
20
- from ._owl2properties import parse_owl_properties
21
-
22
-
23
- class OWLImporter(BaseImporter):
24
- """Convert OWL ontology to tables/ transformation rules / Excel file.
25
-
26
- Args:
27
- owl_filepath: Path to OWL ontology
28
-
29
- !!! Note
30
- OWL Ontologies typically lacks some information that is required for making a complete
31
- data model. This means that the methods .to_rules() will typically fail. Instead, it is recommended
32
- that you use the .to_spreadsheet() method to generate an Excel file, and then manually add the missing
33
- information to the Excel file. The Excel file can then be converted to a `Rules` object.
34
-
35
- Alternatively, one can set the `make_compliant` parameter to True to allow neat to attempt to make
36
- the imported rules compliant by adding default values for missing information, attaching dangling
37
- properties to default containers based on the property type, etc. One has to be aware
38
- that NEAT will be opinionated about how to make the ontology compliant, and that the resulting
39
- rules may not be what you expect.
40
-
41
- """
42
-
43
- def __init__(self, owl_filepath: Path):
44
- self.owl_filepath = owl_filepath
45
-
46
- def to_tables(self, make_compliant: bool = False) -> dict[str, pd.DataFrame]:
47
- graph = Graph()
48
- try:
49
- graph.parse(self.owl_filepath)
50
- except Exception as e:
51
- raise Exception(f"Could not parse owl file: {e}") from e
52
-
53
- # bind key namespaces
54
- graph.bind("owl", OWL)
55
- graph.bind("rdf", RDF)
56
- graph.bind("rdfs", RDFS)
57
- graph.bind("dcterms", DCTERMS)
58
- graph.bind("dc", DC)
59
- graph.bind("skos", SKOS)
60
-
61
- tables: dict[str, pd.DataFrame] = {
62
- Tables.metadata: parse_owl_metadata(graph, make_compliant=make_compliant),
63
- Tables.classes: parse_owl_classes(graph, make_compliant=make_compliant),
64
- Tables.properties: parse_owl_properties(graph, make_compliant=make_compliant),
65
- }
66
-
67
- if make_compliant:
68
- tables = make_tables_compliant(tables)
69
- # add sorting of classes and properties prior exporting
70
-
71
- tables[Tables.classes] = tables[Tables.classes].sort_values(by=["Class"])
72
- tables[Tables.properties] = tables[Tables.properties].sort_values(by=["Class", "Property"])
73
-
74
- return tables
75
-
76
- def to_raw_rules(self, make_compliant: bool = False) -> RawRules:
77
- """Creates `RawRules` object from the data."""
78
-
79
- tables = self.to_tables(make_compliant=make_compliant)
80
-
81
- return RawRules.from_tables(tables=tables, importer_type=self.__class__.__name__)
82
-
83
- def to_rules(
84
- self,
85
- return_report: bool = False,
86
- skip_validation: bool = False,
87
- validators_to_skip: set[str] | None = None,
88
- make_compliant: bool = False,
89
- ) -> tuple[Rules | None, list[ErrorDetails] | None, list | None] | Rules:
90
- """
91
- Creates `Rules` object from the data.
92
-
93
- Args:
94
- return_report: To return validation report. Defaults to False.
95
- skip_validation: Bypasses Rules validation. Defaults to False.
96
- validators_to_skip: List of validators to skip. Defaults to None.
97
- make_compliant: Flag for generating compliant rules, by default False
98
-
99
- Returns:
100
- Instance of `Rules`, which can be validated, not validated based on
101
- `skip_validation` flag, or partially validated if `validators_to_skip` is set,
102
- and optional list of errors and warnings if
103
- `return_report` is set to True.
104
-
105
- !!! Note "Skip Validation
106
- `skip_validation` flag should be only used for purpose when `Rules` object
107
- is exported to an Excel file. Do not use this flag for any other purpose!
108
- """
109
-
110
- raw_rules = self.to_raw_rules(make_compliant=make_compliant)
111
-
112
- return raw_rules.to_rules(return_report, skip_validation, validators_to_skip)
113
-
114
-
115
- def make_tables_compliant(tables: dict[str, pd.DataFrame]) -> dict[str, pd.DataFrame]:
116
- tables = _add_missing_classes(tables)
117
- tables = _add_missing_value_types(tables)
118
- tables = _add_properties_to_dangling_classes(tables)
119
- tables = _add_entity_type_property(tables)
120
-
121
- return tables
122
-
123
-
124
- def _add_missing_classes(tables: dict[str, pd.DataFrame]) -> dict[str, pd.DataFrame]:
125
- """Add missing classes to containers.
126
-
127
- Args:
128
- tables: imported tables from owl ontology
129
-
130
- Returns:
131
- Updated tables with missing classes added to containers
132
- """
133
-
134
- missing_classes = set(tables[Tables.properties].Class.to_list()) - set(tables[Tables.classes].Class.to_list())
135
-
136
- rows = []
137
- for class_ in missing_classes:
138
- rows += [
139
- {
140
- "Class": class_,
141
- "Name": None,
142
- "Description": None,
143
- "Parent Class": None,
144
- "Deprecated": False,
145
- "Deprecation Date": None,
146
- "Replaced By": None,
147
- "Source": None,
148
- "Source Entity Name": None,
149
- "Match Type": None,
150
- "Comment": (
151
- "Added by NEAT. "
152
- "This is a class that a domain of a property but was not defined in the ontology. "
153
- "It is added by NEAT to make the ontology compliant with CDF."
154
- ),
155
- }
156
- ]
157
-
158
- if rows:
159
- tables[Tables.classes] = pd.concat(
160
- [tables[Tables.classes], pd.DataFrame(rows)],
161
- ignore_index=True,
162
- )
163
-
164
- return tables
165
-
166
-
167
- def _add_missing_value_types(tables: dict[str, pd.DataFrame]) -> dict[str, pd.DataFrame]:
168
- """Add properties to classes that do not have any properties defined to them
169
-
170
- Args:
171
- tables: imported tables from owl ontology
172
-
173
- Returns:
174
- Updated tables with missing properties added to containers
175
- """
176
-
177
- xsd_types = set(XSD_VALUE_TYPE_MAPPINGS.keys())
178
- referred_types = set(tables[Tables.properties]["Type"].to_list())
179
- defined_classes = set(tables[Tables.classes]["Class"].to_list())
180
-
181
- rows = []
182
- for class_ in referred_types.difference(defined_classes).difference(xsd_types):
183
- rows += [
184
- {
185
- "Class": class_,
186
- "Name": None,
187
- "Description": None,
188
- "Parent Class": None,
189
- "Deprecated": False,
190
- "Deprecation Date": None,
191
- "Replaced By": None,
192
- "Source": None,
193
- "Source Entity Name": None,
194
- "Match Type": None,
195
- "Comment": (
196
- "Added by NEAT. "
197
- "This is a class that a domain of a property but was not defined in the ontology. "
198
- "It is added by NEAT to make the ontology compliant with CDF."
199
- ),
200
- }
201
- ]
202
-
203
- if rows:
204
- tables[Tables.classes] = pd.concat(
205
- [tables[Tables.classes], pd.DataFrame(rows)],
206
- ignore_index=True,
207
- )
208
-
209
- return tables
210
-
211
-
212
- def _add_properties_to_dangling_classes(
213
- tables: dict[str, pd.DataFrame], properties_to_add: list[str] | None = None
214
- ) -> dict[str, pd.DataFrame]:
215
- """Add properties to classes that do not have any properties defined to them
216
-
217
- Args:
218
- tables: imported tables from owl ontology
219
-
220
- Returns:
221
- Updated tables with missing properties added to containers
222
- """
223
-
224
- if properties_to_add is None:
225
- properties_to_add = ["label"]
226
- undefined_classes = set(tables[Tables.classes].Class.to_list()) - set(tables[Tables.properties].Class.to_list())
227
-
228
- rows = []
229
- for class_ in undefined_classes:
230
- for property_ in properties_to_add:
231
- rows += [
232
- {
233
- "Class": class_,
234
- "Property": property_,
235
- "Name": property_,
236
- "Description": None,
237
- "Type": "string",
238
- "Min Count": None,
239
- "Max Count": 1,
240
- "Deprecated": False,
241
- "Deprecation Date": None,
242
- "Replaced By": None,
243
- "Source": None,
244
- "Source Entity Name": None,
245
- "Match Type": None,
246
- "Comment": "Added by NEAT. Default property to make the ontology compliant with CDF.",
247
- }
248
- ]
249
-
250
- if rows:
251
- tables[Tables.properties] = pd.concat(
252
- [tables[Tables.properties], pd.DataFrame(rows)],
253
- ignore_index=True,
254
- )
255
-
256
- return tables
257
-
258
-
259
- def _add_entity_type_property(tables: dict[str, pd.DataFrame]) -> dict[str, pd.DataFrame]:
260
- missing_entity_type = set(
261
- tables[Tables.properties].groupby("Class").filter(lambda x: "entityType" not in x.Property.to_list()).Class
262
- )
263
-
264
- rows = []
265
- for class_ in missing_entity_type:
266
- rows += [
267
- {
268
- "Class": class_,
269
- "Property": "entityType",
270
- "Name": "entityType",
271
- "Description": None,
272
- "Type": "string",
273
- "Min Count": None,
274
- "Max Count": 1,
275
- "Deprecated": False,
276
- "Deprecation Date": None,
277
- "Replaced By": None,
278
- "Source": None,
279
- "Source Entity Name": None,
280
- "Match Type": None,
281
- "Comment": "Added by NEAT. Default property added to make the ontology compliant with CDF.",
282
- }
283
- ]
284
-
285
- if rows:
286
- tables[Tables.properties] = pd.concat(
287
- [tables[Tables.properties], pd.DataFrame(rows)],
288
- ignore_index=True,
289
- )
290
- return tables
@@ -1,45 +0,0 @@
1
- """This module performs importing of graph to TransformationRules pydantic class.
2
- In more details, it traverses the graph and abstracts class and properties, basically
3
- generating a list of rules based on which nodes that form the graph are made.
4
- """
5
-
6
- from pathlib import Path
7
-
8
- import pandas as pd
9
- from openpyxl import Workbook, load_workbook
10
-
11
- from cognite.neat.utils.auxiliary import local_import
12
-
13
- from ._base import BaseImporter
14
-
15
-
16
- class ExcelImporter(BaseImporter):
17
- def __init__(self, filepath: Path):
18
- self.filepath = filepath
19
-
20
- def to_tables(self) -> dict[str, pd.DataFrame]:
21
- workbook: Workbook = load_workbook(self.filepath)
22
-
23
- return {
24
- sheet_name: pd.read_excel(
25
- self.filepath,
26
- sheet_name=sheet_name,
27
- header=None if sheet_name == "Metadata" else 0,
28
- skiprows=1 if sheet_name in ["Classes", "Properties", "Instances"] else None,
29
- )
30
- for sheet_name in workbook.sheetnames
31
- }
32
-
33
-
34
- class GoogleSheetImporter(BaseImporter):
35
- def __init__(self, sheet_id: str):
36
- self.sheet_id = sheet_id
37
-
38
- def to_tables(self) -> dict[str, pd.DataFrame]:
39
- local_import("gspread", "google")
40
- import gspread # type: ignore[import]
41
-
42
- client_google = gspread.service_account()
43
- google_sheet = client_google.open_by_key(self.sheet_id)
44
-
45
- return {worksheet.title: pd.DataFrame(worksheet.get_all_records()) for worksheet in google_sheet.worksheets()}
@@ -1,20 +0,0 @@
1
- from pathlib import Path
2
-
3
- import pandas as pd
4
-
5
- from ._base import BaseImporter
6
-
7
-
8
- class XSDImporter(BaseImporter):
9
- """
10
- Importer for XSD (XML Schema) files.
11
-
12
- Args:
13
- xml_directory: Path to directory containing XSD files.
14
- """
15
-
16
- def __init__(self, xsd_directory: Path):
17
- self.xsd_directory = xsd_directory
18
-
19
- def to_tables(self) -> dict[str, pd.DataFrame]:
20
- raise NotImplementedError
@@ -1,39 +0,0 @@
1
- from pathlib import Path
2
- from typing import Literal
3
-
4
- import yaml
5
-
6
- from ._dict2rules import ArbitraryDictImporter
7
-
8
-
9
- class ArbitraryYAMLImporter(ArbitraryDictImporter):
10
- """
11
- Importer for data given in a YAML file or string.
12
-
13
- This importer infers the data model from the YAML string based on the shape of the data.
14
-
15
- Args:
16
- yaml_path_or_str: Path to file with YAML.
17
- relationship_direction: Direction of relationships, either "parent-to-child" or "child-to-parent". JSON
18
- files are nested with children nested inside parents. This option determines whether the resulting rules
19
- will have an edge from parents to children or from children to parents.
20
- """
21
-
22
- def __init__(
23
- self,
24
- yaml_path_or_str: Path,
25
- relationship_direction: Literal["parent-to-child", "child-to-parent"] = "parent-to-child",
26
- ):
27
- if isinstance(yaml_path_or_str, str):
28
- data = yaml.safe_load(yaml_path_or_str)
29
- super().__init__(data, relationship_direction)
30
- elif isinstance(yaml_path_or_str, Path):
31
- if not yaml_path_or_str.exists():
32
- raise ValueError(f"File {yaml_path_or_str} does not exist")
33
- if yaml_path_or_str.suffix != ".json":
34
- raise ValueError(f"File {yaml_path_or_str} is not a JSON file")
35
- self.json_path = yaml_path_or_str
36
- data = yaml.safe_load(yaml_path_or_str.read_text())
37
- super().__init__(data, relationship_direction)
38
- else:
39
- raise TypeError(f"Expected Path or str, got {type(yaml_path_or_str)}")
@@ -1,5 +0,0 @@
1
- from .raw_rules import RawRules
2
- from .rules import Rules
3
- from .tables import Tables
4
-
5
- __all__ = ["Tables", "Rules", "RawRules"]