cognee 0.3.9__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -124,7 +124,10 @@ class OllamaEmbeddingEngine(EmbeddingEngine):
124
124
  self.endpoint, json=payload, headers=headers, timeout=60.0
125
125
  ) as response:
126
126
  data = await response.json()
127
- return data["embeddings"][0]
127
+ if "embeddings" in data:
128
+ return data["embeddings"][0]
129
+ else:
130
+ return data["data"][0]["embedding"]
128
131
 
129
132
  def get_vector_size(self) -> int:
130
133
  """
@@ -1,4 +1,6 @@
1
1
  from typing import Any, Optional
2
+ from fastapi.encoders import jsonable_encoder
3
+
2
4
  from cognee.infrastructure.databases.graph import get_graph_engine
3
5
  from cognee.modules.retrieval.base_retriever import BaseRetriever
4
6
  from cognee.modules.retrieval.utils.completion import generate_completion
@@ -50,7 +52,7 @@ class CypherSearchRetriever(BaseRetriever):
50
52
  logger.warning("Search attempt on an empty knowledge graph")
51
53
  return []
52
54
 
53
- result = await graph_engine.query(query)
55
+ result = jsonable_encoder(await graph_engine.query(query))
54
56
  except Exception as e:
55
57
  logger.error("Failed to execture cypher search retrieval: %s", str(e))
56
58
  raise CypherSearchError() from e
@@ -5,7 +5,7 @@ from cognee.tasks.web_scraper import DefaultUrlCrawler
5
5
  @pytest.mark.asyncio
6
6
  async def test_fetch():
7
7
  crawler = DefaultUrlCrawler()
8
- url = "https://en.wikipedia.org/wiki/Large_language_model"
8
+ url = "http://example.com/"
9
9
  results = await crawler.fetch_urls(url)
10
10
  assert len(results) == 1
11
11
  assert isinstance(results, dict)
@@ -11,7 +11,7 @@ skip_in_ci = pytest.mark.skipif(
11
11
  @skip_in_ci
12
12
  @pytest.mark.asyncio
13
13
  async def test_fetch():
14
- url = "https://en.wikipedia.org/wiki/Large_language_model"
14
+ url = "http://example.com/"
15
15
  results = await fetch_with_tavily(url)
16
16
  assert isinstance(results, dict)
17
17
  assert len(results) == 1
@@ -14,9 +14,7 @@ async def test_url_saves_as_html_file():
14
14
  await cognee.prune.prune_system(metadata=True)
15
15
 
16
16
  try:
17
- original_file_path = await save_data_item_to_storage(
18
- "https://en.wikipedia.org/wiki/Large_language_model"
19
- )
17
+ original_file_path = await save_data_item_to_storage("http://example.com/")
20
18
  file_path = get_data_file_path(original_file_path)
21
19
  assert file_path.endswith(".html")
22
20
  file = Path(file_path)
@@ -44,9 +42,7 @@ async def test_saved_html_is_valid():
44
42
  await cognee.prune.prune_system(metadata=True)
45
43
 
46
44
  try:
47
- original_file_path = await save_data_item_to_storage(
48
- "https://en.wikipedia.org/wiki/Large_language_model"
49
- )
45
+ original_file_path = await save_data_item_to_storage("http://example.com/")
50
46
  file_path = get_data_file_path(original_file_path)
51
47
  content = Path(file_path).read_text()
52
48
 
@@ -72,7 +68,7 @@ async def test_add_url():
72
68
  await cognee.prune.prune_data()
73
69
  await cognee.prune.prune_system(metadata=True)
74
70
 
75
- await cognee.add("https://en.wikipedia.org/wiki/Large_language_model")
71
+ await cognee.add("http://example.com/")
76
72
 
77
73
 
78
74
  skip_in_ci = pytest.mark.skipif(
@@ -88,7 +84,7 @@ async def test_add_url_with_tavily():
88
84
  await cognee.prune.prune_data()
89
85
  await cognee.prune.prune_system(metadata=True)
90
86
 
91
- await cognee.add("https://en.wikipedia.org/wiki/Large_language_model")
87
+ await cognee.add("http://example.com/")
92
88
 
93
89
 
94
90
  @pytest.mark.asyncio
@@ -98,7 +94,7 @@ async def test_add_url_without_incremental_loading():
98
94
 
99
95
  try:
100
96
  await cognee.add(
101
- "https://en.wikipedia.org/wiki/Large_language_model",
97
+ "http://example.com/",
102
98
  incremental_loading=False,
103
99
  )
104
100
  except Exception as e:
@@ -112,7 +108,7 @@ async def test_add_url_with_incremental_loading():
112
108
 
113
109
  try:
114
110
  await cognee.add(
115
- "https://en.wikipedia.org/wiki/Large_language_model",
111
+ "http://example.com/",
116
112
  incremental_loading=True,
117
113
  )
118
114
  except Exception as e:
@@ -125,7 +121,7 @@ async def test_add_url_can_define_preferred_loader_as_list_of_str():
125
121
  await cognee.prune.prune_system(metadata=True)
126
122
 
127
123
  await cognee.add(
128
- "https://en.wikipedia.org/wiki/Large_language_model",
124
+ "http://example.com/",
129
125
  preferred_loaders=["beautiful_soup_loader"],
130
126
  )
131
127
 
@@ -144,7 +140,7 @@ async def test_add_url_with_extraction_rules():
144
140
 
145
141
  try:
146
142
  await cognee.add(
147
- "https://en.wikipedia.org/wiki/Large_language_model",
143
+ "http://example.com/",
148
144
  preferred_loaders={"beautiful_soup_loader": {"extraction_rules": extraction_rules}},
149
145
  )
150
146
  except Exception as e:
@@ -163,9 +159,7 @@ async def test_loader_is_none_by_default():
163
159
  }
164
160
 
165
161
  try:
166
- original_file_path = await save_data_item_to_storage(
167
- "https://en.wikipedia.org/wiki/Large_language_model"
168
- )
162
+ original_file_path = await save_data_item_to_storage("http://example.com/")
169
163
  file_path = get_data_file_path(original_file_path)
170
164
  assert file_path.endswith(".html")
171
165
  file = Path(file_path)
@@ -196,9 +190,7 @@ async def test_beautiful_soup_loader_is_selected_loader_if_preferred_loader_prov
196
190
  }
197
191
 
198
192
  try:
199
- original_file_path = await save_data_item_to_storage(
200
- "https://en.wikipedia.org/wiki/Large_language_model"
201
- )
193
+ original_file_path = await save_data_item_to_storage("http://example.com/")
202
194
  file_path = get_data_file_path(original_file_path)
203
195
  assert file_path.endswith(".html")
204
196
  file = Path(file_path)
@@ -225,9 +217,7 @@ async def test_beautiful_soup_loader_works_with_and_without_arguments():
225
217
  await cognee.prune.prune_system(metadata=True)
226
218
 
227
219
  try:
228
- original_file_path = await save_data_item_to_storage(
229
- "https://en.wikipedia.org/wiki/Large_language_model"
230
- )
220
+ original_file_path = await save_data_item_to_storage("http://example.com/")
231
221
  file_path = get_data_file_path(original_file_path)
232
222
  assert file_path.endswith(".html")
233
223
  file = Path(file_path)
@@ -263,9 +253,7 @@ async def test_beautiful_soup_loader_successfully_loads_file_if_required_args_pr
263
253
  await cognee.prune.prune_system(metadata=True)
264
254
 
265
255
  try:
266
- original_file_path = await save_data_item_to_storage(
267
- "https://en.wikipedia.org/wiki/Large_language_model"
268
- )
256
+ original_file_path = await save_data_item_to_storage("http://example.com/")
269
257
  file_path = get_data_file_path(original_file_path)
270
258
  assert file_path.endswith(".html")
271
259
  file = Path(file_path)
@@ -302,9 +290,7 @@ async def test_beautiful_soup_loads_file_successfully():
302
290
  }
303
291
 
304
292
  try:
305
- original_file_path = await save_data_item_to_storage(
306
- "https://en.wikipedia.org/wiki/Large_language_model"
307
- )
293
+ original_file_path = await save_data_item_to_storage("http://example.com/")
308
294
  file_path = get_data_file_path(original_file_path)
309
295
  assert file_path.endswith(".html")
310
296
  original_file = Path(file_path)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cognee
3
- Version: 0.3.9
3
+ Version: 0.4.1
4
4
  Summary: Cognee - is a library for enriching LLM context with a semantic layer for better understanding and reasoning.
5
5
  Project-URL: Homepage, https://www.cognee.ai
6
6
  Project-URL: Repository, https://github.com/topoteretes/cognee
@@ -28,7 +28,8 @@ Requires-Dist: gunicorn<24,>=20.1.0
28
28
  Requires-Dist: instructor<2.0.0,>=1.9.1
29
29
  Requires-Dist: jinja2<4,>=3.1.3
30
30
  Requires-Dist: kuzu==0.11.3
31
- Requires-Dist: lancedb<1.0.0,>=0.24.0
31
+ Requires-Dist: lance-namespace<=0.0.21
32
+ Requires-Dist: lancedb<=0.25.3,>=0.24.0
32
33
  Requires-Dist: limits<5,>=4.4.1
33
34
  Requires-Dist: litellm>=1.76.0
34
35
  Requires-Dist: mistralai>=1.9.10
@@ -156,27 +157,27 @@ Description-Content-Type: text/markdown
156
157
 
157
158
  <br />
158
159
 
159
- cognee - Memory for AI Agents in 6 lines of code
160
+ Cognee - Accurate and Persistent AI Memory
160
161
 
161
162
  <p align="center">
162
163
  <a href="https://www.youtube.com/watch?v=1bezuvLwJmw&t=2s">Demo</a>
163
164
  .
164
- <a href="https://cognee.ai">Learn more</a>
165
+ <a href="https://docs.cognee.ai/">Docs</a>
166
+ .
167
+ <a href="https://cognee.ai">Learn More</a>
165
168
  ·
166
169
  <a href="https://discord.gg/NQPKmU5CCg">Join Discord</a>
167
170
  ·
168
171
  <a href="https://www.reddit.com/r/AIMemory/">Join r/AIMemory</a>
169
172
  .
170
- <a href="https://docs.cognee.ai/">Docs</a>
171
- .
172
- <a href="https://github.com/topoteretes/cognee-community">cognee community repo</a>
173
+ <a href="https://github.com/topoteretes/cognee-community">Community Plugins & Add-ons</a>
173
174
  </p>
174
175
 
175
176
 
176
177
  [![GitHub forks](https://img.shields.io/github/forks/topoteretes/cognee.svg?style=social&label=Fork&maxAge=2592000)](https://GitHub.com/topoteretes/cognee/network/)
177
178
  [![GitHub stars](https://img.shields.io/github/stars/topoteretes/cognee.svg?style=social&label=Star&maxAge=2592000)](https://GitHub.com/topoteretes/cognee/stargazers/)
178
179
  [![GitHub commits](https://badgen.net/github/commits/topoteretes/cognee)](https://GitHub.com/topoteretes/cognee/commit/)
179
- [![Github tag](https://badgen.net/github/tag/topoteretes/cognee)](https://github.com/topoteretes/cognee/tags/)
180
+ [![GitHub tag](https://badgen.net/github/tag/topoteretes/cognee)](https://github.com/topoteretes/cognee/tags/)
180
181
  [![Downloads](https://static.pepy.tech/badge/cognee)](https://pepy.tech/project/cognee)
181
182
  [![License](https://img.shields.io/github/license/topoteretes/cognee?colorA=00C586&colorB=000000)](https://github.com/topoteretes/cognee/blob/main/LICENSE)
182
183
  [![Contributors](https://img.shields.io/github/contributors/topoteretes/cognee?colorA=00C586&colorB=000000)](https://github.com/topoteretes/cognee/graphs/contributors)
@@ -192,11 +193,7 @@ Description-Content-Type: text/markdown
192
193
  </a>
193
194
  </p>
194
195
 
195
-
196
-
197
-
198
-
199
- Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Extract, Cognify, Load) pipelines.
196
+ Use your data to build personalized and dynamic memory for AI Agents. Cognee lets you replace RAG with scalable and modular ECL (Extract, Cognify, Load) pipelines.
200
197
 
201
198
  <p align="center">
202
199
  🌐 Available Languages
@@ -204,7 +201,7 @@ Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Ext
204
201
  <!-- Keep these links. Translations will automatically update with the README. -->
205
202
  <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=de">Deutsch</a> |
206
203
  <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=es">Español</a> |
207
- <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=fr">français</a> |
204
+ <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=fr">Français</a> |
208
205
  <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=ja">日本語</a> |
209
206
  <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=ko">한국어</a> |
210
207
  <a href="https://www.readme-i18n.com/topoteretes/cognee?lang=pt">Português</a> |
@@ -218,69 +215,65 @@ Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Ext
218
215
  </div>
219
216
  </div>
220
217
 
218
+ ## About Cognee
221
219
 
220
+ Cognee is an open-source tool and platform that transforms your raw data into persistent and dynamic AI memory for Agents. It combines vector search with graph databases to make your documents both searchable by meaning and connected by relationships.
222
221
 
223
- ## Get Started
224
-
225
- Get started quickly with a Google Colab <a href="https://colab.research.google.com/drive/12Vi9zID-M3fpKpKiaqDBvkk98ElkRPWy?usp=sharing">notebook</a> , <a href="https://deepnote.com/workspace/cognee-382213d0-0444-4c89-8265-13770e333c02/project/cognee-demo-78ffacb9-5832-4611-bb1a-560386068b30/notebook/Notebook-1-75b24cda566d4c24ab348f7150792601?utm_source=share-modal&utm_medium=product-shared-content&utm_campaign=notebook&utm_content=78ffacb9-5832-4611-bb1a-560386068b30">Deepnote notebook</a> or <a href="https://github.com/topoteretes/cognee/tree/main/cognee-starter-kit">starter repo</a>
226
-
222
+ You can use Cognee in two ways:
227
223
 
228
- ## About cognee
224
+ 1. [Self-host Cognee Open Source](https://docs.cognee.ai/getting-started/installation), which stores all data locally by default.
225
+ 2. [Connect to Cognee Cloud](https://platform.cognee.ai/), and get the same OSS stack on managed infrastructure for easier development and productionization.
229
226
 
230
- cognee works locally and stores your data on your device.
231
- Our hosted solution is just our deployment of OSS cognee on Modal, with the goal of making development and productionization easier.
227
+ ### Cognee Open Source (self-hosted):
232
228
 
233
- Self-hosted package:
229
+ - Interconnects any type of data — including past conversations, files, images, and audio transcriptions
230
+ - Replaces traditional RAG systems with a unified memory layer built on graphs and vectors
231
+ - Reduces developer effort and infrastructure cost while improving quality and precision
232
+ - Provides Pythonic data pipelines for ingestion from 30+ data sources
233
+ - Offers high customizability through user-defined tasks, modular pipelines, and built-in search endpoints
234
234
 
235
- - Interconnects any kind of documents: past conversations, files, images, and audio transcriptions
236
- - Replaces RAG systems with a memory layer based on graphs and vectors
237
- - Reduces developer effort and cost, while increasing quality and precision
238
- - Provides Pythonic data pipelines that manage data ingestion from 30+ data sources
239
- - Is highly customizable with custom tasks, pipelines, and a set of built-in search endpoints
235
+ ### Cognee Cloud (managed):
236
+ - Hosted web UI dashboard
237
+ - Automatic version updates
238
+ - Resource usage analytics
239
+ - GDPR compliant, enterprise-grade security
240
240
 
241
- Hosted platform:
242
- - Includes a managed UI and a [hosted solution](https://www.cognee.ai)
241
+ ## Basic Usage & Feature Guide
243
242
 
243
+ To learn more, [check out this short, end-to-end Colab walkthrough](https://colab.research.google.com/drive/12Vi9zID-M3fpKpKiaqDBvkk98ElkRPWy?usp=sharing) of Cognee's core features.
244
244
 
245
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12Vi9zID-M3fpKpKiaqDBvkk98ElkRPWy?usp=sharing)
245
246
 
246
- ## Self-Hosted (Open Source)
247
+ ## Quickstart
247
248
 
249
+ Let’s try Cognee in just a few lines of code. For detailed setup and configuration, see the [Cognee Docs](https://docs.cognee.ai/getting-started/installation#environment-configuration).
248
250
 
249
- ### 📦 Installation
251
+ ### Prerequisites
250
252
 
251
- You can install Cognee using either **pip**, **poetry**, **uv** or any other python package manager..
253
+ - Python 3.10 to 3.13
252
254
 
253
- Cognee supports Python 3.10 to 3.12
255
+ ### Step 1: Install Cognee
254
256
 
255
- #### With uv
257
+ You can install Cognee with **pip**, **poetry**, **uv**, or your preferred Python package manager.
256
258
 
257
259
  ```bash
258
260
  uv pip install cognee
259
261
  ```
260
262
 
261
- Detailed instructions can be found in our [docs](https://docs.cognee.ai/getting-started/installation#environment-configuration)
262
-
263
- ### 💻 Basic Usage
264
-
265
- #### Setup
266
-
267
- ```
263
+ ### Step 2: Configure the LLM
264
+ ```python
268
265
  import os
269
266
  os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"
270
-
271
267
  ```
268
+ Alternatively, create a `.env` file using our [template](https://github.com/topoteretes/cognee/blob/main/.env.template).
272
269
 
273
- You can also set the variables by creating .env file, using our <a href="https://github.com/topoteretes/cognee/blob/main/.env.template">template.</a>
274
- To use different LLM providers, for more info check out our <a href="https://docs.cognee.ai/setup-configuration/llm-providers">documentation</a>
275
-
276
-
277
- #### Simple example
270
+ To integrate other LLM providers, see our [LLM Provider Documentation](https://docs.cognee.ai/setup-configuration/llm-providers).
278
271
 
272
+ ### Step 3: Run the Pipeline
279
273
 
274
+ Cognee will take your documents, generate a knowledge graph from them and then query the graph based on combined relationships.
280
275
 
281
- ##### Python
282
-
283
- This script will run the default pipeline:
276
+ Now, run a minimal pipeline:
284
277
 
285
278
  ```python
286
279
  import cognee
@@ -298,7 +291,7 @@ async def main():
298
291
  await cognee.memify()
299
292
 
300
293
  # Query the knowledge graph
301
- results = await cognee.search("What does cognee do?")
294
+ results = await cognee.search("What does Cognee do?")
302
295
 
303
296
  # Display the results
304
297
  for result in results:
@@ -309,69 +302,61 @@ if __name__ == '__main__':
309
302
  asyncio.run(main())
310
303
 
311
304
  ```
312
- Example output:
313
- ```
314
- Cognee turns documents into AI memory.
315
305
 
306
+ As you can see, the output is generated from the document we previously stored in Cognee:
307
+
308
+ ```bash
309
+ Cognee turns documents into AI memory.
316
310
  ```
317
- ##### Via CLI
318
311
 
319
- Let's get the basics covered
312
+ ### Use the Cognee CLI
320
313
 
321
- ```
314
+ As an alternative, you can get started with these essential commands:
315
+
316
+ ```bash
322
317
  cognee-cli add "Cognee turns documents into AI memory."
323
318
 
324
319
  cognee-cli cognify
325
320
 
326
- cognee-cli search "What does cognee do?"
321
+ cognee-cli search "What does Cognee do?"
327
322
  cognee-cli delete --all
328
323
 
329
324
  ```
330
- or run
331
- ```
325
+
326
+ To open the local UI, run:
327
+ ```bash
332
328
  cognee-cli -ui
333
329
  ```
334
330
 
331
+ ## Demos & Examples
335
332
 
336
- </div>
337
-
338
-
339
- ### Hosted Platform
340
-
341
- Get up and running in minutes with automatic updates, analytics, and enterprise security.
342
-
343
- 1. Sign up on [cogwit](https://www.cognee.ai)
344
- 2. Add your API key to local UI and sync your data to Cogwit
345
-
346
-
347
-
348
-
349
- ## Demos
333
+ See Cognee in action:
350
334
 
351
- 1. Cogwit Beta demo:
335
+ ### Persistent Agent Memory
352
336
 
353
- [Cogwit Beta](https://github.com/user-attachments/assets/fa520cd2-2913-4246-a444-902ea5242cb0)
337
+ [Cognee Memory for LangGraph Agents](https://github.com/user-attachments/assets/e113b628-7212-4a2b-b288-0be39a93a1c3)
354
338
 
355
- 2. Simple GraphRAG demo
339
+ ### Simple GraphRAG
356
340
 
357
- [Simple GraphRAG demo](https://github.com/user-attachments/assets/d80b0776-4eb9-4b8e-aa22-3691e2d44b8f)
341
+ [Watch Demo](https://github.com/user-attachments/assets/f2186b2e-305a-42b0-9c2d-9f4473f15df8)
358
342
 
359
- 3. cognee with Ollama
343
+ ### Cognee with Ollama
360
344
 
361
- [cognee with local models](https://github.com/user-attachments/assets/8621d3e8-ecb8-4860-afb2-5594f2ee17db)
345
+ [Watch Demo](https://github.com/user-attachments/assets/39672858-f774-4136-b957-1e2de67b8981)
362
346
 
363
347
 
364
- ## Contributing
365
- Your contributions are at the core of making this a true open source project. Any contributions you make are **greatly appreciated**. See [`CONTRIBUTING.md`](CONTRIBUTING.md) for more information.
348
+ ## Community & Support
366
349
 
350
+ ### Contributing
351
+ We welcome contributions from the community! Your input helps make Cognee better for everyone. See [`CONTRIBUTING.md`](CONTRIBUTING.md) to get started.
367
352
 
368
- ## Code of Conduct
353
+ ### Code of Conduct
369
354
 
370
- We are committed to making open source an enjoyable and respectful experience for our community. See <a href="https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md"><code>CODE_OF_CONDUCT</code></a> for more information.
355
+ We're committed to fostering an inclusive and respectful community. Read our [Code of Conduct](https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md) for guidelines.
371
356
 
372
- ## Citation
357
+ ## Research & Citation
373
358
 
374
- We now have a paper you can cite:
359
+ We recently published a research paper on optimizing knowledge graphs for LLM reasoning:
375
360
 
376
361
  ```bibtex
377
362
  @misc{markovic2025optimizinginterfaceknowledgegraphs,
@@ -204,7 +204,7 @@ cognee/infrastructure/databases/vector/chromadb/__init__.py,sha256=47DEQpj8HBSa-
204
204
  cognee/infrastructure/databases/vector/embeddings/EmbeddingEngine.py,sha256=I-FXxTSRtb0y00U5eJr2o8n4j4DcC3_mEjEya70BPQU,1158
205
205
  cognee/infrastructure/databases/vector/embeddings/FastembedEmbeddingEngine.py,sha256=r1NTOo2aMwjbb9-yfHCU_IS-VZ9p3ZdRGRKWZmcIpso,4521
206
206
  cognee/infrastructure/databases/vector/embeddings/LiteLLMEmbeddingEngine.py,sha256=_rSMGNPjjfrV7Xr2xZWvs1RPRVF1nj-1nlBk0cGgh9A,8321
207
- cognee/infrastructure/databases/vector/embeddings/OllamaEmbeddingEngine.py,sha256=KDjo5qknAj761l0IQzbC0zUcl4pYIxF4AS3MkCVp1jc,4961
207
+ cognee/infrastructure/databases/vector/embeddings/OllamaEmbeddingEngine.py,sha256=QGU9BpzlTJyWESvjUiFOuAOjkj2LCJTq9FOizPzIi00,5084
208
208
  cognee/infrastructure/databases/vector/embeddings/__init__.py,sha256=Akv-ShdXjHw-BE00Gw55GgGxIMr0SZ9FHi3RlpsJmiE,55
209
209
  cognee/infrastructure/databases/vector/embeddings/config.py,sha256=w7zaQEBNjnYXQi2N5gTCIooDzwGI3HCyyeWt-Q5WIKw,2539
210
210
  cognee/infrastructure/databases/vector/embeddings/embedding_rate_limiter.py,sha256=TyCoo_SipQ6JNy5eqXY2shrZnhb2JVjt9xOsJltOCdw,17598
@@ -569,7 +569,7 @@ cognee/modules/retrieval/chunks_retriever.py,sha256=ntsF2mtCBIAt3c9a_tRd8MVJbxlQ
569
569
  cognee/modules/retrieval/code_retriever.py,sha256=-U9sEX-3IAeH34o7tHlcBwDt2EEFlLNbXx9mh6jvPWI,9766
570
570
  cognee/modules/retrieval/coding_rules_retriever.py,sha256=3GU259jTbGLqmp_A8sUdE4fyf0td06SKuxBJVW-npIQ,1134
571
571
  cognee/modules/retrieval/completion_retriever.py,sha256=armrabXj84Sz_0DLXQR9A1VFU43AFoYdaxITn9tLeuQ,5353
572
- cognee/modules/retrieval/cypher_search_retriever.py,sha256=buZzk1rMbIARpA4plbAhlBiIPHcLzVndT3mOYsAqbWQ,2823
572
+ cognee/modules/retrieval/cypher_search_retriever.py,sha256=bDdJbw2icQeE1h24TtROOGWcCTAoGa7Ng-YPjBVZjZk,2888
573
573
  cognee/modules/retrieval/graph_completion_context_extension_retriever.py,sha256=CigoPl2kZqlJzBrWvlozVd9wb-SZERzcSv6B1TUj6b8,6134
574
574
  cognee/modules/retrieval/graph_completion_cot_retriever.py,sha256=YKAdpDtrZdGHm_ZMHd8bFkbvgKF0FaDtMWljvVS84bI,11052
575
575
  cognee/modules/retrieval/graph_completion_retriever.py,sha256=-pk66LH6IhUfiSmLbCbpMkpQxHFvijd7vRQ4Ax8AEVs,10420
@@ -849,9 +849,9 @@ cognee/tests/integration/documents/PdfDocument_test.py,sha256=IY0Cck8J2gEyuJHPK0
849
849
  cognee/tests/integration/documents/TextDocument_test.py,sha256=aSYfyvSQLceZ1c5NqV5Jf5eGA3BL_adP6iwWnT9eMCg,2159
850
850
  cognee/tests/integration/documents/UnstructuredDocument_test.py,sha256=nZktosptjw85V1_2iAwlOaYghA4cmqEX62RvQSgU_NY,4006
851
851
  cognee/tests/integration/documents/async_gen_zip.py,sha256=h98Q6cxhwb49iaYm4NZ-GmbNDAux-BKplofNgf4aIpc,317
852
- cognee/tests/integration/web_url_crawler/test_default_url_crawler.py,sha256=7R0I9BrUa4emt73B15r8UrBblYi7PUEFj5_8NxZUGFY,380
853
- cognee/tests/integration/web_url_crawler/test_tavily_crawler.py,sha256=6gWk6DGz7msY5FyQfhaXuybj0L8Jej96Dy29BqlOtbM,524
854
- cognee/tests/integration/web_url_crawler/test_url_adding_e2e.py,sha256=Uw2PSwuZ_-pUFp5HaxxVQZInsq1RxOpzgQLerh-6FX4,11684
852
+ cognee/tests/integration/web_url_crawler/test_default_url_crawler.py,sha256=Qk__D7-SwpE5YfCiXoIDF3LgablRMhtoSSGfCVYY-PM,349
853
+ cognee/tests/integration/web_url_crawler/test_tavily_crawler.py,sha256=tro2Isg-zqEEkD03oCWzYV8n5KlqGaUP69RcVVaeYDc,493
854
+ cognee/tests/integration/web_url_crawler/test_url_adding_e2e.py,sha256=F1eTCI9Q9kVwOh5DuDf-uVxz3DqZvJj2HGlAiREIX_8,11127
855
855
  cognee/tests/subprocesses/reader.py,sha256=NW5zbXhWUcFXyN9RRAW2lzxCvEYV8hno6gBmE18O0b8,954
856
856
  cognee/tests/subprocesses/simple_cognify_1.py,sha256=WE2hG50rFwceKNL07PeAYu-Mrs74pjmdPEQrqZiTf8s,869
857
857
  cognee/tests/subprocesses/simple_cognify_2.py,sha256=nv0gJZCLn0iwY7SumiGlIiGJc1tFCyiHhAUzw0sjLn8,872
@@ -942,9 +942,9 @@ distributed/tasks/queued_add_edges.py,sha256=kz1DHE05y-kNHORQJjYWHUi6Q1QWUp_v3Dl
942
942
  distributed/tasks/queued_add_nodes.py,sha256=aqK4Ij--ADwUWknxYpiwbYrpa6CcvFfqHWbUZW4Kh3A,452
943
943
  distributed/workers/data_point_saving_worker.py,sha256=kmaQy2A2J7W3k9Gd5lyoiT0XYOaJmEM8MbkKVOFOQVU,4729
944
944
  distributed/workers/graph_saving_worker.py,sha256=b5OPLLUq0OBALGekdp73JKxU0GrMlVbO4AfIhmACKkQ,4724
945
- cognee-0.3.9.dist-info/METADATA,sha256=CdDPzdK2sCof1lzKjzfD2Fbeqyl2ObVE8EuGwxxKCiQ,14938
946
- cognee-0.3.9.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
947
- cognee-0.3.9.dist-info/entry_points.txt,sha256=fAozOD9Vs4kgYwRhBiZoLCIXu-OSZqVxKGv45l19uok,88
948
- cognee-0.3.9.dist-info/licenses/LICENSE,sha256=pHHjSQj1DD8SDppW88MMs04TPk7eAanL1c5xj8NY7NQ,11344
949
- cognee-0.3.9.dist-info/licenses/NOTICE.md,sha256=6L3saP3kSpcingOxDh-SGjMS8GY79Rlh2dBNLaO0o5c,339
950
- cognee-0.3.9.dist-info/RECORD,,
945
+ cognee-0.4.1.dist-info/METADATA,sha256=Xv_KcVeblOMxrXCaUpcHGbOnEXhwRHiVtidZw1cJHss,15358
946
+ cognee-0.4.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
947
+ cognee-0.4.1.dist-info/entry_points.txt,sha256=fAozOD9Vs4kgYwRhBiZoLCIXu-OSZqVxKGv45l19uok,88
948
+ cognee-0.4.1.dist-info/licenses/LICENSE,sha256=pHHjSQj1DD8SDppW88MMs04TPk7eAanL1c5xj8NY7NQ,11344
949
+ cognee-0.4.1.dist-info/licenses/NOTICE.md,sha256=6L3saP3kSpcingOxDh-SGjMS8GY79Rlh2dBNLaO0o5c,339
950
+ cognee-0.4.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.27.0
2
+ Generator: hatchling 1.28.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any