cognee 0.2.3.dev1__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. cognee/__main__.py +4 -0
  2. cognee/api/v1/add/add.py +18 -6
  3. cognee/api/v1/cognify/code_graph_pipeline.py +7 -1
  4. cognee/api/v1/cognify/cognify.py +22 -107
  5. cognee/api/v1/cognify/routers/get_cognify_router.py +11 -3
  6. cognee/api/v1/datasets/routers/get_datasets_router.py +1 -1
  7. cognee/api/v1/responses/default_tools.py +4 -0
  8. cognee/api/v1/responses/dispatch_function.py +6 -1
  9. cognee/api/v1/responses/models.py +1 -1
  10. cognee/api/v1/search/search.py +6 -0
  11. cognee/cli/__init__.py +10 -0
  12. cognee/cli/_cognee.py +180 -0
  13. cognee/cli/commands/__init__.py +1 -0
  14. cognee/cli/commands/add_command.py +80 -0
  15. cognee/cli/commands/cognify_command.py +128 -0
  16. cognee/cli/commands/config_command.py +225 -0
  17. cognee/cli/commands/delete_command.py +80 -0
  18. cognee/cli/commands/search_command.py +149 -0
  19. cognee/cli/config.py +33 -0
  20. cognee/cli/debug.py +21 -0
  21. cognee/cli/echo.py +45 -0
  22. cognee/cli/exceptions.py +23 -0
  23. cognee/cli/minimal_cli.py +97 -0
  24. cognee/cli/reference.py +26 -0
  25. cognee/cli/suppress_logging.py +12 -0
  26. cognee/eval_framework/corpus_builder/corpus_builder_executor.py +2 -2
  27. cognee/eval_framework/eval_config.py +1 -1
  28. cognee/infrastructure/databases/graph/get_graph_engine.py +4 -9
  29. cognee/infrastructure/databases/graph/kuzu/adapter.py +64 -2
  30. cognee/infrastructure/databases/graph/neo4j_driver/adapter.py +49 -0
  31. cognee/infrastructure/databases/vector/embeddings/FastembedEmbeddingEngine.py +5 -3
  32. cognee/infrastructure/databases/vector/embeddings/LiteLLMEmbeddingEngine.py +16 -7
  33. cognee/infrastructure/databases/vector/embeddings/OllamaEmbeddingEngine.py +5 -5
  34. cognee/infrastructure/databases/vector/embeddings/config.py +2 -2
  35. cognee/infrastructure/databases/vector/embeddings/get_embedding_engine.py +6 -6
  36. cognee/infrastructure/files/utils/get_data_file_path.py +14 -9
  37. cognee/infrastructure/files/utils/get_file_metadata.py +2 -1
  38. cognee/infrastructure/llm/LLMGateway.py +14 -5
  39. cognee/infrastructure/llm/config.py +5 -5
  40. cognee/infrastructure/llm/structured_output_framework/baml/baml_src/extraction/knowledge_graph/extract_content_graph.py +16 -5
  41. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/extraction/knowledge_graph/extract_content_graph.py +19 -15
  42. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/llm/anthropic/adapter.py +3 -3
  43. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/llm/gemini/adapter.py +3 -3
  44. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/llm/generic_llm_api/adapter.py +2 -2
  45. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/llm/get_llm_client.py +14 -8
  46. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/llm/ollama/adapter.py +6 -4
  47. cognee/infrastructure/llm/structured_output_framework/litellm_instructor/llm/openai/adapter.py +3 -3
  48. cognee/infrastructure/llm/tokenizer/Gemini/adapter.py +2 -2
  49. cognee/infrastructure/llm/tokenizer/HuggingFace/adapter.py +3 -3
  50. cognee/infrastructure/llm/tokenizer/Mistral/adapter.py +3 -3
  51. cognee/infrastructure/llm/tokenizer/TikToken/adapter.py +6 -6
  52. cognee/infrastructure/llm/utils.py +7 -7
  53. cognee/modules/data/methods/__init__.py +2 -0
  54. cognee/modules/data/methods/create_authorized_dataset.py +19 -0
  55. cognee/modules/data/methods/get_authorized_dataset.py +11 -5
  56. cognee/modules/data/methods/get_authorized_dataset_by_name.py +16 -0
  57. cognee/modules/data/methods/load_or_create_datasets.py +2 -20
  58. cognee/modules/graph/methods/get_formatted_graph_data.py +3 -2
  59. cognee/modules/pipelines/__init__.py +1 -1
  60. cognee/modules/pipelines/exceptions/tasks.py +18 -0
  61. cognee/modules/pipelines/layers/__init__.py +1 -0
  62. cognee/modules/pipelines/layers/check_pipeline_run_qualification.py +59 -0
  63. cognee/modules/pipelines/layers/pipeline_execution_mode.py +127 -0
  64. cognee/modules/pipelines/layers/reset_dataset_pipeline_run_status.py +12 -0
  65. cognee/modules/pipelines/layers/resolve_authorized_user_dataset.py +34 -0
  66. cognee/modules/pipelines/layers/resolve_authorized_user_datasets.py +55 -0
  67. cognee/modules/pipelines/layers/setup_and_check_environment.py +41 -0
  68. cognee/modules/pipelines/layers/validate_pipeline_tasks.py +20 -0
  69. cognee/modules/pipelines/methods/__init__.py +2 -0
  70. cognee/modules/pipelines/methods/get_pipeline_runs_by_dataset.py +34 -0
  71. cognee/modules/pipelines/methods/reset_pipeline_run_status.py +16 -0
  72. cognee/modules/pipelines/operations/__init__.py +0 -1
  73. cognee/modules/pipelines/operations/log_pipeline_run_initiated.py +1 -1
  74. cognee/modules/pipelines/operations/pipeline.py +23 -138
  75. cognee/modules/retrieval/base_feedback.py +11 -0
  76. cognee/modules/retrieval/cypher_search_retriever.py +1 -9
  77. cognee/modules/retrieval/graph_completion_context_extension_retriever.py +9 -2
  78. cognee/modules/retrieval/graph_completion_cot_retriever.py +13 -6
  79. cognee/modules/retrieval/graph_completion_retriever.py +89 -5
  80. cognee/modules/retrieval/graph_summary_completion_retriever.py +2 -0
  81. cognee/modules/retrieval/natural_language_retriever.py +0 -4
  82. cognee/modules/retrieval/user_qa_feedback.py +83 -0
  83. cognee/modules/retrieval/utils/extract_uuid_from_node.py +18 -0
  84. cognee/modules/retrieval/utils/models.py +40 -0
  85. cognee/modules/search/methods/search.py +46 -5
  86. cognee/modules/search/types/SearchType.py +1 -0
  87. cognee/modules/settings/get_settings.py +2 -2
  88. cognee/shared/CodeGraphEntities.py +1 -0
  89. cognee/shared/logging_utils.py +142 -31
  90. cognee/shared/utils.py +0 -1
  91. cognee/tasks/graph/extract_graph_from_data.py +6 -2
  92. cognee/tasks/repo_processor/get_local_dependencies.py +2 -0
  93. cognee/tasks/repo_processor/get_repo_file_dependencies.py +120 -48
  94. cognee/tasks/storage/add_data_points.py +33 -3
  95. cognee/tests/integration/cli/__init__.py +3 -0
  96. cognee/tests/integration/cli/test_cli_integration.py +331 -0
  97. cognee/tests/integration/documents/PdfDocument_test.py +2 -2
  98. cognee/tests/integration/documents/TextDocument_test.py +2 -4
  99. cognee/tests/integration/documents/UnstructuredDocument_test.py +5 -8
  100. cognee/tests/{test_deletion.py → test_delete_hard.py} +0 -37
  101. cognee/tests/test_delete_soft.py +85 -0
  102. cognee/tests/test_kuzu.py +2 -2
  103. cognee/tests/test_neo4j.py +2 -2
  104. cognee/tests/test_search_db.py +126 -7
  105. cognee/tests/unit/cli/__init__.py +3 -0
  106. cognee/tests/unit/cli/test_cli_commands.py +483 -0
  107. cognee/tests/unit/cli/test_cli_edge_cases.py +625 -0
  108. cognee/tests/unit/cli/test_cli_main.py +173 -0
  109. cognee/tests/unit/cli/test_cli_runner.py +62 -0
  110. cognee/tests/unit/cli/test_cli_utils.py +127 -0
  111. cognee/tests/unit/modules/retrieval/graph_completion_retriever_context_extension_test.py +3 -3
  112. cognee/tests/unit/modules/retrieval/graph_completion_retriever_cot_test.py +3 -3
  113. cognee/tests/unit/modules/retrieval/graph_completion_retriever_test.py +3 -3
  114. cognee/tests/unit/modules/search/search_methods_test.py +2 -0
  115. {cognee-0.2.3.dev1.dist-info → cognee-0.2.4.dist-info}/METADATA +7 -5
  116. {cognee-0.2.3.dev1.dist-info → cognee-0.2.4.dist-info}/RECORD +120 -83
  117. cognee-0.2.4.dist-info/entry_points.txt +2 -0
  118. cognee/infrastructure/databases/graph/networkx/__init__.py +0 -0
  119. cognee/infrastructure/databases/graph/networkx/adapter.py +0 -1017
  120. cognee/infrastructure/pipeline/models/Operation.py +0 -60
  121. cognee/infrastructure/pipeline/models/__init__.py +0 -0
  122. cognee/notebooks/github_analysis_step_by_step.ipynb +0 -37
  123. cognee/tests/tasks/descriptive_metrics/networkx_metrics_test.py +0 -7
  124. {cognee-0.2.3.dev1.dist-info → cognee-0.2.4.dist-info}/WHEEL +0 -0
  125. {cognee-0.2.3.dev1.dist-info → cognee-0.2.4.dist-info}/licenses/LICENSE +0 -0
  126. {cognee-0.2.3.dev1.dist-info → cognee-0.2.4.dist-info}/licenses/NOTICE.md +0 -0
@@ -1,4 +1,4 @@
1
- from typing import Type
1
+ from typing import Type, Optional
2
2
  from pydantic import BaseModel
3
3
  from cognee.infrastructure.llm.config import get_llm_config
4
4
  from cognee.shared.logging_utils import get_logger, setup_logging
@@ -6,7 +6,10 @@ from cognee.infrastructure.llm.structured_output_framework.baml.baml_client.asyn
6
6
 
7
7
 
8
8
  async def extract_content_graph(
9
- content: str, response_model: Type[BaseModel], mode: str = "simple"
9
+ content: str,
10
+ response_model: Type[BaseModel],
11
+ mode: str = "simple",
12
+ custom_prompt: Optional[str] = None,
10
13
  ):
11
14
  config = get_llm_config()
12
15
  setup_logging()
@@ -26,8 +29,16 @@ async def extract_content_graph(
26
29
  # return graph
27
30
 
28
31
  # else:
29
- graph = await b.ExtractContentGraphGeneric(
30
- content, mode=mode, baml_options={"client_registry": config.baml_registry}
31
- )
32
+ if custom_prompt:
33
+ graph = await b.ExtractContentGraphGeneric(
34
+ content,
35
+ mode="custom",
36
+ custom_prompt_content=custom_prompt,
37
+ baml_options={"client_registry": config.baml_registry},
38
+ )
39
+ else:
40
+ graph = await b.ExtractContentGraphGeneric(
41
+ content, mode=mode, baml_options={"client_registry": config.baml_registry}
42
+ )
32
43
 
33
44
  return graph
@@ -1,5 +1,5 @@
1
1
  import os
2
- from typing import Type
2
+ from typing import Type, Optional
3
3
  from pydantic import BaseModel
4
4
 
5
5
  from cognee.infrastructure.llm.LLMGateway import LLMGateway
@@ -8,21 +8,25 @@ from cognee.infrastructure.llm.config import (
8
8
  )
9
9
 
10
10
 
11
- async def extract_content_graph(content: str, response_model: Type[BaseModel]):
12
- llm_config = get_llm_config()
13
-
14
- prompt_path = llm_config.graph_prompt_path
15
-
16
- # Check if the prompt path is an absolute path or just a filename
17
- if os.path.isabs(prompt_path):
18
- # directory containing the file
19
- base_directory = os.path.dirname(prompt_path)
20
- # just the filename itself
21
- prompt_path = os.path.basename(prompt_path)
11
+ async def extract_content_graph(
12
+ content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None
13
+ ):
14
+ if custom_prompt:
15
+ system_prompt = custom_prompt
22
16
  else:
23
- base_directory = None
24
-
25
- system_prompt = LLMGateway.render_prompt(prompt_path, {}, base_directory=base_directory)
17
+ llm_config = get_llm_config()
18
+ prompt_path = llm_config.graph_prompt_path
19
+
20
+ # Check if the prompt path is an absolute path or just a filename
21
+ if os.path.isabs(prompt_path):
22
+ # directory containing the file
23
+ base_directory = os.path.dirname(prompt_path)
24
+ # just the filename itself
25
+ prompt_path = os.path.basename(prompt_path)
26
+ else:
27
+ base_directory = None
28
+
29
+ system_prompt = LLMGateway.render_prompt(prompt_path, {}, base_directory=base_directory)
26
30
 
27
31
  content_graph = await LLMGateway.acreate_structured_output(
28
32
  content, system_prompt, response_model
@@ -23,7 +23,7 @@ class AnthropicAdapter(LLMInterface):
23
23
  name = "Anthropic"
24
24
  model: str
25
25
 
26
- def __init__(self, max_tokens: int, model: str = None):
26
+ def __init__(self, max_completion_tokens: int, model: str = None):
27
27
  import anthropic
28
28
 
29
29
  self.aclient = instructor.patch(
@@ -31,7 +31,7 @@ class AnthropicAdapter(LLMInterface):
31
31
  )
32
32
 
33
33
  self.model = model
34
- self.max_tokens = max_tokens
34
+ self.max_completion_tokens = max_completion_tokens
35
35
 
36
36
  @sleep_and_retry_async()
37
37
  @rate_limit_async
@@ -57,7 +57,7 @@ class AnthropicAdapter(LLMInterface):
57
57
 
58
58
  return await self.aclient(
59
59
  model=self.model,
60
- max_tokens=4096,
60
+ max_completion_tokens=4096,
61
61
  max_retries=5,
62
62
  messages=[
63
63
  {
@@ -34,7 +34,7 @@ class GeminiAdapter(LLMInterface):
34
34
  self,
35
35
  api_key: str,
36
36
  model: str,
37
- max_tokens: int,
37
+ max_completion_tokens: int,
38
38
  endpoint: Optional[str] = None,
39
39
  api_version: Optional[str] = None,
40
40
  streaming: bool = False,
@@ -44,7 +44,7 @@ class GeminiAdapter(LLMInterface):
44
44
  self.endpoint = endpoint
45
45
  self.api_version = api_version
46
46
  self.streaming = streaming
47
- self.max_tokens = max_tokens
47
+ self.max_completion_tokens = max_completion_tokens
48
48
 
49
49
  @observe(as_type="generation")
50
50
  @sleep_and_retry_async()
@@ -90,7 +90,7 @@ class GeminiAdapter(LLMInterface):
90
90
  model=f"{self.model}",
91
91
  messages=messages,
92
92
  api_key=self.api_key,
93
- max_tokens=self.max_tokens,
93
+ max_completion_tokens=self.max_completion_tokens,
94
94
  temperature=0.1,
95
95
  response_format=response_schema,
96
96
  timeout=100,
@@ -41,7 +41,7 @@ class GenericAPIAdapter(LLMInterface):
41
41
  api_key: str,
42
42
  model: str,
43
43
  name: str,
44
- max_tokens: int,
44
+ max_completion_tokens: int,
45
45
  fallback_model: str = None,
46
46
  fallback_api_key: str = None,
47
47
  fallback_endpoint: str = None,
@@ -50,7 +50,7 @@ class GenericAPIAdapter(LLMInterface):
50
50
  self.model = model
51
51
  self.api_key = api_key
52
52
  self.endpoint = endpoint
53
- self.max_tokens = max_tokens
53
+ self.max_completion_tokens = max_completion_tokens
54
54
 
55
55
  self.fallback_model = fallback_model
56
56
  self.fallback_api_key = fallback_api_key
@@ -54,11 +54,15 @@ def get_llm_client():
54
54
  # Check if max_token value is defined in liteLLM for given model
55
55
  # if not use value from cognee configuration
56
56
  from cognee.infrastructure.llm.utils import (
57
- get_model_max_tokens,
57
+ get_model_max_completion_tokens,
58
58
  ) # imported here to avoid circular imports
59
59
 
60
- model_max_tokens = get_model_max_tokens(llm_config.llm_model)
61
- max_tokens = model_max_tokens if model_max_tokens else llm_config.llm_max_tokens
60
+ model_max_completion_tokens = get_model_max_completion_tokens(llm_config.llm_model)
61
+ max_completion_tokens = (
62
+ model_max_completion_tokens
63
+ if model_max_completion_tokens
64
+ else llm_config.llm_max_completion_tokens
65
+ )
62
66
 
63
67
  if provider == LLMProvider.OPENAI:
64
68
  if llm_config.llm_api_key is None:
@@ -74,7 +78,7 @@ def get_llm_client():
74
78
  api_version=llm_config.llm_api_version,
75
79
  model=llm_config.llm_model,
76
80
  transcription_model=llm_config.transcription_model,
77
- max_tokens=max_tokens,
81
+ max_completion_tokens=max_completion_tokens,
78
82
  streaming=llm_config.llm_streaming,
79
83
  fallback_api_key=llm_config.fallback_api_key,
80
84
  fallback_endpoint=llm_config.fallback_endpoint,
@@ -94,7 +98,7 @@ def get_llm_client():
94
98
  llm_config.llm_api_key,
95
99
  llm_config.llm_model,
96
100
  "Ollama",
97
- max_tokens=max_tokens,
101
+ max_completion_tokens=max_completion_tokens,
98
102
  )
99
103
 
100
104
  elif provider == LLMProvider.ANTHROPIC:
@@ -102,7 +106,9 @@ def get_llm_client():
102
106
  AnthropicAdapter,
103
107
  )
104
108
 
105
- return AnthropicAdapter(max_tokens=max_tokens, model=llm_config.llm_model)
109
+ return AnthropicAdapter(
110
+ max_completion_tokens=max_completion_tokens, model=llm_config.llm_model
111
+ )
106
112
 
107
113
  elif provider == LLMProvider.CUSTOM:
108
114
  if llm_config.llm_api_key is None:
@@ -117,7 +123,7 @@ def get_llm_client():
117
123
  llm_config.llm_api_key,
118
124
  llm_config.llm_model,
119
125
  "Custom",
120
- max_tokens=max_tokens,
126
+ max_completion_tokens=max_completion_tokens,
121
127
  fallback_api_key=llm_config.fallback_api_key,
122
128
  fallback_endpoint=llm_config.fallback_endpoint,
123
129
  fallback_model=llm_config.fallback_model,
@@ -134,7 +140,7 @@ def get_llm_client():
134
140
  return GeminiAdapter(
135
141
  api_key=llm_config.llm_api_key,
136
142
  model=llm_config.llm_model,
137
- max_tokens=max_tokens,
143
+ max_completion_tokens=max_completion_tokens,
138
144
  endpoint=llm_config.llm_endpoint,
139
145
  api_version=llm_config.llm_api_version,
140
146
  streaming=llm_config.llm_streaming,
@@ -30,16 +30,18 @@ class OllamaAPIAdapter(LLMInterface):
30
30
  - model
31
31
  - api_key
32
32
  - endpoint
33
- - max_tokens
33
+ - max_completion_tokens
34
34
  - aclient
35
35
  """
36
36
 
37
- def __init__(self, endpoint: str, api_key: str, model: str, name: str, max_tokens: int):
37
+ def __init__(
38
+ self, endpoint: str, api_key: str, model: str, name: str, max_completion_tokens: int
39
+ ):
38
40
  self.name = name
39
41
  self.model = model
40
42
  self.api_key = api_key
41
43
  self.endpoint = endpoint
42
- self.max_tokens = max_tokens
44
+ self.max_completion_tokens = max_completion_tokens
43
45
 
44
46
  self.aclient = instructor.from_openai(
45
47
  OpenAI(base_url=self.endpoint, api_key=self.api_key), mode=instructor.Mode.JSON
@@ -159,7 +161,7 @@ class OllamaAPIAdapter(LLMInterface):
159
161
  ],
160
162
  }
161
163
  ],
162
- max_tokens=300,
164
+ max_completion_tokens=300,
163
165
  )
164
166
 
165
167
  # Ensure response is valid before accessing .choices[0].message.content
@@ -64,7 +64,7 @@ class OpenAIAdapter(LLMInterface):
64
64
  api_version: str,
65
65
  model: str,
66
66
  transcription_model: str,
67
- max_tokens: int,
67
+ max_completion_tokens: int,
68
68
  streaming: bool = False,
69
69
  fallback_model: str = None,
70
70
  fallback_api_key: str = None,
@@ -77,7 +77,7 @@ class OpenAIAdapter(LLMInterface):
77
77
  self.api_key = api_key
78
78
  self.endpoint = endpoint
79
79
  self.api_version = api_version
80
- self.max_tokens = max_tokens
80
+ self.max_completion_tokens = max_completion_tokens
81
81
  self.streaming = streaming
82
82
 
83
83
  self.fallback_model = fallback_model
@@ -301,7 +301,7 @@ class OpenAIAdapter(LLMInterface):
301
301
  api_key=self.api_key,
302
302
  api_base=self.endpoint,
303
303
  api_version=self.api_version,
304
- max_tokens=300,
304
+ max_completion_tokens=300,
305
305
  max_retries=self.MAX_RETRIES,
306
306
  )
307
307
 
@@ -17,10 +17,10 @@ class GeminiTokenizer(TokenizerInterface):
17
17
  def __init__(
18
18
  self,
19
19
  model: str,
20
- max_tokens: int = 3072,
20
+ max_completion_tokens: int = 3072,
21
21
  ):
22
22
  self.model = model
23
- self.max_tokens = max_tokens
23
+ self.max_completion_tokens = max_completion_tokens
24
24
 
25
25
  # Get LLM API key from config
26
26
  from cognee.infrastructure.databases.vector.embeddings.config import get_embedding_config
@@ -14,17 +14,17 @@ class HuggingFaceTokenizer(TokenizerInterface):
14
14
 
15
15
  Instance variables include:
16
16
  - model: str
17
- - max_tokens: int
17
+ - max_completion_tokens: int
18
18
  - tokenizer: AutoTokenizer
19
19
  """
20
20
 
21
21
  def __init__(
22
22
  self,
23
23
  model: str,
24
- max_tokens: int = 512,
24
+ max_completion_tokens: int = 512,
25
25
  ):
26
26
  self.model = model
27
- self.max_tokens = max_tokens
27
+ self.max_completion_tokens = max_completion_tokens
28
28
 
29
29
  # Import here to make it an optional dependency
30
30
  from transformers import AutoTokenizer
@@ -16,17 +16,17 @@ class MistralTokenizer(TokenizerInterface):
16
16
 
17
17
  Instance variables include:
18
18
  - model: str
19
- - max_tokens: int
19
+ - max_completion_tokens: int
20
20
  - tokenizer: MistralTokenizer
21
21
  """
22
22
 
23
23
  def __init__(
24
24
  self,
25
25
  model: str,
26
- max_tokens: int = 3072,
26
+ max_completion_tokens: int = 3072,
27
27
  ):
28
28
  self.model = model
29
- self.max_tokens = max_tokens
29
+ self.max_completion_tokens = max_completion_tokens
30
30
 
31
31
  # Import here to make it an optional dependency
32
32
  from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
@@ -13,10 +13,10 @@ class TikTokenTokenizer(TokenizerInterface):
13
13
  def __init__(
14
14
  self,
15
15
  model: Optional[str] = None,
16
- max_tokens: int = 8191,
16
+ max_completion_tokens: int = 8191,
17
17
  ):
18
18
  self.model = model
19
- self.max_tokens = max_tokens
19
+ self.max_completion_tokens = max_completion_tokens
20
20
  # Initialize TikToken for GPT based on model
21
21
  if model:
22
22
  self.tokenizer = tiktoken.encoding_for_model(self.model)
@@ -93,9 +93,9 @@ class TikTokenTokenizer(TokenizerInterface):
93
93
  num_tokens = len(self.tokenizer.encode(text))
94
94
  return num_tokens
95
95
 
96
- def trim_text_to_max_tokens(self, text: str) -> str:
96
+ def trim_text_to_max_completion_tokens(self, text: str) -> str:
97
97
  """
98
- Trim the text so that the number of tokens does not exceed max_tokens.
98
+ Trim the text so that the number of tokens does not exceed max_completion_tokens.
99
99
 
100
100
  Parameters:
101
101
  -----------
@@ -111,13 +111,13 @@ class TikTokenTokenizer(TokenizerInterface):
111
111
  num_tokens = self.count_tokens(text)
112
112
 
113
113
  # If the number of tokens is within the limit, return the text as is
114
- if num_tokens <= self.max_tokens:
114
+ if num_tokens <= self.max_completion_tokens:
115
115
  return text
116
116
 
117
117
  # If the number exceeds the limit, trim the text
118
118
  # This is a simple trim, it may cut words in half; consider using word boundaries for a cleaner cut
119
119
  encoded_text = self.tokenizer.encode(text)
120
- trimmed_encoded_text = encoded_text[: self.max_tokens]
120
+ trimmed_encoded_text = encoded_text[: self.max_completion_tokens]
121
121
  # Decoding the trimmed text
122
122
  trimmed_text = self.tokenizer.decode(trimmed_encoded_text)
123
123
  return trimmed_text
@@ -32,13 +32,13 @@ def get_max_chunk_tokens():
32
32
 
33
33
  # We need to make sure chunk size won't take more than half of LLM max context token size
34
34
  # but it also can't be bigger than the embedding engine max token size
35
- llm_cutoff_point = llm_client.max_tokens // 2 # Round down the division
36
- max_chunk_tokens = min(embedding_engine.max_tokens, llm_cutoff_point)
35
+ llm_cutoff_point = llm_client.max_completion_tokens // 2 # Round down the division
36
+ max_chunk_tokens = min(embedding_engine.max_completion_tokens, llm_cutoff_point)
37
37
 
38
38
  return max_chunk_tokens
39
39
 
40
40
 
41
- def get_model_max_tokens(model_name: str):
41
+ def get_model_max_completion_tokens(model_name: str):
42
42
  """
43
43
  Retrieve the maximum token limit for a specified model name if it exists.
44
44
 
@@ -56,15 +56,15 @@ def get_model_max_tokens(model_name: str):
56
56
 
57
57
  Number of max tokens of model, or None if model is unknown
58
58
  """
59
- max_tokens = None
59
+ max_completion_tokens = None
60
60
 
61
61
  if model_name in litellm.model_cost:
62
- max_tokens = litellm.model_cost[model_name]["max_tokens"]
63
- logger.debug(f"Max input tokens for {model_name}: {max_tokens}")
62
+ max_completion_tokens = litellm.model_cost[model_name]["max_tokens"]
63
+ logger.debug(f"Max input tokens for {model_name}: {max_completion_tokens}")
64
64
  else:
65
65
  logger.info("Model not found in LiteLLM's model_cost.")
66
66
 
67
- return max_tokens
67
+ return max_completion_tokens
68
68
 
69
69
 
70
70
  async def test_llm_connection():
@@ -7,6 +7,7 @@ from .get_datasets import get_datasets
7
7
  from .get_datasets_by_name import get_datasets_by_name
8
8
  from .get_dataset_data import get_dataset_data
9
9
  from .get_authorized_dataset import get_authorized_dataset
10
+ from .get_authorized_dataset_by_name import get_authorized_dataset_by_name
10
11
  from .get_data import get_data
11
12
  from .get_unique_dataset_id import get_unique_dataset_id
12
13
  from .get_authorized_existing_datasets import get_authorized_existing_datasets
@@ -18,6 +19,7 @@ from .delete_data import delete_data
18
19
 
19
20
  # Create
20
21
  from .load_or_create_datasets import load_or_create_datasets
22
+ from .create_authorized_dataset import create_authorized_dataset
21
23
 
22
24
  # Check
23
25
  from .check_dataset_name import check_dataset_name
@@ -0,0 +1,19 @@
1
+ from cognee.infrastructure.databases.relational import get_relational_engine
2
+ from cognee.modules.users.models import User
3
+ from cognee.modules.data.models import Dataset
4
+ from cognee.modules.users.permissions.methods import give_permission_on_dataset
5
+ from .create_dataset import create_dataset
6
+
7
+
8
+ async def create_authorized_dataset(dataset_name: str, user: User) -> Dataset:
9
+ db_engine = get_relational_engine()
10
+
11
+ async with db_engine.get_async_session() as session:
12
+ new_dataset = await create_dataset(dataset_name, user, session)
13
+
14
+ await give_permission_on_dataset(user, new_dataset.id, "read")
15
+ await give_permission_on_dataset(user, new_dataset.id, "write")
16
+ await give_permission_on_dataset(user, new_dataset.id, "delete")
17
+ await give_permission_on_dataset(user, new_dataset.id, "share")
18
+
19
+ return new_dataset
@@ -1,11 +1,15 @@
1
- from typing import Optional
2
1
  from uuid import UUID
3
- from cognee.modules.users.permissions.methods import get_specific_user_permission_datasets
2
+ from typing import Optional
3
+
4
+ from cognee.modules.users.models import User
5
+ from cognee.modules.data.methods.get_authorized_existing_datasets import (
6
+ get_authorized_existing_datasets,
7
+ )
4
8
  from ..models import Dataset
5
9
 
6
10
 
7
11
  async def get_authorized_dataset(
8
- user_id: UUID, dataset_id: UUID, permission_type="read"
12
+ user: User, dataset_id: UUID, permission_type="read"
9
13
  ) -> Optional[Dataset]:
10
14
  """
11
15
  Get a specific dataset with permissions for a user.
@@ -18,6 +22,8 @@ async def get_authorized_dataset(
18
22
  Returns:
19
23
  Optional[Dataset]: dataset with permissions
20
24
  """
21
- datasets = await get_specific_user_permission_datasets(user_id, permission_type, [dataset_id])
25
+ authorized_datasets = await get_authorized_existing_datasets(
26
+ [dataset_id], permission_type, user
27
+ )
22
28
 
23
- return datasets[0] if datasets else None
29
+ return authorized_datasets[0] if authorized_datasets else None
@@ -0,0 +1,16 @@
1
+ from typing import Optional
2
+
3
+ from cognee.modules.users.models import User
4
+ from cognee.modules.data.methods.get_authorized_existing_datasets import (
5
+ get_authorized_existing_datasets,
6
+ )
7
+
8
+ from ..models import Dataset
9
+
10
+
11
+ async def get_authorized_dataset_by_name(
12
+ dataset_name: str, user: User, permission_type: str
13
+ ) -> Optional[Dataset]:
14
+ authorized_datasets = await get_authorized_existing_datasets([], permission_type, user)
15
+
16
+ return next((dataset for dataset in authorized_datasets if dataset.name == dataset_name), None)
@@ -1,12 +1,9 @@
1
1
  from typing import List, Union
2
2
  from uuid import UUID
3
3
 
4
- from cognee.infrastructure.databases.relational import get_relational_engine
5
4
  from cognee.modules.data.models import Dataset
6
- from cognee.modules.data.methods import create_dataset
7
- from cognee.modules.data.methods import get_unique_dataset_id
5
+ from cognee.modules.data.methods import create_authorized_dataset
8
6
  from cognee.modules.data.exceptions import DatasetNotFoundError
9
- from cognee.modules.users.permissions.methods import give_permission_on_dataset
10
7
 
11
8
 
12
9
  async def load_or_create_datasets(
@@ -34,22 +31,7 @@ async def load_or_create_datasets(
34
31
  if isinstance(identifier, UUID):
35
32
  raise DatasetNotFoundError(f"Dataset with given UUID does not exist: {identifier}")
36
33
 
37
- # Otherwise, create a new Dataset instance
38
- new_dataset = Dataset(
39
- id=await get_unique_dataset_id(dataset_name=identifier, user=user),
40
- name=identifier,
41
- owner_id=user.id,
42
- )
43
-
44
- # Save dataset to database
45
- db_engine = get_relational_engine()
46
- async with db_engine.get_async_session() as session:
47
- await create_dataset(identifier, user, session)
48
-
49
- await give_permission_on_dataset(user, new_dataset.id, "read")
50
- await give_permission_on_dataset(user, new_dataset.id, "write")
51
- await give_permission_on_dataset(user, new_dataset.id, "delete")
52
- await give_permission_on_dataset(user, new_dataset.id, "share")
34
+ new_dataset = await create_authorized_dataset(identifier, user)
53
35
 
54
36
  result.append(new_dataset)
55
37
 
@@ -3,10 +3,11 @@ from cognee.infrastructure.databases.graph import get_graph_engine
3
3
  from cognee.context_global_variables import set_database_global_context_variables
4
4
  from cognee.modules.data.exceptions.exceptions import DatasetNotFoundError
5
5
  from cognee.modules.data.methods import get_authorized_dataset
6
+ from cognee.modules.users.models import User
6
7
 
7
8
 
8
- async def get_formatted_graph_data(dataset_id: UUID, user_id: UUID):
9
- dataset = await get_authorized_dataset(user_id, dataset_id)
9
+ async def get_formatted_graph_data(dataset_id: UUID, user: User):
10
+ dataset = await get_authorized_dataset(user, dataset_id)
10
11
  if not dataset:
11
12
  raise DatasetNotFoundError(message="Dataset not found.")
12
13
 
@@ -1,4 +1,4 @@
1
1
  from .tasks.task import Task
2
2
  from .operations.run_tasks import run_tasks
3
3
  from .operations.run_parallel import run_tasks_parallel
4
- from .operations.pipeline import cognee_pipeline
4
+ from .operations.pipeline import run_pipeline
@@ -0,0 +1,18 @@
1
+ from fastapi import status
2
+ from cognee.exceptions import CogneeValidationError
3
+
4
+
5
+ class WrongTaskTypeError(CogneeValidationError):
6
+ """
7
+ Raised when the tasks argument is not a list of Task class instances.
8
+ """
9
+
10
+ def __init__(
11
+ self,
12
+ message: str = "tasks argument must be a list, containing Task class instances.",
13
+ name: str = "WrongTaskTypeError",
14
+ status_code=status.HTTP_400_BAD_REQUEST,
15
+ ):
16
+ self.message = message
17
+ self.name = name
18
+ self.status_code = status_code
@@ -0,0 +1 @@
1
+ from .validate_pipeline_tasks import validate_pipeline_tasks
@@ -0,0 +1,59 @@
1
+ from typing import Union, Optional
2
+ from cognee.modules.data.models import Dataset
3
+ from cognee.modules.data.models import Data
4
+ from cognee.modules.pipelines.models import PipelineRunStatus
5
+ from cognee.modules.pipelines.operations.get_pipeline_status import get_pipeline_status
6
+ from cognee.modules.pipelines.methods import get_pipeline_run_by_dataset
7
+ from cognee.shared.logging_utils import get_logger
8
+
9
+ from cognee.modules.pipelines.models.PipelineRunInfo import (
10
+ PipelineRunCompleted,
11
+ PipelineRunStarted,
12
+ )
13
+
14
+ logger = get_logger(__name__)
15
+
16
+
17
+ async def check_pipeline_run_qualification(
18
+ dataset: Dataset, data: list[Data], pipeline_name: str
19
+ ) -> Optional[Union[PipelineRunStarted, PipelineRunCompleted]]:
20
+ """
21
+ Function used to determine if pipeline is currently being processed or was already processed.
22
+ In case pipeline was or is being processed return value is returned and current pipline execution should be stopped.
23
+ In case pipeline is not or was not processed there will be no return value and pipeline processing can start.
24
+
25
+ Args:
26
+ dataset: Dataset object
27
+ data: List of Data
28
+ pipeline_name: pipeline name
29
+
30
+ Returns: Pipeline state if it is being processed or was already processed
31
+
32
+ """
33
+
34
+ # async with update_status_lock: TODO: Add UI lock to prevent multiple backend requests
35
+ if isinstance(dataset, Dataset):
36
+ task_status = await get_pipeline_status([dataset.id], pipeline_name)
37
+ else:
38
+ task_status = {}
39
+
40
+ if str(dataset.id) in task_status:
41
+ if task_status[str(dataset.id)] == PipelineRunStatus.DATASET_PROCESSING_STARTED:
42
+ logger.info("Dataset %s is already being processed.", dataset.id)
43
+ pipeline_run = await get_pipeline_run_by_dataset(dataset.id, pipeline_name)
44
+ return PipelineRunStarted(
45
+ pipeline_run_id=pipeline_run.pipeline_run_id,
46
+ dataset_id=dataset.id,
47
+ dataset_name=dataset.name,
48
+ payload=data,
49
+ )
50
+ elif task_status[str(dataset.id)] == PipelineRunStatus.DATASET_PROCESSING_COMPLETED:
51
+ logger.info("Dataset %s is already processed.", dataset.id)
52
+ pipeline_run = await get_pipeline_run_by_dataset(dataset.id, pipeline_name)
53
+ return PipelineRunCompleted(
54
+ pipeline_run_id=pipeline_run.pipeline_run_id,
55
+ dataset_id=dataset.id,
56
+ dataset_name=dataset.name,
57
+ )
58
+
59
+ return