codemie-sdk-python 0.1.204__py3-none-any.whl → 0.1.230__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of codemie-sdk-python might be problematic. Click here for more details.

@@ -0,0 +1,151 @@
1
+ """Models for vendor knowledge base settings."""
2
+
3
+ from datetime import datetime
4
+ from enum import Enum
5
+ from typing import Optional, List
6
+
7
+ from pydantic import BaseModel, ConfigDict, Field
8
+
9
+ from .vendor_assistant import PaginationInfo, TokenPagination
10
+
11
+
12
+ class VendorKnowledgeBaseSetting(BaseModel):
13
+ """Model representing a vendor knowledge base setting."""
14
+
15
+ model_config = ConfigDict(extra="ignore")
16
+
17
+ setting_id: str = Field(..., description="Unique identifier for the setting")
18
+ setting_name: str = Field(..., description="Name of the setting")
19
+ project: str = Field(..., description="Project associated with the setting")
20
+ entities: List[str] = Field(
21
+ default_factory=list, description="List of entities associated with the setting"
22
+ )
23
+ invalid: Optional[bool] = Field(None, description="Whether the setting is invalid")
24
+ error: Optional[str] = Field(
25
+ None, description="Error message if the setting is invalid"
26
+ )
27
+
28
+
29
+ class VendorKnowledgeBaseSettingsResponse(BaseModel):
30
+ """Response model for vendor knowledge base settings list."""
31
+
32
+ model_config = ConfigDict(extra="ignore")
33
+
34
+ data: List[VendorKnowledgeBaseSetting] = Field(
35
+ ..., description="List of vendor knowledge base settings"
36
+ )
37
+ pagination: PaginationInfo = Field(..., description="Pagination information")
38
+
39
+
40
+ class VendorKnowledgeBaseStatus(str, Enum):
41
+ """Status of vendor knowledge base."""
42
+
43
+ PREPARED = "PREPARED"
44
+ NOT_PREPARED = "NOT_PREPARED"
45
+
46
+
47
+ class VendorKnowledgeBase(BaseModel):
48
+ """Model representing a vendor knowledge base."""
49
+
50
+ model_config = ConfigDict(extra="ignore")
51
+
52
+ id: str = Field(..., description="Unique identifier for the knowledge base")
53
+ name: str = Field(..., description="Name of the knowledge base")
54
+ status: VendorKnowledgeBaseStatus = Field(
55
+ ..., description="Status of the knowledge base"
56
+ )
57
+ description: Optional[str] = Field(
58
+ None, description="Description of the knowledge base"
59
+ )
60
+ updatedAt: datetime = Field(
61
+ ..., description="Last update timestamp", alias="updatedAt"
62
+ )
63
+ aiRunId: Optional[str] = Field(
64
+ None,
65
+ description="AI run ID if the knowledge base is installed",
66
+ alias="aiRunId",
67
+ )
68
+
69
+
70
+ class VendorKnowledgeBasesResponse(BaseModel):
71
+ """Response model for vendor knowledge bases list."""
72
+
73
+ model_config = ConfigDict(extra="ignore")
74
+
75
+ data: List[VendorKnowledgeBase] = Field(
76
+ ..., description="List of vendor knowledge bases"
77
+ )
78
+ pagination: TokenPagination = Field(
79
+ ..., description="Token-based pagination information"
80
+ )
81
+
82
+
83
+ class VendorKnowledgeBaseDetail(BaseModel):
84
+ """Model representing detailed information about a vendor knowledge base."""
85
+
86
+ model_config = ConfigDict(extra="ignore")
87
+
88
+ id: str = Field(..., description="Unique identifier for the knowledge base")
89
+ name: str = Field(..., description="Name of the knowledge base")
90
+ description: Optional[str] = Field(
91
+ None, description="Description of the knowledge base"
92
+ )
93
+ type: str = Field(..., description="Type of knowledge base (e.g., VECTOR)")
94
+ status: VendorKnowledgeBaseStatus = Field(
95
+ ..., description="Status of the knowledge base"
96
+ )
97
+ embeddingModel: str = Field(
98
+ ...,
99
+ description="Embedding model used by the knowledge base",
100
+ alias="embeddingModel",
101
+ )
102
+ kendraIndexArn: Optional[str] = Field(
103
+ None, description="Kendra index ARN if applicable", alias="kendraIndexArn"
104
+ )
105
+ createdAt: datetime = Field(
106
+ ..., description="Creation timestamp", alias="createdAt"
107
+ )
108
+ updatedAt: datetime = Field(
109
+ ..., description="Last update timestamp", alias="updatedAt"
110
+ )
111
+ aiRunId: Optional[str] = Field(
112
+ None,
113
+ description="AI run ID if the knowledge base is installed",
114
+ alias="aiRunId",
115
+ )
116
+
117
+
118
+ class VendorKnowledgeBaseInstallRequest(BaseModel):
119
+ """Model for a single knowledge base installation request."""
120
+
121
+ model_config = ConfigDict(extra="ignore")
122
+
123
+ id: str = Field(..., description="Knowledge base ID to install")
124
+ setting_id: str = Field(..., description="Vendor setting ID")
125
+
126
+
127
+ class VendorKnowledgeBaseInstallSummary(BaseModel):
128
+ """Model for knowledge base installation summary."""
129
+
130
+ model_config = ConfigDict(extra="ignore")
131
+
132
+ knowledgeBaseId: str = Field(..., description="Installed knowledge base ID")
133
+ aiRunId: str = Field(..., description="AI run ID for the installation")
134
+
135
+
136
+ class VendorKnowledgeBaseInstallResponse(BaseModel):
137
+ """Response model for knowledge base installation."""
138
+
139
+ model_config = ConfigDict(extra="ignore")
140
+
141
+ summary: List[VendorKnowledgeBaseInstallSummary] = Field(
142
+ ..., description="List of installation summaries"
143
+ )
144
+
145
+
146
+ class VendorKnowledgeBaseUninstallResponse(BaseModel):
147
+ """Response model for knowledge base uninstallation."""
148
+
149
+ model_config = ConfigDict(extra="ignore")
150
+
151
+ success: bool = Field(..., description="Whether the uninstallation was successful")
@@ -0,0 +1,145 @@
1
+ """Models for vendor workflow settings."""
2
+
3
+ from datetime import datetime
4
+ from enum import Enum
5
+ from typing import Optional, List
6
+
7
+ from pydantic import BaseModel, ConfigDict, Field
8
+
9
+ from .vendor_assistant import PaginationInfo, TokenPagination
10
+
11
+
12
+ class VendorWorkflowSetting(BaseModel):
13
+ """Model representing a vendor workflow setting."""
14
+
15
+ model_config = ConfigDict(extra="ignore")
16
+
17
+ setting_id: str = Field(..., description="Unique identifier for the setting")
18
+ setting_name: str = Field(..., description="Name of the setting")
19
+ project: str = Field(..., description="Project associated with the setting")
20
+ entities: List[str] = Field(
21
+ default_factory=list, description="List of entities associated with the setting"
22
+ )
23
+ invalid: Optional[bool] = Field(None, description="Whether the setting is invalid")
24
+ error: Optional[str] = Field(
25
+ None, description="Error message if the setting is invalid"
26
+ )
27
+
28
+
29
+ class VendorWorkflowSettingsResponse(BaseModel):
30
+ """Response model for vendor workflow settings list."""
31
+
32
+ model_config = ConfigDict(extra="ignore")
33
+
34
+ data: List[VendorWorkflowSetting] = Field(
35
+ ..., description="List of vendor workflow settings"
36
+ )
37
+ pagination: PaginationInfo = Field(..., description="Pagination information")
38
+
39
+
40
+ class VendorWorkflowStatus(str, Enum):
41
+ """Status of vendor workflow."""
42
+
43
+ PREPARED = "PREPARED"
44
+ NOT_PREPARED = "NOT_PREPARED"
45
+
46
+
47
+ class VendorWorkflow(BaseModel):
48
+ """Model representing a vendor workflow."""
49
+
50
+ model_config = ConfigDict(extra="ignore")
51
+
52
+ id: str = Field(..., description="Unique identifier for the workflow")
53
+ name: str = Field(..., description="Name of the workflow")
54
+ status: VendorWorkflowStatus = Field(..., description="Status of the workflow")
55
+ description: Optional[str] = Field(None, description="Description of the workflow")
56
+ version: str = Field(..., description="Version of the workflow")
57
+ createdAt: datetime = Field(
58
+ ..., description="Creation timestamp", alias="createdAt"
59
+ )
60
+ updatedAt: datetime = Field(
61
+ ..., description="Last update timestamp", alias="updatedAt"
62
+ )
63
+
64
+
65
+ class VendorWorkflowsResponse(BaseModel):
66
+ """Response model for vendor workflows list."""
67
+
68
+ model_config = ConfigDict(extra="ignore")
69
+
70
+ data: List[VendorWorkflow] = Field(..., description="List of vendor workflows")
71
+ pagination: TokenPagination = Field(
72
+ ..., description="Token-based pagination information"
73
+ )
74
+
75
+
76
+ class VendorWorkflowAlias(BaseModel):
77
+ """Model representing a vendor workflow alias."""
78
+
79
+ model_config = ConfigDict(extra="ignore")
80
+
81
+ id: str = Field(..., description="Unique identifier for the alias")
82
+ name: str = Field(..., description="Name of the alias")
83
+ status: VendorWorkflowStatus = Field(..., description="Status of the alias")
84
+ description: Optional[str] = Field(None, description="Description of the alias")
85
+ version: str = Field(..., description="Version of the alias")
86
+ createdAt: datetime = Field(
87
+ ..., description="Creation timestamp", alias="createdAt"
88
+ )
89
+ updatedAt: datetime = Field(
90
+ ..., description="Last update timestamp", alias="updatedAt"
91
+ )
92
+ aiRunId: Optional[str] = Field(
93
+ None, description="AI run ID if the alias is installed", alias="aiRunId"
94
+ )
95
+
96
+
97
+ class VendorWorkflowAliasesResponse(BaseModel):
98
+ """Response model for vendor workflow aliases list."""
99
+
100
+ model_config = ConfigDict(extra="ignore")
101
+
102
+ data: List[VendorWorkflowAlias] = Field(
103
+ ..., description="List of vendor workflow aliases"
104
+ )
105
+ pagination: TokenPagination = Field(
106
+ ..., description="Token-based pagination information"
107
+ )
108
+
109
+
110
+ class VendorWorkflowInstallRequest(BaseModel):
111
+ """Model for a single workflow installation request."""
112
+
113
+ model_config = ConfigDict(extra="ignore")
114
+
115
+ id: str = Field(..., description="Workflow ID to install")
116
+ flowAliasId: str = Field(..., description="Flow alias ID to use for the workflow")
117
+ setting_id: str = Field(..., description="Vendor setting ID")
118
+
119
+
120
+ class VendorWorkflowInstallSummary(BaseModel):
121
+ """Model for workflow installation summary."""
122
+
123
+ model_config = ConfigDict(extra="ignore")
124
+
125
+ flowId: str = Field(..., description="Installed workflow ID")
126
+ flowAliasId: str = Field(..., description="Flow alias ID used for installation")
127
+ aiRunId: str = Field(..., description="AI run ID for the installation")
128
+
129
+
130
+ class VendorWorkflowInstallResponse(BaseModel):
131
+ """Response model for workflow installation."""
132
+
133
+ model_config = ConfigDict(extra="ignore")
134
+
135
+ summary: List[VendorWorkflowInstallSummary] = Field(
136
+ ..., description="List of installation summaries"
137
+ )
138
+
139
+
140
+ class VendorWorkflowUninstallResponse(BaseModel):
141
+ """Response model for workflow uninstallation."""
142
+
143
+ model_config = ConfigDict(extra="ignore")
144
+
145
+ success: bool = Field(..., description="Whether the uninstallation was successful")
@@ -1,6 +1,6 @@
1
1
  """Workflow execution payload models."""
2
2
 
3
- from typing import Optional
3
+ from typing import Optional, Union
4
4
  from pydantic import BaseModel, ConfigDict, Field
5
5
 
6
6
 
@@ -9,9 +9,13 @@ class WorkflowExecutionCreateRequest(BaseModel):
9
9
 
10
10
  model_config = ConfigDict(populate_by_name=True)
11
11
 
12
- user_input: Optional[str] = Field(
12
+ user_input: Optional[Union[str, dict, list, int, float, bool]] = Field(
13
13
  None, description="User input for the workflow execution"
14
14
  )
15
15
  file_name: Optional[str] = Field(
16
16
  None, description="File name associated with the workflow execution"
17
17
  )
18
+ propagate_headers: bool = Field(
19
+ default=False,
20
+ description="Enable propagation of X-* HTTP headers to MCP servers during tool execution",
21
+ )
@@ -1,5 +1,6 @@
1
1
  """Assistant service implementation."""
2
2
 
3
+ import inspect
3
4
  import json
4
5
  from pathlib import Path
5
6
  from typing import List, Union, Optional, Dict, Any, Literal
@@ -169,23 +170,162 @@ class AssistantService:
169
170
  """
170
171
  return self._api.get(f"/v1/assistants/prebuilt/{slug}", Assistant)
171
172
 
173
+ def list_versions(
174
+ self, assistant_id: str, page: int = 0, per_page: Optional[int] = None
175
+ ):
176
+ """List assistant versions.
177
+
178
+ Args:
179
+ assistant_id: Assistant identifier
180
+ page: Page number for pagination
181
+ per_page: Items per page (optional). If not provided, backend defaults are used.
182
+
183
+ Returns:
184
+ List of AssistantVersion objects
185
+ """
186
+
187
+ params: Dict[str, Any] = {"page": page}
188
+ if per_page is not None:
189
+ params["per_page"] = per_page
190
+ from ..models.assistant import AssistantVersion
191
+
192
+ raw = self._api.get(
193
+ f"/v1/assistants/{assistant_id}/versions",
194
+ dict,
195
+ params=params,
196
+ wrap_response=False,
197
+ )
198
+ items = []
199
+ if isinstance(raw, list):
200
+ items = raw
201
+ elif isinstance(raw, dict):
202
+ items = raw.get("data") or raw.get("versions") or []
203
+ else:
204
+ items = []
205
+ return [AssistantVersion.model_validate(it) for it in items]
206
+
207
+ def get_version(self, assistant_id: str, version_number: int):
208
+ """Get a specific assistant version by number.
209
+
210
+ Args:
211
+ assistant_id: Assistant identifier
212
+ version_number: Version number to retrieve
213
+
214
+ Returns:
215
+ AssistantVersion object
216
+ """
217
+ from ..models.assistant import AssistantVersion
218
+
219
+ raw = self._api.get(
220
+ f"/v1/assistants/{assistant_id}/versions/{version_number}", AssistantVersion
221
+ )
222
+ if isinstance(raw, dict):
223
+ return AssistantVersion.model_validate(raw)
224
+ return raw
225
+
226
+ def compare_versions(self, assistant_id: str, v1: int, v2: int) -> Dict[str, Any]:
227
+ """Compare two assistant versions and return diff summary.
228
+
229
+ Args:
230
+ assistant_id: Assistant identifier
231
+ v1: First version number
232
+ v2: Second version number
233
+
234
+ Returns:
235
+ Generic dictionary with comparison result (diff, summary, etc.)
236
+ """
237
+ return self._api.get(
238
+ f"/v1/assistants/{assistant_id}/versions/{v1}/compare/{v2}",
239
+ dict,
240
+ )
241
+
242
+ def rollback_to_version(
243
+ self, assistant_id: str, version_number: int, change_notes: Optional[str] = None
244
+ ) -> dict:
245
+ """Rollback assistant to a specific version. Creates a new version mirroring target.
246
+
247
+ Args:
248
+ assistant_id: Assistant identifier
249
+ version_number: Target version to rollback to
250
+ change_notes: Optional description of why rollback is performed
251
+
252
+ Returns:
253
+ Backend response (dict)
254
+ """
255
+ payload: Dict[str, Any] = {}
256
+ if change_notes:
257
+ payload["change_notes"] = change_notes
258
+ try:
259
+ return self._api.post(
260
+ f"/v1/assistants/{assistant_id}/versions/{version_number}/rollback",
261
+ dict,
262
+ json_data=payload,
263
+ )
264
+ except requests.HTTPError as err:
265
+ try:
266
+ assistant = self.get(assistant_id)
267
+ version = self.get_version(assistant_id, version_number)
268
+
269
+ update_req = AssistantUpdateRequest(
270
+ name=assistant.name,
271
+ description=assistant.description or "",
272
+ system_prompt=version.system_prompt,
273
+ project=assistant.project,
274
+ llm_model_type=version.llm_model_type or assistant.llm_model_type,
275
+ temperature=version.temperature
276
+ if hasattr(version, "temperature")
277
+ else assistant.temperature,
278
+ top_p=version.top_p
279
+ if hasattr(version, "top_p")
280
+ else assistant.top_p,
281
+ context=version.context
282
+ if hasattr(version, "context")
283
+ else assistant.context,
284
+ toolkits=version.toolkits
285
+ if hasattr(version, "toolkits")
286
+ else assistant.toolkits,
287
+ user_prompts=assistant.user_prompts,
288
+ shared=assistant.shared,
289
+ is_react=assistant.is_react,
290
+ is_global=assistant.is_global,
291
+ slug=assistant.slug,
292
+ mcp_servers=version.mcp_servers
293
+ if hasattr(version, "mcp_servers")
294
+ else assistant.mcp_servers,
295
+ assistant_ids=version.assistant_ids
296
+ if hasattr(version, "assistant_ids")
297
+ else assistant.assistant_ids,
298
+ )
299
+ resp = self.update(assistant_id, update_req)
300
+ resp["_rollback_fallback"] = True
301
+ resp["_target_version"] = version_number
302
+ if change_notes:
303
+ resp["change_notes"] = change_notes
304
+ return resp
305
+ except Exception:
306
+ raise err
307
+
172
308
  def chat(
173
309
  self,
174
310
  assistant_id: str,
175
311
  request: AssistantChatRequest,
312
+ headers: Optional[Dict[str, str]] = None,
176
313
  ) -> Union[requests.Response, BaseModelResponse]:
177
314
  """Send a chat request to an assistant.
178
315
 
179
316
  Args:
180
317
  assistant_id: ID of the assistant to chat with
181
318
  request: Chat request details
319
+ headers: Optional additional HTTP headers (e.g., X-* for MCP propagation)
182
320
 
183
321
  Returns:
184
322
  Chat response or streaming response
185
323
  """
186
324
  pydantic_schema = None
187
- if request.output_schema is not None and issubclass(
188
- request.output_schema, BaseModel
325
+ if (
326
+ request.output_schema is not None
327
+ and inspect.isclass(request.output_schema)
328
+ and issubclass(request.output_schema, BaseModel)
189
329
  ):
190
330
  pydantic_schema = deepcopy(request.output_schema)
191
331
  request.output_schema = request.output_schema.model_json_schema()
@@ -195,6 +335,7 @@ class AssistantService:
195
335
  BaseModelResponse,
196
336
  json_data=request.model_dump(exclude_none=True, by_alias=True),
197
337
  stream=request.stream,
338
+ extra_headers=headers,
198
339
  )
199
340
  if not request.stream and pydantic_schema:
200
341
  # we do conversion to the BaseModel here because self._parse_response don't see actual request model,
@@ -203,6 +344,82 @@ class AssistantService:
203
344
 
204
345
  return response
205
346
 
347
+ def chat_with_version(
348
+ self,
349
+ assistant_id: str,
350
+ version_number: int,
351
+ request: AssistantChatRequest,
352
+ ) -> Union[requests.Response, BaseModelResponse]:
353
+ """Send a chat request to a specific assistant version.
354
+
355
+ Uses the stable chat endpoint with an explicit `version` parameter to
356
+ ensure compatibility with environments that don't expose
357
+ /versions/{version}/model.
358
+
359
+ Args:
360
+ assistant_id: ID of the assistant to chat with
361
+ version_number: version to pin chat to
362
+ request: Chat request details
363
+
364
+ Returns:
365
+ Chat response or streaming response
366
+ """
367
+ pydantic_schema = None
368
+ if issubclass(request.output_schema, BaseModel):
369
+ pydantic_schema = deepcopy(request.output_schema)
370
+ request.output_schema = request.output_schema.model_json_schema()
371
+
372
+ payload = request.model_dump(exclude_none=True, by_alias=True)
373
+ payload["version"] = version_number
374
+
375
+ response = self._api.post(
376
+ f"/v1/assistants/{assistant_id}/model",
377
+ BaseModelResponse,
378
+ json_data=payload,
379
+ stream=request.stream,
380
+ )
381
+ if not request.stream and pydantic_schema:
382
+ response.generated = pydantic_schema.model_validate(response.generated)
383
+
384
+ return response
385
+
386
+ def chat_by_slug(
387
+ self,
388
+ assistant_slug: str,
389
+ request: AssistantChatRequest,
390
+ headers: Optional[Dict[str, str]] = None,
391
+ ) -> Union[requests.Response, BaseModelResponse]:
392
+ """Send a chat request to an assistant by slug.
393
+
394
+ Args:
395
+ assistant_slug: Slug of the assistant to chat with
396
+ request: Chat request details
397
+ headers: Optional additional HTTP headers (e.g., X-* for MCP propagation)
398
+
399
+ Returns:
400
+ Chat response or streaming response
401
+ """
402
+ pydantic_schema = None
403
+ if (
404
+ request.output_schema is not None
405
+ and inspect.isclass(request.output_schema)
406
+ and issubclass(request.output_schema, BaseModel)
407
+ ):
408
+ pydantic_schema = deepcopy(request.output_schema)
409
+ request.output_schema = request.output_schema.model_json_schema()
410
+
411
+ response = self._api.post(
412
+ f"/v1/assistants/slug/{assistant_slug}/model",
413
+ BaseModelResponse,
414
+ json_data=request.model_dump(exclude_none=True, by_alias=True),
415
+ stream=request.stream,
416
+ extra_headers=headers,
417
+ )
418
+ if not request.stream and pydantic_schema:
419
+ response.generated = pydantic_schema.model_validate(response.generated)
420
+
421
+ return response
422
+
206
423
  def upload_file_to_chat(self, file_path: Path):
207
424
  """Upload a file to assistant chat and return the response containing file_url."""
208
425