code-loader 1.0.94.dev5__py3-none-any.whl → 1.0.97.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of code-loader might be problematic. Click here for more details.

@@ -38,18 +38,8 @@ class PreprocessResponse:
38
38
  sample_ids: Optional[Union[List[str], List[int]]] = None
39
39
  state: Optional[DataStateType] = None
40
40
  sample_id_type: Optional[Union[Type[str], Type[int]]] = None
41
- sample_ids_to_instance_mappings: Optional[Dict[str, List[str]]] = None # in use only for element instance
42
- instance_to_sample_ids_mappings: Optional[Dict[str, str]] = None # in use only for element instance
43
- instance_id_to_instance_name: Optional[Dict[str, str]] = None # in use only for element instance
44
41
 
45
42
  def __post_init__(self) -> None:
46
- def is_valid_string(s: str) -> bool:
47
- return bool(re.match(r'^[A-Za-z0-9_]+$', s))
48
-
49
- assert self.sample_ids_to_instance_mappings is None, f"Keep sample_ids_to_instance_mappings None when initializing PreprocessResponse"
50
- assert self.instance_to_sample_ids_mappings is None, f"Keep instance_to_sample_ids_mappings None when initializing PreprocessResponse"
51
- assert self.instance_id_to_instance_name is None, f"Keep instance_id_to_instance_name None when initializing PreprocessResponse"
52
-
53
43
  if self.length is not None and self.sample_ids is None:
54
44
  self.sample_ids = [i for i in range(self.length)]
55
45
  self.sample_id_type = int
@@ -60,8 +50,6 @@ class PreprocessResponse:
60
50
  if self.sample_id_type == str:
61
51
  for sample_id in self.sample_ids:
62
52
  assert isinstance(sample_id, str), f"Sample id should be of type str. Got: {type(sample_id)}"
63
- if not is_valid_string(sample_id):
64
- raise Exception(f"Sample id should contain only letters (A-Z, a-z), numbers or '_'. Got: {sample_id}")
65
53
  else:
66
54
  raise Exception("length is deprecated.")
67
55
 
@@ -72,13 +60,8 @@ class PreprocessResponse:
72
60
  assert self.sample_ids is not None
73
61
  return len(self.sample_ids)
74
62
 
75
- @dataclass
76
- class ElementInstance:
77
- name: str
78
- mask: npt.NDArray[np.float32]
79
63
 
80
64
  SectionCallableInterface = Callable[[Union[int, str], PreprocessResponse], npt.NDArray[np.float32]]
81
- InstanceCallableInterface = Callable[[Union[int, str], PreprocessResponse], List[ElementInstance]]
82
65
 
83
66
  MetadataSectionCallableInterface = Union[
84
67
  Callable[[Union[int, str], PreprocessResponse], int],
@@ -200,10 +183,6 @@ class InputHandler(DatasetBaseHandler):
200
183
  shape: Optional[List[int]] = None
201
184
  channel_dim: Optional[int] = -1
202
185
 
203
- @dataclass
204
- class ElementInstanceMasksHandler:
205
- name: str
206
- function: InstanceCallableInterface
207
186
 
208
187
  @dataclass
209
188
  class GroundTruthHandler(DatasetBaseHandler):
@@ -239,7 +218,6 @@ class DatasetIntegrationSetup:
239
218
  unlabeled_data_preprocess: Optional[UnlabeledDataPreprocessHandler] = None
240
219
  visualizers: List[VisualizerHandler] = field(default_factory=list)
241
220
  inputs: List[InputHandler] = field(default_factory=list)
242
- instance_masks: List[ElementInstanceMasksHandler] = field(default_factory=list)
243
221
  ground_truths: List[GroundTruthHandler] = field(default_factory=list)
244
222
  metadata: List[MetadataHandler] = field(default_factory=list)
245
223
  prediction_types: List[PredictionTypeHandler] = field(default_factory=list)
@@ -256,5 +234,3 @@ class DatasetSample:
256
234
  metadata_is_none: Dict[str, bool]
257
235
  index: Union[int, str]
258
236
  state: DataStateEnum
259
- instance_masks: Optional[Dict[str, List[ElementInstance]]] = None
260
-
@@ -10,15 +10,14 @@ from code_loader.contract.datasetclasses import SectionCallableInterface, InputH
10
10
  MetadataSectionCallableInterface, UnlabeledDataPreprocessHandler, CustomLayerHandler, MetricHandler, \
11
11
  CustomCallableInterfaceMultiArgs, ConfusionMatrixCallableInterfaceMultiArgs, LeapData, \
12
12
  CustomMultipleReturnCallableInterfaceMultiArgs, DatasetBaseHandler, custom_latent_space_attribute, \
13
- RawInputsForHeatmap, VisualizerHandlerData, MetricHandlerData, CustomLossHandlerData, SamplePreprocessResponse, \
14
- ElementInstanceMasksHandler, InstanceCallableInterface
13
+ RawInputsForHeatmap, VisualizerHandlerData, MetricHandlerData, CustomLossHandlerData, SamplePreprocessResponse
15
14
  from code_loader.contract.enums import LeapDataType, DataStateEnum, DataStateType, MetricDirection, DatasetMetadataType
16
15
  from code_loader.contract.mapping import NodeConnection, NodeMapping, NodeMappingType
17
16
  from code_loader.contract.responsedataclasses import DatasetTestResultPayload
18
17
  from code_loader.contract.visualizer_classes import map_leap_data_type_to_visualizer_class
19
18
  from code_loader.default_losses import loss_name_to_function
20
19
  from code_loader.default_metrics import metrics_names_to_functions_and_direction
21
- from code_loader.utils import to_numpy_return_wrapper, get_shape, to_numpy_return_masks_wrapper
20
+ from code_loader.utils import to_numpy_return_wrapper, get_shape
22
21
  from code_loader.visualizers.default_visualizers import DefaultVisualizer, \
23
22
  default_graph_visualizer, \
24
23
  default_image_visualizer, default_horizontal_bar_visualizer, default_word_visualizer, \
@@ -235,22 +234,6 @@ class LeapBinder:
235
234
 
236
235
  self._encoder_names.append(name)
237
236
 
238
-
239
- def set_instance_masks(self, function: InstanceCallableInterface, name: str) -> None:
240
- """
241
- Set the instance mask handler function.
242
-
243
- Args:
244
- function (SectionCallableInterface): The input handler function.
245
- name (str): The name of the instance mask section.
246
-
247
- Example:
248
- leap_binder.set_input(input_encoder, name='input_encoder')
249
- """
250
- function = to_numpy_return_masks_wrapper(function)
251
- self.setup_container.instance_masks.append(ElementInstanceMasksHandler(name, function))
252
-
253
-
254
237
  def add_custom_loss(self, function: CustomCallableInterface, name: str) -> None:
255
238
  """
256
239
  Add a custom loss function to the setup.
@@ -530,9 +513,10 @@ class LeapBinder:
530
513
  for i, (single_metadata_name, single_metadata_result) in enumerate(raw_result.items()):
531
514
  metadata_test_result = metadata_test_result_payloads[i]
532
515
 
533
- if not isinstance(single_metadata_result, (int, str, bool, float, np.unsignedinteger, np.signedinteger, np.bool_, np.floating)):
516
+ if not isinstance(single_metadata_result, (int, str, bool, float, np.unsignedinteger,
517
+ np.signedinteger, np.bool_, np.floating, type(None))):
534
518
  raise Exception(f"Unsupported return type of metadata {single_metadata_name}."
535
- f"The return type should be one of [int, float, str, bool]. Got {type(single_metadata_result)}")
519
+ f"The return type should be one of [int, float, str, bool, None]. Got {type(single_metadata_result)}")
536
520
 
537
521
  metadata_type = None
538
522
  if single_metadata_result is None:
@@ -8,7 +8,7 @@ import numpy.typing as npt
8
8
  from code_loader.contract.datasetclasses import CustomCallableInterfaceMultiArgs, \
9
9
  CustomMultipleReturnCallableInterfaceMultiArgs, ConfusionMatrixCallableInterfaceMultiArgs, CustomCallableInterface, \
10
10
  VisualizerCallableInterface, MetadataSectionCallableInterface, PreprocessResponse, SectionCallableInterface, \
11
- ConfusionMatrixElement, SamplePreprocessResponse, InstanceCallableInterface, ElementInstance
11
+ ConfusionMatrixElement, SamplePreprocessResponse
12
12
  from code_loader.contract.enums import MetricDirection, LeapDataType, DatasetMetadataType
13
13
  from code_loader import leap_binder
14
14
  from code_loader.contract.mapping import NodeMapping, NodeMappingType, NodeConnection
@@ -270,70 +270,6 @@ def tensorleap_preprocess():
270
270
 
271
271
  return decorating_function
272
272
 
273
- def tensorleap_element_instance_preprocess(instance_mask_encoder: Callable[[int, PreprocessResponse], List[ElementInstance]]):
274
- def decorating_function(user_function: Callable[[], List[PreprocessResponse]]):
275
- def user_function_instance() -> List[PreprocessResponse]:
276
- result = user_function()
277
- for preprocess_response in result:
278
- sample_ids_to_instance_mappings = {}
279
- instance_to_sample_ids_mappings = {}
280
- instance_id_to_instance_name = {}
281
- all_sample_ids = preprocess_response.sample_ids.copy()
282
- for sample_id in preprocess_response.sample_ids:
283
- instances_masks = instance_mask_encoder(sample_id, preprocess_response)
284
- instance_names = [instance.name for instance in instances_masks]
285
- instances_ids = [f'{sample_id}_{instance_id}' for instance_id in range(len(instances_masks))]
286
- sample_ids_to_instance_mappings[sample_id] = instances_ids
287
- instance_to_sample_ids_mappings[sample_id] = sample_id
288
- instance_id_to_instance_name[sample_id] = None
289
- for instance_id, instance_name in zip(instances_ids, instance_names):
290
- instance_to_sample_ids_mappings[instance_id] = sample_id
291
- instance_id_to_instance_name[instance_id] = instance_name
292
- all_sample_ids.extend(instances_ids)
293
- preprocess_response.sample_ids_to_instance_mappings = sample_ids_to_instance_mappings
294
- preprocess_response.instance_to_sample_ids_mappings = instance_to_sample_ids_mappings
295
- preprocess_response.instance_id_to_instance_name = instance_id_to_instance_name
296
- preprocess_response.sample_ids = all_sample_ids
297
- return result
298
-
299
- def metadata_is_instance(idx: str, preprocess: PreprocessResponse) -> Dict[str, str]:
300
- # return {'is_instance': '0',
301
- # 'orig_sample_id': preprocess.instance_to_sample_ids_mappings[idx],
302
- # 'instance_name': preprocess.instance_id_to_instance_name[idx]}
303
- # return '0'
304
- return {'is_instance': '0',
305
- 'orig_sample_id': '0',
306
- 'instance_name': '0'}
307
- leap_binder.set_preprocess(user_function_instance)
308
- leap_binder.set_metadata(metadata_is_instance, "metadata_is_instance")
309
-
310
- def _validate_input_args(*args, **kwargs):
311
- assert len(args) == 0 and len(kwargs) == 0, \
312
- (f'tensorleap_element_instance_preprocess validation failed: '
313
- f'The function should not take any arguments. Got {args} and {kwargs}.')
314
-
315
- def _validate_result(result):
316
- assert isinstance(result, list), \
317
- (f'tensorleap_element_instance_preprocess validation failed: '
318
- f'The return type should be a list. Got {type(result)}.')
319
- for i, response in enumerate(result):
320
- assert isinstance(response, PreprocessResponse), \
321
- (f'tensorleap_element_instance_preprocess validation failed: '
322
- f'Element #{i} in the return list should be a PreprocessResponse. Got {type(response)}.')
323
- assert len(set(result)) == len(result), \
324
- (f'tensorleap_element_instance_preprocess validation failed: '
325
- f'The return list should not contain duplicate PreprocessResponse objects.')
326
-
327
- def inner(*args, **kwargs):
328
- _validate_input_args(*args, **kwargs)
329
- result = user_function_instance()
330
- _validate_result(result)
331
- return result
332
-
333
- return inner
334
-
335
- return decorating_function
336
-
337
273
 
338
274
  def tensorleap_unlabeled_preprocess():
339
275
  def decorating_function(user_function: Callable[[], PreprocessResponse]):
@@ -360,38 +296,6 @@ def tensorleap_unlabeled_preprocess():
360
296
  return decorating_function
361
297
 
362
298
 
363
- def tensorleap_instances_masks_encoder(name: str):
364
- def decorating_function(user_function: InstanceCallableInterface):
365
- leap_binder.set_instance_masks(user_function, name)
366
-
367
- def _validate_input_args(sample_id: str, preprocess_response: PreprocessResponse):
368
- assert isinstance(sample_id, str), \
369
- (f'tensorleap_instances_masks_encoder validation failed: '
370
- f'Argument sample_id should be str. Got {type(sample_id)}.')
371
- assert isinstance(preprocess_response, PreprocessResponse), \
372
- (f'tensorleap_instances_masks_encoder validation failed: '
373
- f'Argument preprocess_response should be a PreprocessResponse. Got {type(preprocess_response)}.')
374
- assert type(sample_id) == preprocess_response.sample_id_type, \
375
- (f'tensorleap_instances_masks_encoder validation failed: '
376
- f'Argument sample_id should be as the same type as defined in the preprocess response '
377
- f'{preprocess_response.sample_id_type}. Got {type(sample_id)}.')
378
-
379
- def _validate_result(result):
380
- assert isinstance(result, list), \
381
- (f'tensorleap_instances_masks_encoder validation failed: '
382
- f'Unsupported return type. Should be a numpy array. Got {type(result)}.')
383
-
384
- def inner(sample_id, preprocess_response):
385
- _validate_input_args(sample_id, preprocess_response)
386
- result = user_function(sample_id, preprocess_response)
387
- _validate_result(result)
388
- return result
389
-
390
- return inner
391
-
392
- return decorating_function
393
-
394
-
395
299
  def tensorleap_input_encoder(name: str, channel_dim=-1, model_input_index=None):
396
300
  def decorating_function(user_function: SectionCallableInterface):
397
301
  for input_handler in leap_binder.setup_container.inputs:
code_loader/leaploader.py CHANGED
@@ -14,8 +14,7 @@ import numpy.typing as npt
14
14
  from code_loader.contract.datasetclasses import DatasetSample, DatasetBaseHandler, GroundTruthHandler, \
15
15
  PreprocessResponse, VisualizerHandler, LeapData, \
16
16
  PredictionTypeHandler, MetadataHandler, CustomLayerHandler, MetricHandler, VisualizerHandlerData, MetricHandlerData, \
17
- MetricCallableReturnType, CustomLossHandlerData, CustomLossHandler, RawInputsForHeatmap, SamplePreprocessResponse, \
18
- ElementInstance
17
+ MetricCallableReturnType, CustomLossHandlerData, CustomLossHandler, RawInputsForHeatmap, SamplePreprocessResponse
19
18
  from code_loader.contract.enums import DataStateEnum, TestingSectionEnum, DataStateType, DatasetMetadataType
20
19
  from code_loader.contract.exceptions import DatasetScriptException
21
20
  from code_loader.contract.responsedataclasses import DatasetIntegParseResult, DatasetTestResultPayload, \
@@ -24,7 +23,7 @@ from code_loader.contract.responsedataclasses import DatasetIntegParseResult, Da
24
23
  EngineFileContract
25
24
  from code_loader.inner_leap_binder import global_leap_binder
26
25
  from code_loader.leaploaderbase import LeapLoaderBase
27
- from code_loader.utils import get_root_exception_file_and_line_number
26
+ from code_loader.utils import get_root_exception_file_and_line_number, flatten
28
27
 
29
28
 
30
29
  class LeapLoader(LeapLoaderBase):
@@ -151,22 +150,6 @@ class LeapLoader(LeapLoaderBase):
151
150
  state=state)
152
151
  return sample
153
152
 
154
- def get_sample_with_masks(self, state: DataStateEnum, sample_id: Union[int, str]) -> DatasetSample:
155
- self.exec_script()
156
- preprocess_result = self._preprocess_result()
157
- if state == DataStateEnum.unlabeled and sample_id not in preprocess_result[state].sample_ids:
158
- self._preprocess_result(update_unlabeled_preprocess=True)
159
-
160
- metadata, metadata_is_none = self._get_metadata(state, sample_id)
161
- sample = DatasetSample(inputs=self._get_inputs(state, sample_id),
162
- gt=None if state == DataStateEnum.unlabeled else self._get_gt(state, sample_id),
163
- metadata=metadata,
164
- metadata_is_none=metadata_is_none,
165
- index=sample_id,
166
- state=state,
167
- instance_masks=self._get_instances_masks(state, sample_id))
168
- return sample
169
-
170
153
  def check_dataset(self) -> DatasetIntegParseResult:
171
154
  test_payloads: List[DatasetTestResultPayload] = []
172
155
  setup_response = None
@@ -454,16 +437,6 @@ class LeapLoader(LeapLoaderBase):
454
437
  def _get_inputs(self, state: DataStateEnum, sample_id: Union[int, str]) -> Dict[str, npt.NDArray[np.float32]]:
455
438
  return self._get_dataset_handlers(global_leap_binder.setup_container.inputs, state, sample_id)
456
439
 
457
- def _get_instances_masks(self, state: DataStateEnum, sample_id: Union[int, str]) -> Dict[str, List[ElementInstance]]:
458
- preprocess_result = self._preprocess_result()
459
- preprocess_state = preprocess_result[state]
460
- result_agg = {}
461
- for handler in global_leap_binder.setup_container.instance_masks:
462
- handler_result = handler.function(sample_id, preprocess_state)
463
- handler_name = handler.name
464
- result_agg[handler_name] = handler_result
465
- return result_agg
466
-
467
440
  def _get_gt(self, state: DataStateEnum, sample_id: Union[int, str]) -> Dict[str, npt.NDArray[np.float32]]:
468
441
  return self._get_dataset_handlers(global_leap_binder.setup_container.ground_truths, state, sample_id)
469
442
 
@@ -504,22 +477,18 @@ class LeapLoader(LeapLoaderBase):
504
477
 
505
478
  return converted_value, is_none
506
479
 
507
- def _get_metadata(self, state: DataStateEnum, sample_id: Union[int, str]) -> Tuple[Dict[str, Union[str, int, bool, float]], Dict[str, bool]]:
480
+ def _get_metadata(self, state: DataStateEnum, sample_id: Union[int, str]) -> Tuple[
481
+ Dict[str, Union[str, int, bool, float]], Dict[str, bool]]:
508
482
  result_agg = {}
509
483
  is_none = {}
510
484
  preprocess_result = self._preprocess_result()
511
485
  preprocess_state = preprocess_result[state]
512
486
  for handler in global_leap_binder.setup_container.metadata:
513
487
  handler_result = handler.function(sample_id, preprocess_state)
514
- if isinstance(handler_result, dict):
515
- for single_metadata_name, single_metadata_result in handler_result.items():
516
- handler_name = f'{handler.name}_{single_metadata_name}'
517
- result_agg[handler_name], is_none[handler_name] = self._convert_metadata_to_correct_type(
518
- handler_name, single_metadata_result)
519
- else:
520
- handler_name = handler.name
521
- result_agg[handler_name], is_none[handler_name] = self._convert_metadata_to_correct_type(
522
- handler_name, handler_result)
488
+
489
+ for flat_name, flat_result in flatten(handler_result, prefix=handler.name):
490
+ result_agg[flat_name], is_none[flat_name] = self._convert_metadata_to_correct_type(
491
+ flat_name, flat_result)
523
492
 
524
493
  return result_agg, is_none
525
494
 
@@ -532,18 +501,3 @@ class LeapLoader(LeapLoaderBase):
532
501
  raise Exception("Different id types in preprocess results")
533
502
 
534
503
  return id_type
535
-
536
- def get_instances_data(self, state: DataStateEnum) -> Tuple[Dict[Union[int, str], List[Union[int, str]]], Dict[Union[int, str], Union[int, str]], List[Union[int, str]]]:
537
- """
538
- This Method get the data state and returns two dictionaries that holds the mapping of the sample ids to their
539
- instances and the other way around and the sample ids array.
540
- Args:
541
- state: DataStateEnum state
542
- Returns:
543
- sample_ids_to_instance_mappings: sample id to instance mappings
544
- instance_to_sample_ids_mappings: instance to sample ids mappings
545
- sample_ids: sample ids array
546
- """
547
- preprocess_result = self._preprocess_result()
548
- preprocess_state = preprocess_result[state]
549
- return preprocess_state.sample_ids_to_instance_mappings, preprocess_state.instance_to_sample_ids_mappings, preprocess_state.sample_ids
@@ -2,7 +2,7 @@
2
2
 
3
3
  from abc import abstractmethod
4
4
 
5
- from typing import Dict, List, Union, Type, Optional, Tuple
5
+ from typing import Dict, List, Union, Type, Optional
6
6
 
7
7
  import numpy as np
8
8
  import numpy.typing as npt
@@ -64,14 +64,6 @@ class LeapLoaderBase:
64
64
  def get_sample(self, state: DataStateEnum, sample_id: Union[int, str]) -> DatasetSample:
65
65
  pass
66
66
 
67
- @abstractmethod
68
- def get_sample_with_masks(self, state: DataStateEnum, sample_id: Union[int, str]) -> DatasetSample:
69
- pass
70
-
71
- @abstractmethod
72
- def get_instances_data(self, state: DataStateEnum) -> Tuple[Dict[Union[int, str], List[Union[int, str]]], Dict[Union[int, str], Union[int, str]], List[Union[int, str]]]:
73
- pass
74
-
75
67
  @abstractmethod
76
68
  def check_dataset(self) -> DatasetIntegParseResult:
77
69
  pass
code_loader/utils.py CHANGED
@@ -1,13 +1,12 @@
1
1
  import sys
2
2
  from pathlib import Path
3
3
  from types import TracebackType
4
- from typing import List, Union, Tuple, Any, Callable
4
+ from typing import List, Union, Tuple, Any, Iterator
5
5
  import traceback
6
6
  import numpy as np
7
7
  import numpy.typing as npt
8
8
 
9
- from code_loader.contract.datasetclasses import SectionCallableInterface, PreprocessResponse, \
10
- InstanceCallableInterface, ElementInstance
9
+ from code_loader.contract.datasetclasses import SectionCallableInterface, PreprocessResponse
11
10
 
12
11
 
13
12
  def to_numpy_return_wrapper(encoder_function: SectionCallableInterface) -> SectionCallableInterface:
@@ -18,15 +17,6 @@ def to_numpy_return_wrapper(encoder_function: SectionCallableInterface) -> Secti
18
17
 
19
18
  return numpy_encoder_function
20
19
 
21
- def to_numpy_return_masks_wrapper(encoder_function: InstanceCallableInterface) -> Callable[
22
- [Union[int, str], PreprocessResponse], List[ElementInstance]]:
23
- def numpy_encoder_function(idx: Union[int, str], samples: PreprocessResponse) -> List[ElementInstance]:
24
- result = encoder_function(idx, samples)
25
- for res in result:
26
- res.mask = np.array(res.mask)
27
- return result
28
- return numpy_encoder_function
29
-
30
20
 
31
21
  def get_root_traceback(exc_tb: TracebackType) -> TracebackType:
32
22
  return_traceback = exc_tb
@@ -76,3 +66,28 @@ def rescale_min_max(image: npt.NDArray[np.float32]) -> npt.NDArray[np.float32]:
76
66
  return image
77
67
 
78
68
 
69
+ def flatten(
70
+ value: Any,
71
+ *,
72
+ prefix: str = "",
73
+ list_token: str = "e",
74
+ ) -> Iterator[Tuple[str, Any]]:
75
+ """
76
+ Recursively walk `value` and yield (flat_key, leaf_value) pairs.
77
+
78
+ • Dicts → descend with new_prefix = f"{prefix}_{key}" (or just key if top level)
79
+ • Sequences → descend with new_prefix = f"{prefix}_{list_token}{idx}"
80
+ • Leaf scalars → yield the accumulated flat key and the scalar itself
81
+ """
82
+ if isinstance(value, dict):
83
+ for k, v in value.items():
84
+ new_prefix = f"{prefix}_{k}" if prefix else k
85
+ yield from flatten(v, prefix=new_prefix, list_token=list_token)
86
+
87
+ elif isinstance(value, (list, tuple)):
88
+ for idx, v in enumerate(value):
89
+ new_prefix = f"{prefix}_{list_token}{idx}"
90
+ yield from flatten(v, prefix=new_prefix, list_token=list_token)
91
+
92
+ else: # primitive leaf (str, int, float, bool, None…)
93
+ yield prefix, value
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: code-loader
3
- Version: 1.0.94.dev5
3
+ Version: 1.0.97.dev0
4
4
  Summary:
5
5
  Home-page: https://github.com/tensorleap/code-loader
6
6
  License: MIT
@@ -1,7 +1,7 @@
1
1
  LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
2
2
  code_loader/__init__.py,sha256=6MMWr0ObOU7hkqQKgOqp4Zp3I28L7joGC9iCbQYtAJg,241
3
3
  code_loader/contract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- code_loader/contract/datasetclasses.py,sha256=PT1dMA0FxpzJ75rpc79d_oxn3zJmrdOihKTC46ZEZvI,9139
4
+ code_loader/contract/datasetclasses.py,sha256=3BWSCHaKtNWlKucMkPKSMiuvZosnnQgXFq2R-GbVOgg,7679
5
5
  code_loader/contract/enums.py,sha256=GEFkvUMXnCNt-GOoz7NJ9ecQZ2PPDettJNOsxsiM0wk,1622
6
6
  code_loader/contract/exceptions.py,sha256=jWqu5i7t-0IG0jGRsKF4DjJdrsdpJjIYpUkN1F4RiyQ,51
7
7
  code_loader/contract/mapping.py,sha256=e11h_sprwOyE32PcqgRq9JvyahQrPzwqgkhmbQLKLQY,1165
@@ -20,14 +20,14 @@ code_loader/experiment_api/types.py,sha256=MY8xFARHwdVA7p4dxyhD60ShmttgTvb4qdp1o
20
20
  code_loader/experiment_api/utils.py,sha256=XZHtxge12TS4H4-8PjV3sKuhp8Ud6ojAiIzTZJEqBqc,3304
21
21
  code_loader/experiment_api/workingspace_config_utils.py,sha256=DLzXQCg4dgTV_YgaSbeTVzq-2ja_SQw4zi7LXwKL9cY,990
22
22
  code_loader/inner_leap_binder/__init__.py,sha256=koOlJyMNYzGbEsoIbXathSmQ-L38N_pEXH_HvL7beXU,99
23
- code_loader/inner_leap_binder/leapbinder.py,sha256=wmCOj_YKbRXqLL1k5Tw_FrcZgfmgnVQcjs2ok6wdlww,32362
24
- code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=MVP2ThkMZl13wV9nufgAPgIvIvagF8Q_dT6M-BHtjl0,29813
25
- code_loader/leaploader.py,sha256=HPDZb10HPYh18_HjoIYT8ipB5pmVvL5tEI_KFKmHS7g,28866
26
- code_loader/leaploaderbase.py,sha256=tpMVEd97675b_var4hvesjN7EgQzoCbPEayNBut6AvI,4551
27
- code_loader/utils.py,sha256=_j8b60pimoNAvWMRj7hEkkT6C76qES6cZoBFHpXHMxA,2698
23
+ code_loader/inner_leap_binder/leapbinder.py,sha256=Acg5C8pMlQHSCTNmTXlMiLdS7P_k6sBUahD5ffr6mN4,31794
24
+ code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=y5TuhJe-J3xEE0Oj7bxIfhyN1lXiLJgfgy3ZiAs-yic,24364
25
+ code_loader/leaploader.py,sha256=qUV-MmxZzESxi8zciKiitGObgks_5d58tgrZyJwRpuU,26125
26
+ code_loader/leaploaderbase.py,sha256=VH0vddRmkqLtcDlYPCO7hfz1_VbKo43lUdHDAbd4iJc,4198
27
+ code_loader/utils.py,sha256=4tXLum2AT3Z1ldD6BeYScNg0ATyE4oM8cuIGQxrXyjM,3163
28
28
  code_loader/visualizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  code_loader/visualizers/default_visualizers.py,sha256=669lBpLISLO6my5Qcgn1FLDDeZgHumPf252m4KHY4YM,2555
30
- code_loader-1.0.94.dev5.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
31
- code_loader-1.0.94.dev5.dist-info/METADATA,sha256=FiM8vCfAPqjHVtBcEH_HrTGlRdTz5tLpdNz8sZE1vV0,854
32
- code_loader-1.0.94.dev5.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
- code_loader-1.0.94.dev5.dist-info/RECORD,,
30
+ code_loader-1.0.97.dev0.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
31
+ code_loader-1.0.97.dev0.dist-info/METADATA,sha256=VjlJJJzJiQXZgcE2dzItxMz4B2mrry2W3GSEK_YkFyk,854
32
+ code_loader-1.0.97.dev0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
+ code_loader-1.0.97.dev0.dist-info/RECORD,,