code-loader 1.0.66.dev3__py3-none-any.whl → 1.0.68__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,5 @@
1
1
  from enum import Enum
2
2
 
3
- from code_loader.contract.datasetclasses import ConfusionMatrixElement # type: ignore
4
- from code_loader.contract.enums import ConfusionMatrixValue, MetricDirection # type: ignore
5
3
  from code_loader.default_metrics import mean_absolute_percentage_error_dimension_reduced, \
6
4
  mean_absolute_error_dimension_reduced, mean_squared_logarithmic_error_dimension_reduced, \
7
5
  mean_squared_error_dimension_reduced, categorical_crossentropy, binary_crossentropy
@@ -21,12 +21,18 @@ class Metric(Enum):
21
21
 
22
22
  def binary_crossentropy(ground_truth: np.array, prediction: np.array) -> np.array:
23
23
  ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
24
- return -(ground_truth * np.log(prediction) + (1 - ground_truth) * np.log(1 - prediction)).mean(axis=1).astype(np.float32)
24
+ epsilon = 1e-07
25
+ prediction = np.clip(prediction, epsilon, 1.0 - epsilon)
26
+ return -(ground_truth * np.log(prediction) + (1 - ground_truth) *
27
+ np.log(1 - prediction)).sum(axis=1).astype(np.float32)
25
28
 
26
29
 
27
30
  def categorical_crossentropy(ground_truth: np.array, prediction: np.array) -> np.array:
28
31
  ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
29
- return -(ground_truth * np.log(prediction)).mean(axis=1).astype(np.float32)
32
+ prediction = prediction / np.sum(prediction, axis=1)
33
+ epsilon = 1e-07
34
+ prediction = np.clip(prediction, epsilon, 1.0 - epsilon)
35
+ return -(ground_truth * np.log(prediction)).sum(axis=1).astype(np.float32)
30
36
 
31
37
  def accuracy_reduced(ground_truth: np.array, prediction: np.array) -> np.array:
32
38
  ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
@@ -355,7 +355,7 @@ def tensorleap_custom_loss(name: str):
355
355
  assert isinstance(elem, valid_types), (f'tensorleap_custom_loss validation failed: '
356
356
  f'Element #{y} of list should be a numpy array. Got {type(elem)}.')
357
357
  else:
358
- assert isinstance(arg, tf.Tensor), (f'tensorleap_custom_loss validation failed: '
358
+ assert isinstance(arg, valid_types), (f'tensorleap_custom_loss validation failed: '
359
359
  f'Argument #{i} should be a numpy array. Got {type(arg)}.')
360
360
  for _arg_name, arg in kwargs.items():
361
361
  if isinstance(arg, list):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: code-loader
3
- Version: 1.0.66.dev3
3
+ Version: 1.0.68
4
4
  Summary:
5
5
  Home-page: https://github.com/tensorleap/code-loader
6
6
  License: MIT
@@ -7,8 +7,8 @@ code_loader/contract/enums.py,sha256=6Lo7p5CUog68Fd31bCozIuOgIp_IhSiPqWWph2k3OGU
7
7
  code_loader/contract/exceptions.py,sha256=jWqu5i7t-0IG0jGRsKF4DjJdrsdpJjIYpUkN1F4RiyQ,51
8
8
  code_loader/contract/responsedataclasses.py,sha256=RSx9m_R3LawhK5o1nAcO3hfp2F9oJYtxZr_bpP3bTmw,4005
9
9
  code_loader/contract/visualizer_classes.py,sha256=zD7SVgI1R_DaGby3FPJY2rFphK162P7F2hRTHp2xUuM,12428
10
- code_loader/default_losses.py,sha256=dyYfYkud0JvNnogsAnin2KGJ9SZ0_uSJI2cJxqH7-xs,1319
11
- code_loader/default_metrics.py,sha256=_evlQ3m5vaOU-5VeLHzlO38A-00_XKarkcRXFznhjr0,4780
10
+ code_loader/default_losses.py,sha256=NoOQym1106bDN5dcIk56Elr7ZG5quUHArqfP5-Nyxyo,1139
11
+ code_loader/default_metrics.py,sha256=v16Mrt2Ze1tXPgfKywGVdRSrkaK4CKLNQztN1UdVqIY,5010
12
12
  code_loader/experiment_api/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  code_loader/experiment_api/api.py,sha256=a7wh6Hhe7IaVxu46eV2soSz-yxnmXG3ipU1BBtsEAaQ,2493
14
14
  code_loader/experiment_api/cli_config_utils.py,sha256=n6JMyNrquxql3KKxHhAP8jAzezlRT-PV2KWI95kKsm0,1140
@@ -21,13 +21,13 @@ code_loader/experiment_api/utils.py,sha256=XZHtxge12TS4H4-8PjV3sKuhp8Ud6ojAiIzTZ
21
21
  code_loader/experiment_api/workingspace_config_utils.py,sha256=DLzXQCg4dgTV_YgaSbeTVzq-2ja_SQw4zi7LXwKL9cY,990
22
22
  code_loader/inner_leap_binder/__init__.py,sha256=koOlJyMNYzGbEsoIbXathSmQ-L38N_pEXH_HvL7beXU,99
23
23
  code_loader/inner_leap_binder/leapbinder.py,sha256=o57Pj-iY61-OBuTjK-jYUKCJ0g2pPWbbqitv_e75Bps,25959
24
- code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=P42U-sqsPKZgsaAzmX8y13F2N3CogeTzU1Iozj4S0GY,20778
24
+ code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=S4XHoC4GVicUIhM0UAAsQ6qVmztD52L-Uxa-6OcZptA,20780
25
25
  code_loader/leaploader.py,sha256=K__WKfqtKwEch40au177Po10EUX7gm0PJzcV6kpUMlo,22212
26
26
  code_loader/leaploaderbase.py,sha256=aHlqWDZRacIdBefeB9goYVnpApaNN2FT24uPIWKkCeQ,3090
27
27
  code_loader/utils.py,sha256=aw2i_fqW_ADjLB66FWZd9DfpCQ7mPdMyauROC5Nd51I,2197
28
28
  code_loader/visualizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  code_loader/visualizers/default_visualizers.py,sha256=Ffx5VHVOe5ujBOsjBSxN_aIEVwFSQ6gbhTMG5aUS-po,2305
30
- code_loader-1.0.66.dev3.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
31
- code_loader-1.0.66.dev3.dist-info/METADATA,sha256=ddrUc-_y21jCdkK0nIhs6qNmguXO02A1sKC4LRW-lEQ,854
32
- code_loader-1.0.66.dev3.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
- code_loader-1.0.66.dev3.dist-info/RECORD,,
30
+ code_loader-1.0.68.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
31
+ code_loader-1.0.68.dist-info/METADATA,sha256=7rYyuqWwTrtgjyMJSoqB_iijzJ85T9l93GcM9wcpqoU,849
32
+ code_loader-1.0.68.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
+ code_loader-1.0.68.dist-info/RECORD,,