code-loader 1.0.64.dev1__py3-none-any.whl → 1.0.64.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,81 @@
1
+ from enum import Enum
2
+ from typing import List, Tuple
3
+ import numpy as np
4
+
5
+ from code_loader.contract.datasetclasses import ConfusionMatrixElement # type: ignore
6
+ from code_loader.contract.enums import ConfusionMatrixValue, MetricDirection # type: ignore
7
+
8
+
9
+ class Metric(Enum):
10
+ MeanSquaredError = 'MeanSquaredError'
11
+ MeanSquaredLogarithmicError = 'MeanSquaredLogarithmicError'
12
+ MeanAbsoluteError = 'MeanAbsoluteError'
13
+ MeanAbsolutePercentageError = 'MeanAbsolutePercentageError'
14
+ Accuracy = 'Accuracy'
15
+ ConfusionMatrixClassification = 'ConfusionMatrixClassification'
16
+
17
+
18
+ def accuracy_reduced(ground_truth: np.array, prediction: np.array) -> np.array:
19
+ ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
20
+ return np.mean((np.round(prediction).astype(np.bool_) == ground_truth.astype(np.bool_)), axis=1)
21
+
22
+
23
+ def mean_squared_error_dimension_reduced(ground_truth: np.array, prediction: np.array) -> np.array:
24
+ ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
25
+ return ((ground_truth - prediction) ** 2).mean(axis=1).astype(np.float32)
26
+
27
+
28
+ def mean_absolute_error_dimension_reduced(ground_truth: np.array, prediction: np.array) -> np.array:
29
+ ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
30
+ return np.abs(ground_truth - prediction).mean(axis=1).astype(np.float32)
31
+
32
+
33
+ def mean_absolute_percentage_error_dimension_reduced(ground_truth: np.array, prediction: np.array) -> np.array:
34
+ ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
35
+ return (np.abs(ground_truth - prediction) / np.abs(ground_truth)).mean(axis=1).astype(np.float32)
36
+
37
+
38
+ def mean_squared_logarithmic_error_dimension_reduced(ground_truth: np.array, prediction: np.array) -> np.array:
39
+ ground_truth, prediction = flatten_non_batch_dims(ground_truth, prediction)
40
+ return np.mean((np.log(1 + ground_truth) - np.log(1 + prediction)) ** 2, axis=1).astype(np.float32)
41
+
42
+
43
+ def flatten_non_batch_dims(ground_truth: np.array, prediction: np.array) -> Tuple[np.array, np.array]:
44
+ batch_size = ground_truth.shape[0]
45
+ ground_truth = np.reshape(ground_truth, (batch_size, -1))
46
+ prediction = np.reshape(prediction, (batch_size, -1))
47
+ return ground_truth, prediction
48
+
49
+
50
+ def confusion_matrix_classification_metric(ground_truth, prediction) -> List[List[ConfusionMatrixElement]]:
51
+ num_labels = prediction.shape[-1]
52
+ labels = [str(i) for i in range(num_labels)]
53
+ if len(labels) == 1:
54
+ labels = ['0', '1']
55
+ ground_truth = np.concatenate([1 - ground_truth, ground_truth], axis=1)
56
+ prediction = np.concatenate([1 - prediction, prediction], axis=1)
57
+
58
+ ret = []
59
+ for batch_i in range(ground_truth.shape[0]):
60
+ one_hot_vec = list(ground_truth[batch_i])
61
+ pred_vec = list(prediction[batch_i])
62
+ confusion_matrix_elements = []
63
+ for i, label in enumerate(labels):
64
+ expected_outcome = ConfusionMatrixValue.Positive if int(
65
+ one_hot_vec[i]) == 1 else ConfusionMatrixValue.Negative
66
+ cm_element = ConfusionMatrixElement(label, expected_outcome, float(pred_vec[i]))
67
+ confusion_matrix_elements.append(cm_element)
68
+ ret.append(confusion_matrix_elements)
69
+ return ret
70
+
71
+
72
+ metrics_names_to_functions_and_direction = {
73
+ Metric.MeanSquaredError.name: (mean_squared_error_dimension_reduced, MetricDirection.Downward),
74
+ Metric.MeanSquaredLogarithmicError.name: (
75
+ mean_squared_logarithmic_error_dimension_reduced, MetricDirection.Downward),
76
+ Metric.MeanAbsoluteError.name: (mean_absolute_error_dimension_reduced, MetricDirection.Downward),
77
+ Metric.MeanAbsolutePercentageError.name: (
78
+ mean_absolute_percentage_error_dimension_reduced, MetricDirection.Downward),
79
+ Metric.Accuracy.name: (accuracy_reduced, MetricDirection.Upward),
80
+ Metric.ConfusionMatrixClassification.name: (confusion_matrix_classification_metric, None),
81
+ }
@@ -14,6 +14,7 @@ from code_loader.contract.datasetclasses import SectionCallableInterface, InputH
14
14
  from code_loader.contract.enums import LeapDataType, DataStateEnum, DataStateType, MetricDirection
15
15
  from code_loader.contract.responsedataclasses import DatasetTestResultPayload
16
16
  from code_loader.contract.visualizer_classes import map_leap_data_type_to_visualizer_class
17
+ from code_loader.default_metrics import metrics_names_to_functions_and_direction
17
18
  from code_loader.utils import to_numpy_return_wrapper, get_shape
18
19
  from code_loader.visualizers.default_visualizers import DefaultVisualizer, \
19
20
  default_graph_visualizer, \
@@ -37,6 +38,7 @@ class LeapBinder:
37
38
  self._visualizer_names: List[str] = list()
38
39
  self._encoder_names: List[str] = list()
39
40
  self._extend_with_default_visualizers()
41
+ self._extend_with_default_metrics()
40
42
 
41
43
  self.batch_size_to_validate: Optional[int] = None
42
44
 
@@ -56,6 +58,10 @@ class LeapBinder:
56
58
  self.set_visualizer(function=default_text_mask_visualizer, name=DefaultVisualizer.TextMask.value,
57
59
  visualizer_type=LeapDataType.TextMask)
58
60
 
61
+ def _extend_with_default_metrics(self) -> None:
62
+ for metric_name, (func, direction) in metrics_names_to_functions_and_direction.items():
63
+ self.add_custom_metric(func, metric_name, direction)
64
+
59
65
  def set_visualizer(self, function: VisualizerCallableInterface,
60
66
  name: str,
61
67
  visualizer_type: LeapDataType,
code_loader/leaploader.py CHANGED
@@ -245,11 +245,12 @@ class LeapLoader(LeapLoaderBase):
245
245
  return self._visualizer_handler_by_name()[visualizer_name].function(**input_tensors_by_arg_name)
246
246
 
247
247
  def run_heatmap_visualizer(self, visualizer_name: str, input_tensors_by_arg_name: Dict[str, npt.NDArray[np.float32]]
248
- ) -> npt.NDArray[np.float32]:
248
+ ) -> Optional[npt.NDArray[np.float32]]:
249
249
  heatmap_function = self._visualizer_handler_by_name()[visualizer_name].heatmap_function
250
250
  if heatmap_function is None:
251
251
  assert len(input_tensors_by_arg_name) == 1
252
- return list(input_tensors_by_arg_name.values())[0]
252
+ return None
253
+
253
254
  return heatmap_function(**input_tensors_by_arg_name)
254
255
 
255
256
  def get_heatmap_visualizer_raw_vis_input_arg_name(self, visualizer_name: str) -> Optional[str]:
@@ -64,7 +64,7 @@ class LeapLoaderBase:
64
64
 
65
65
  @abstractmethod
66
66
  def run_heatmap_visualizer(self, visualizer_name: str, input_tensors_by_arg_name: Dict[str, npt.NDArray[np.float32]]
67
- ) -> npt.NDArray[np.float32]:
67
+ ) -> Optional[npt.NDArray[np.float32]]:
68
68
  pass
69
69
 
70
70
  @abstractmethod
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: code-loader
3
- Version: 1.0.64.dev1
3
+ Version: 1.0.64.dev3
4
4
  Summary:
5
5
  Home-page: https://github.com/tensorleap/code-loader
6
6
  License: MIT
@@ -7,6 +7,7 @@ code_loader/contract/enums.py,sha256=6Lo7p5CUog68Fd31bCozIuOgIp_IhSiPqWWph2k3OGU
7
7
  code_loader/contract/exceptions.py,sha256=jWqu5i7t-0IG0jGRsKF4DjJdrsdpJjIYpUkN1F4RiyQ,51
8
8
  code_loader/contract/responsedataclasses.py,sha256=RSx9m_R3LawhK5o1nAcO3hfp2F9oJYtxZr_bpP3bTmw,4005
9
9
  code_loader/contract/visualizer_classes.py,sha256=iIa_O2rKvPTwN5ILCTZvRpsGYiiFABKdwQwfIXGigDo,11928
10
+ code_loader/default_metrics.py,sha256=2kSaB71OrbQIXlcTMStYUebL8N-8bE9se3m-AXVdvCY,3936
10
11
  code_loader/experiment_api/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
12
  code_loader/experiment_api/api.py,sha256=a7wh6Hhe7IaVxu46eV2soSz-yxnmXG3ipU1BBtsEAaQ,2493
12
13
  code_loader/experiment_api/cli_config_utils.py,sha256=n6JMyNrquxql3KKxHhAP8jAzezlRT-PV2KWI95kKsm0,1140
@@ -18,14 +19,14 @@ code_loader/experiment_api/types.py,sha256=MY8xFARHwdVA7p4dxyhD60ShmttgTvb4qdp1o
18
19
  code_loader/experiment_api/utils.py,sha256=XZHtxge12TS4H4-8PjV3sKuhp8Ud6ojAiIzTZJEqBqc,3304
19
20
  code_loader/experiment_api/workingspace_config_utils.py,sha256=DLzXQCg4dgTV_YgaSbeTVzq-2ja_SQw4zi7LXwKL9cY,990
20
21
  code_loader/inner_leap_binder/__init__.py,sha256=koOlJyMNYzGbEsoIbXathSmQ-L38N_pEXH_HvL7beXU,99
21
- code_loader/inner_leap_binder/leapbinder.py,sha256=HDDs2ClP8xPbGaWUEYEHZgN7CTSliIpE5dly4Rawgrg,25352
22
+ code_loader/inner_leap_binder/leapbinder.py,sha256=y_k7bRFYYmrZo4jCJrZ6mJykxc1slKDkODYCZ58OPs0,25691
22
23
  code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=I6ipji6QMN9qqFYxqQyNjtDtsnwpB-NahgKKpLPctMo,21067
23
- code_loader/leaploader.py,sha256=vssXiifNEGkfapjDtVd0Lpg3WKQ6qxYyCdoeGWvxiNc,22240
24
- code_loader/leaploaderbase.py,sha256=I1xwgGnDlvfyoOhlpKXXEuCqJUs0jqPzk3DTQaE6riQ,3080
24
+ code_loader/leaploader.py,sha256=K__WKfqtKwEch40au177Po10EUX7gm0PJzcV6kpUMlo,22212
25
+ code_loader/leaploaderbase.py,sha256=aHlqWDZRacIdBefeB9goYVnpApaNN2FT24uPIWKkCeQ,3090
25
26
  code_loader/utils.py,sha256=aw2i_fqW_ADjLB66FWZd9DfpCQ7mPdMyauROC5Nd51I,2197
26
27
  code_loader/visualizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
28
  code_loader/visualizers/default_visualizers.py,sha256=VoqO9FN84yXyMjRjHjUTOt2GdTkJRMbHbXJ1cJkREkk,2230
28
- code_loader-1.0.64.dev1.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
29
- code_loader-1.0.64.dev1.dist-info/METADATA,sha256=61TPcF5ReNA-Em_kAzM0NkW_ye_3_hNffl3mpaOrqUg,854
30
- code_loader-1.0.64.dev1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
31
- code_loader-1.0.64.dev1.dist-info/RECORD,,
29
+ code_loader-1.0.64.dev3.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
30
+ code_loader-1.0.64.dev3.dist-info/METADATA,sha256=ICTjVXWwKwts78r-aY6VX0RzsYxfUpkOTaVeurAc8sk,854
31
+ code_loader-1.0.64.dev3.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
32
+ code_loader-1.0.64.dev3.dist-info/RECORD,,