code-loader 1.0.139.dev9__py3-none-any.whl → 1.0.141__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of code-loader might be problematic. Click here for more details.
- code_loader/contract/datasetclasses.py +1 -9
- code_loader/inner_leap_binder/leapbinder_decorators.py +141 -471
- code_loader/mixpanel_tracker.py +97 -9
- code_loader/plot_functions/plot_functions.py +1 -1
- {code_loader-1.0.139.dev9.dist-info → code_loader-1.0.141.dist-info}/METADATA +1 -1
- {code_loader-1.0.139.dev9.dist-info → code_loader-1.0.141.dist-info}/RECORD +8 -8
- {code_loader-1.0.139.dev9.dist-info → code_loader-1.0.141.dist-info}/WHEEL +1 -1
- {code_loader-1.0.139.dev9.dist-info → code_loader-1.0.141.dist-info}/LICENSE +0 -0
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
import warnings
|
|
2
1
|
from dataclasses import dataclass, field
|
|
3
2
|
from typing import Any, Callable, List, Optional, Dict, Union, Type
|
|
4
3
|
import re
|
|
@@ -57,14 +56,7 @@ class PreprocessResponse:
|
|
|
57
56
|
for sample_id in self.sample_ids:
|
|
58
57
|
assert isinstance(sample_id, str), f"Sample id should be of type str. Got: {type(sample_id)}"
|
|
59
58
|
else:
|
|
60
|
-
raise Exception("length is deprecated
|
|
61
|
-
|
|
62
|
-
if self.state is None:
|
|
63
|
-
warnings.warn(
|
|
64
|
-
"PreprocessResponse.state is not set. For best practice, assign a unique `state` value to each PreprocessResponse instance."
|
|
65
|
-
)
|
|
66
|
-
else:
|
|
67
|
-
assert isinstance(self.state, DataStateType), f"PreprocessResponse.state must be of type {DataStateType.__name__} but got {type(self.state)}"
|
|
59
|
+
raise Exception("length is deprecated.")
|
|
68
60
|
|
|
69
61
|
def __hash__(self) -> int:
|
|
70
62
|
return id(self)
|
|
@@ -1,14 +1,16 @@
|
|
|
1
1
|
# mypy: ignore-errors
|
|
2
2
|
import os
|
|
3
|
-
import
|
|
3
|
+
import logging
|
|
4
4
|
from collections import defaultdict
|
|
5
5
|
from functools import lru_cache
|
|
6
6
|
from pathlib import Path
|
|
7
|
-
from typing import Optional, Union, Callable, List, Dict,
|
|
7
|
+
from typing import Optional, Union, Callable, List, Dict, Set, Any
|
|
8
8
|
|
|
9
9
|
import numpy as np
|
|
10
10
|
import numpy.typing as npt
|
|
11
11
|
|
|
12
|
+
logger = logging.getLogger(__name__)
|
|
13
|
+
|
|
12
14
|
from code_loader.contract.datasetclasses import CustomCallableInterfaceMultiArgs, \
|
|
13
15
|
CustomMultipleReturnCallableInterfaceMultiArgs, ConfusionMatrixCallableInterfaceMultiArgs, CustomCallableInterface, \
|
|
14
16
|
VisualizerCallableInterface, MetadataSectionCallableInterface, PreprocessResponse, SectionCallableInterface, \
|
|
@@ -20,122 +22,15 @@ from code_loader.contract.mapping import NodeMapping, NodeMappingType, NodeConne
|
|
|
20
22
|
from code_loader.contract.visualizer_classes import LeapImage, LeapImageMask, LeapTextMask, LeapText, LeapGraph, \
|
|
21
23
|
LeapHorizontalBar, LeapImageWithBBox, LeapImageWithHeatmap
|
|
22
24
|
from code_loader.inner_leap_binder.leapbinder import mapping_runtime_mode_env_var_mame
|
|
25
|
+
from code_loader.mixpanel_tracker import clear_integration_events, AnalyticsEvent, emit_integration_event_once
|
|
23
26
|
|
|
24
27
|
import inspect
|
|
25
28
|
import functools
|
|
26
29
|
|
|
27
30
|
_called_from_inside_tl_decorator = 0
|
|
28
31
|
_called_from_inside_tl_integration_test_decorator = False
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
def validate_args_structure(*args, types_order, func_name, expected_names, **kwargs):
|
|
35
|
-
def _type_to_str(t):
|
|
36
|
-
origin = get_origin(t)
|
|
37
|
-
if origin is Union:
|
|
38
|
-
return " | ".join(tt.__name__ for tt in get_args(t))
|
|
39
|
-
elif hasattr(t, "__name__"):
|
|
40
|
-
return t.__name__
|
|
41
|
-
else:
|
|
42
|
-
return str(t)
|
|
43
|
-
|
|
44
|
-
def _format_types(types, names=None):
|
|
45
|
-
return ", ".join(
|
|
46
|
-
f"{(names[i] + ': ') if names else f'arg{i}: '}{_type_to_str(ty)}"
|
|
47
|
-
for i, ty in enumerate(types)
|
|
48
|
-
)
|
|
49
|
-
|
|
50
|
-
if expected_names:
|
|
51
|
-
normalized_args = []
|
|
52
|
-
for i, name in enumerate(expected_names):
|
|
53
|
-
if i < len(args):
|
|
54
|
-
normalized_args.append(args[i])
|
|
55
|
-
elif name in kwargs:
|
|
56
|
-
normalized_args.append(kwargs[name])
|
|
57
|
-
else:
|
|
58
|
-
raise AssertionError(
|
|
59
|
-
f"{func_name} validation failed: "
|
|
60
|
-
f"Missing required argument '{name}'. "
|
|
61
|
-
f"Expected arguments: {expected_names}."
|
|
62
|
-
)
|
|
63
|
-
else:
|
|
64
|
-
normalized_args = list(args)
|
|
65
|
-
if len(normalized_args) != len(types_order):
|
|
66
|
-
expected = _format_types(types_order, expected_names)
|
|
67
|
-
got_types = ", ".join(type(arg).__name__ for arg in normalized_args)
|
|
68
|
-
raise AssertionError(
|
|
69
|
-
f"{func_name} validation failed: "
|
|
70
|
-
f"Expected exactly {len(types_order)} arguments ({expected}), "
|
|
71
|
-
f"but got {len(normalized_args)} argument(s) of type(s): ({got_types}). "
|
|
72
|
-
f"Correct usage example: {func_name}({expected})"
|
|
73
|
-
)
|
|
74
|
-
|
|
75
|
-
for i, (arg, expected_type) in enumerate(zip(normalized_args, types_order)):
|
|
76
|
-
origin = get_origin(expected_type)
|
|
77
|
-
if origin is Union:
|
|
78
|
-
allowed_types = get_args(expected_type)
|
|
79
|
-
else:
|
|
80
|
-
allowed_types = (expected_type,)
|
|
81
|
-
|
|
82
|
-
if not isinstance(arg, allowed_types):
|
|
83
|
-
allowed_str = " | ".join(t.__name__ for t in allowed_types)
|
|
84
|
-
raise AssertionError(
|
|
85
|
-
f"{func_name} validation failed: "
|
|
86
|
-
f"Argument '{expected_names[i] if expected_names else f'arg{i}'}' "
|
|
87
|
-
f"expected type {allowed_str}, but got {type(arg).__name__}. "
|
|
88
|
-
f"Correct usage example: {func_name}({_format_types(types_order, expected_names)})"
|
|
89
|
-
)
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
def validate_output_structure(result, func_name: str, expected_type_name="np.ndarray",gt_flag=False):
|
|
93
|
-
if result is None or (isinstance(result, float) and np.isnan(result)):
|
|
94
|
-
if gt_flag:
|
|
95
|
-
raise AssertionError(
|
|
96
|
-
f"{func_name} validation failed: "
|
|
97
|
-
f"The function returned {result!r}. "
|
|
98
|
-
f"If you are working with an unlabeled dataset and no ground truth is available, "
|
|
99
|
-
f"use 'return np.array([], dtype=np.float32)' instead. "
|
|
100
|
-
f"Otherwise, {func_name} expected a single {expected_type_name} object. "
|
|
101
|
-
f"Make sure the function ends with 'return <{expected_type_name}>'."
|
|
102
|
-
)
|
|
103
|
-
|
|
104
|
-
raise AssertionError(
|
|
105
|
-
f"{func_name} validation failed: "
|
|
106
|
-
f"The function returned None. "
|
|
107
|
-
f"Expected a single {expected_type_name} object. "
|
|
108
|
-
f"Make sure the function ends with 'return <{expected_type_name}>'."
|
|
109
|
-
)
|
|
110
|
-
if isinstance(result, tuple):
|
|
111
|
-
element_descriptions = [
|
|
112
|
-
f"[{i}] type: {type(r).__name__}"
|
|
113
|
-
for i, r in enumerate(result)
|
|
114
|
-
]
|
|
115
|
-
element_summary = "\n ".join(element_descriptions)
|
|
116
|
-
|
|
117
|
-
raise AssertionError(
|
|
118
|
-
f"{func_name} validation failed: "
|
|
119
|
-
f"The function returned multiple outputs ({len(result)} values), "
|
|
120
|
-
f"but only a single {expected_type_name} is allowed.\n\n"
|
|
121
|
-
f"Returned elements:\n"
|
|
122
|
-
f" {element_summary}\n\n"
|
|
123
|
-
f"Correct usage example:\n"
|
|
124
|
-
f" def {func_name}(...):\n"
|
|
125
|
-
f" return <{expected_type_name}>\n\n"
|
|
126
|
-
f"If you intended to return multiple values, combine them into a single "
|
|
127
|
-
f"{expected_type_name} (e.g., by concatenation or stacking)."
|
|
128
|
-
)
|
|
129
|
-
|
|
130
|
-
def batch_warning(result, func_name):
|
|
131
|
-
if result.shape[0] == 1:
|
|
132
|
-
warnings.warn(
|
|
133
|
-
f"{func_name} warning: Tensorleap will add a batch dimension at axis 0 to the output of {func_name}, "
|
|
134
|
-
f"although the detected size of axis 0 is already 1. "
|
|
135
|
-
f"This may lead to an extra batch dimension (e.g., shape (1, 1, ...)). "
|
|
136
|
-
f"Please ensure that the output of '{func_name}' is not already batched "
|
|
137
|
-
f"to avoid computation errors."
|
|
138
|
-
)
|
|
32
|
+
|
|
33
|
+
|
|
139
34
|
def _add_mapping_connection(user_unique_name, connection_destinations, arg_names, name, node_mapping_type):
|
|
140
35
|
connection_destinations = [connection_destination for connection_destination in connection_destinations
|
|
141
36
|
if not isinstance(connection_destination, SamplePreprocessResponse)]
|
|
@@ -158,24 +53,15 @@ def tensorleap_integration_test():
|
|
|
158
53
|
def decorating_function(integration_test_function: Callable):
|
|
159
54
|
leap_binder.integration_test_func = integration_test_function
|
|
160
55
|
|
|
161
|
-
def _validate_input_args(*args, **kwargs):
|
|
162
|
-
sample_id,preprocess_response=args
|
|
163
|
-
assert type(sample_id) == preprocess_response.sample_id_type, (
|
|
164
|
-
f"tensorleap_integration_test validation failed: "
|
|
165
|
-
f"sample_id type ({type(sample_id).__name__}) does not match the expected "
|
|
166
|
-
f"type ({preprocess_response.sample_id_type}) from the PreprocessResponse."
|
|
167
|
-
)
|
|
168
|
-
|
|
169
56
|
def inner(*args, **kwargs):
|
|
170
|
-
validate_args_structure(*args, types_order=[Union[int, str], PreprocessResponse],
|
|
171
|
-
func_name='integration_test',expected_names=["idx", "preprocess"],**kwargs)
|
|
172
|
-
_validate_input_args(*args, **kwargs)
|
|
173
|
-
|
|
174
57
|
global _called_from_inside_tl_integration_test_decorator
|
|
58
|
+
# Clear integration test events for new test
|
|
59
|
+
try:
|
|
60
|
+
clear_integration_events()
|
|
61
|
+
except Exception as e:
|
|
62
|
+
logger.debug(f"Failed to clear integration events: {e}")
|
|
175
63
|
try:
|
|
176
64
|
_called_from_inside_tl_integration_test_decorator = True
|
|
177
|
-
if not _update_env_status is None:
|
|
178
|
-
_update_env_status("tensorleap_integration_test", "v")#put here because otherwise it will become v only if it finishes all the script
|
|
179
65
|
ret = integration_test_function(*args, **kwargs)
|
|
180
66
|
|
|
181
67
|
try:
|
|
@@ -188,7 +74,7 @@ def tensorleap_integration_test():
|
|
|
188
74
|
line_number = first_tb.lineno
|
|
189
75
|
if isinstance(e, TypeError) and 'is not subscriptable' in str(e):
|
|
190
76
|
print(f'Invalid integration code. File {file_name}, line {line_number}: '
|
|
191
|
-
f
|
|
77
|
+
f'Please remove this indexing operation usage from the integration test code.')
|
|
192
78
|
else:
|
|
193
79
|
print(f'Invalid integration code. File {file_name}, line {line_number}: '
|
|
194
80
|
f'Integration test is only allowed to call Tensorleap decorators. '
|
|
@@ -200,8 +86,8 @@ def tensorleap_integration_test():
|
|
|
200
86
|
_called_from_inside_tl_integration_test_decorator = False
|
|
201
87
|
|
|
202
88
|
leap_binder.check()
|
|
203
|
-
return inner
|
|
204
89
|
|
|
90
|
+
return inner
|
|
205
91
|
|
|
206
92
|
return decorating_function
|
|
207
93
|
|
|
@@ -211,63 +97,34 @@ def _safe_get_item(key):
|
|
|
211
97
|
except ValueError:
|
|
212
98
|
raise Exception(f'Tensorleap currently supports models with no more then 10 inputs')
|
|
213
99
|
|
|
100
|
+
|
|
214
101
|
def tensorleap_load_model(prediction_types: Optional[List[PredictionTypeHandler]] = []):
|
|
215
|
-
assert isinstance(prediction_types, list),(
|
|
216
|
-
f"tensorleap_load_model validation failed: "
|
|
217
|
-
f" prediction_types is an optional argument of type List[PredictionTypeHandler]] but got {type(prediction_types).__name__}."
|
|
218
|
-
)
|
|
219
102
|
for i, prediction_type in enumerate(prediction_types):
|
|
220
|
-
assert isinstance(prediction_type, PredictionTypeHandler),(f"tensorleap_load_model validation failed: "
|
|
221
|
-
f" prediction_types at position {i} must be of type PredictionTypeHandler but got {type(prediction_types[i]).__name__}.")
|
|
222
103
|
leap_binder.add_prediction(prediction_type.name, prediction_type.labels, prediction_type.channel_dim, i)
|
|
223
104
|
|
|
224
|
-
def _validate_result(result) -> None:
|
|
225
|
-
valid_types=["onnxruntime","keras"]
|
|
226
|
-
err_message=f"tensorleap_load_model validation failed:\nSupported models are Keras and onnxruntime only and non of them was returned."
|
|
227
|
-
validate_output_structure(result, func_name="tensorleap_load_model", expected_type_name= [" | ".join(t for t in valid_types)][0])
|
|
228
|
-
try:
|
|
229
|
-
import keras
|
|
230
|
-
except ImportError:
|
|
231
|
-
keras = None
|
|
232
|
-
try:
|
|
233
|
-
import tensorflow as tf
|
|
234
|
-
except ImportError:
|
|
235
|
-
tf = None
|
|
236
|
-
try:
|
|
237
|
-
import onnxruntime
|
|
238
|
-
except ImportError:
|
|
239
|
-
onnxruntime = None
|
|
240
|
-
|
|
241
|
-
if not keras and not onnxruntime:
|
|
242
|
-
raise AssertionError(err_message)
|
|
243
|
-
|
|
244
|
-
is_keras_model = (
|
|
245
|
-
bool(keras and isinstance(result, getattr(keras, "Model", tuple())))
|
|
246
|
-
or bool(tf and isinstance(result, getattr(tf.keras, "Model", tuple())))
|
|
247
|
-
)
|
|
248
|
-
is_onnx_model = bool(onnxruntime and isinstance(result, onnxruntime.InferenceSession))
|
|
249
|
-
|
|
250
|
-
if not any([is_keras_model, is_onnx_model]):
|
|
251
|
-
raise AssertionError( err_message)
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
105
|
def decorating_function(load_model_func):
|
|
256
106
|
class TempMapping:
|
|
257
107
|
pass
|
|
258
108
|
|
|
259
109
|
@lru_cache()
|
|
260
|
-
def inner(
|
|
261
|
-
validate_args_structure(*args, types_order=[],
|
|
262
|
-
func_name='tensorleap_load_model',expected_names=[],**kwargs)
|
|
110
|
+
def inner():
|
|
263
111
|
class ModelPlaceholder:
|
|
264
112
|
def __init__(self):
|
|
265
|
-
self.model = load_model_func()
|
|
266
|
-
|
|
113
|
+
self.model = load_model_func()
|
|
114
|
+
# Emit integration test event once per test
|
|
115
|
+
try:
|
|
116
|
+
emit_integration_event_once(AnalyticsEvent.LOAD_MODEL_INTEGRATION_TEST, {
|
|
117
|
+
'prediction_types_count': len(prediction_types)
|
|
118
|
+
})
|
|
119
|
+
except Exception as e:
|
|
120
|
+
logger.debug(f"Failed to emit load_model integration test event: {e}")
|
|
267
121
|
|
|
268
122
|
# keras interface
|
|
269
123
|
def __call__(self, arg):
|
|
270
124
|
ret = self.model(arg)
|
|
125
|
+
if isinstance(ret, list or tuple):
|
|
126
|
+
return [r.numpy() for r in ret]
|
|
127
|
+
|
|
271
128
|
return ret.numpy()
|
|
272
129
|
|
|
273
130
|
def _convert_onnx_inputs_to_correct_type(
|
|
@@ -327,10 +184,8 @@ def tensorleap_load_model(prediction_types: Optional[List[PredictionTypeHandler]
|
|
|
327
184
|
|
|
328
185
|
def get_inputs(self):
|
|
329
186
|
return self.model.get_inputs()
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
_update_env_status("tensorleap_load_model", "v")
|
|
333
|
-
return model_placeholder
|
|
187
|
+
|
|
188
|
+
return ModelPlaceholder()
|
|
334
189
|
|
|
335
190
|
def mapping_inner():
|
|
336
191
|
class ModelOutputPlaceholder:
|
|
@@ -393,11 +248,12 @@ def tensorleap_load_model(prediction_types: Optional[List[PredictionTypeHandler]
|
|
|
393
248
|
|
|
394
249
|
return ModelPlaceholder()
|
|
395
250
|
|
|
396
|
-
def final_inner(
|
|
251
|
+
def final_inner():
|
|
397
252
|
if os.environ.get(mapping_runtime_mode_env_var_mame):
|
|
398
253
|
return mapping_inner()
|
|
399
254
|
else:
|
|
400
|
-
return inner(
|
|
255
|
+
return inner()
|
|
256
|
+
|
|
401
257
|
return final_inner
|
|
402
258
|
|
|
403
259
|
return decorating_function
|
|
@@ -408,168 +264,81 @@ def tensorleap_custom_metric(name: str,
|
|
|
408
264
|
compute_insights: Optional[Union[bool, Dict[str, bool]]] = None,
|
|
409
265
|
connects_to=None):
|
|
410
266
|
name_to_unique_name = defaultdict(set)
|
|
267
|
+
|
|
411
268
|
def decorating_function(
|
|
412
269
|
user_function: Union[CustomCallableInterfaceMultiArgs, CustomMultipleReturnCallableInterfaceMultiArgs,
|
|
413
270
|
ConfusionMatrixCallableInterfaceMultiArgs]):
|
|
414
|
-
|
|
415
|
-
def _validate_decorators_signature():
|
|
416
|
-
err_message = f"{user_function.__name__} validation failed.\n"
|
|
417
|
-
if not isinstance(name, str):
|
|
418
|
-
raise TypeError(err_message + f"`name` must be a string, got type {type(name).__name__}.")
|
|
419
|
-
valid_directions = {MetricDirection.Upward, MetricDirection.Downward}
|
|
420
|
-
if isinstance(direction, MetricDirection):
|
|
421
|
-
if direction not in valid_directions:
|
|
422
|
-
raise ValueError(
|
|
423
|
-
err_message +
|
|
424
|
-
f"Invalid MetricDirection: {direction}. Must be one of {valid_directions}, "
|
|
425
|
-
f"got type {type(direction).__name__}."
|
|
426
|
-
)
|
|
427
|
-
elif isinstance(direction, dict):
|
|
428
|
-
if not all(isinstance(k, str) for k in direction.keys()):
|
|
429
|
-
invalid_keys = {k: type(k).__name__ for k in direction.keys() if not isinstance(k, str)}
|
|
430
|
-
raise TypeError(
|
|
431
|
-
err_message +
|
|
432
|
-
f"All keys in `direction` must be strings, got invalid key types: {invalid_keys}."
|
|
433
|
-
)
|
|
434
|
-
for k, v in direction.items():
|
|
435
|
-
if v not in valid_directions:
|
|
436
|
-
raise ValueError(
|
|
437
|
-
err_message +
|
|
438
|
-
f"Invalid direction for key '{k}': {v}. Must be one of {valid_directions}, "
|
|
439
|
-
f"got type {type(v).__name__}."
|
|
440
|
-
)
|
|
441
|
-
else:
|
|
442
|
-
raise TypeError(
|
|
443
|
-
err_message +
|
|
444
|
-
f"`direction` must be a MetricDirection or a Dict[str, MetricDirection], "
|
|
445
|
-
f"got type {type(direction).__name__}."
|
|
446
|
-
)
|
|
447
|
-
if compute_insights is not None:
|
|
448
|
-
if not isinstance(compute_insights, (bool, dict)):
|
|
449
|
-
raise TypeError(
|
|
450
|
-
err_message +
|
|
451
|
-
f"`compute_insights` must be a bool or a Dict[str, bool], "
|
|
452
|
-
f"got type {type(compute_insights).__name__}."
|
|
453
|
-
)
|
|
454
|
-
if isinstance(compute_insights, dict):
|
|
455
|
-
if not all(isinstance(k, str) for k in compute_insights.keys()):
|
|
456
|
-
invalid_keys = {k: type(k).__name__ for k in compute_insights.keys() if not isinstance(k, str)}
|
|
457
|
-
raise TypeError(
|
|
458
|
-
err_message +
|
|
459
|
-
f"All keys in `compute_insights` must be strings, got invalid key types: {invalid_keys}."
|
|
460
|
-
)
|
|
461
|
-
for k, v in compute_insights.items():
|
|
462
|
-
if not isinstance(v, bool):
|
|
463
|
-
raise TypeError(
|
|
464
|
-
err_message +
|
|
465
|
-
f"Invalid type for compute_insights['{k}']: expected bool, got type {type(v).__name__}."
|
|
466
|
-
)
|
|
467
|
-
if connects_to is not None:
|
|
468
|
-
valid_types = (str, list, tuple, set)
|
|
469
|
-
if not isinstance(connects_to, valid_types):
|
|
470
|
-
raise TypeError(
|
|
471
|
-
err_message +
|
|
472
|
-
f"`connects_to` must be one of {valid_types}, got type {type(connects_to).__name__}."
|
|
473
|
-
)
|
|
474
|
-
if isinstance(connects_to, (list, tuple, set)):
|
|
475
|
-
invalid_elems = [f"{type(e).__name__}" for e in connects_to if not isinstance(e, str)]
|
|
476
|
-
if invalid_elems:
|
|
477
|
-
raise TypeError(
|
|
478
|
-
err_message +
|
|
479
|
-
f"All elements in `connects_to` must be strings, "
|
|
480
|
-
f"but found element types: {invalid_elems}."
|
|
481
|
-
)
|
|
482
|
-
|
|
483
|
-
|
|
484
|
-
_validate_decorators_signature()
|
|
485
|
-
|
|
486
271
|
for metric_handler in leap_binder.setup_container.metrics:
|
|
487
272
|
if metric_handler.metric_handler_data.name == name:
|
|
488
273
|
raise Exception(f'Metric with name {name} already exists. '
|
|
489
274
|
f'Please choose another')
|
|
490
275
|
|
|
491
276
|
def _validate_input_args(*args, **kwargs) -> None:
|
|
492
|
-
assert len(args) > 0, (
|
|
493
|
-
f"{user_function.__name__}() validation failed: "
|
|
494
|
-
f"Expected at least one positional|key-word argument of type np.ndarray, "
|
|
495
|
-
f"but received none. "
|
|
496
|
-
f"Correct usage example: tensorleap_custom_metric(input_array: np.ndarray, ...)"
|
|
497
|
-
)
|
|
498
277
|
for i, arg in enumerate(args):
|
|
499
278
|
assert isinstance(arg, (np.ndarray, SamplePreprocessResponse)), (
|
|
500
|
-
f'
|
|
279
|
+
f'tensorleap_custom_metric validation failed: '
|
|
501
280
|
f'Argument #{i} should be a numpy array. Got {type(arg)}.')
|
|
502
281
|
if leap_binder.batch_size_to_validate and isinstance(arg, np.ndarray):
|
|
503
282
|
assert arg.shape[0] == leap_binder.batch_size_to_validate, \
|
|
504
|
-
(f'
|
|
283
|
+
(f'tensorleap_custom_metric validation failed: Argument #{i} '
|
|
505
284
|
f'first dim should be as the batch size. Got {arg.shape[0]} '
|
|
506
285
|
f'instead of {leap_binder.batch_size_to_validate}')
|
|
507
286
|
|
|
508
287
|
for _arg_name, arg in kwargs.items():
|
|
509
288
|
assert isinstance(arg, (np.ndarray, SamplePreprocessResponse)), (
|
|
510
|
-
f'
|
|
289
|
+
f'tensorleap_custom_metric validation failed: '
|
|
511
290
|
f'Argument {_arg_name} should be a numpy array. Got {type(arg)}.')
|
|
512
291
|
if leap_binder.batch_size_to_validate and isinstance(arg, np.ndarray):
|
|
513
292
|
assert arg.shape[0] == leap_binder.batch_size_to_validate, \
|
|
514
|
-
(f'
|
|
293
|
+
(f'tensorleap_custom_metric validation failed: Argument {_arg_name} '
|
|
515
294
|
f'first dim should be as the batch size. Got {arg.shape[0]} '
|
|
516
295
|
f'instead of {leap_binder.batch_size_to_validate}')
|
|
517
296
|
|
|
518
297
|
def _validate_result(result) -> None:
|
|
519
|
-
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
f'{user_function.__name__}() has returned unsupported type.\nSupported types are List[float|int|None], '
|
|
523
|
-
f'List[List[ConfusionMatrixElement]], NDArray[np.float32] or dictonary with one of these types as its values types. ')
|
|
298
|
+
supported_types_message = (f'tensorleap_custom_metric validation failed: '
|
|
299
|
+
f'Metric has returned unsupported type. Supported types are List[float], '
|
|
300
|
+
f'List[List[ConfusionMatrixElement]], NDArray[np.float32]. ')
|
|
524
301
|
|
|
525
|
-
def _validate_single_metric(single_metric_result
|
|
302
|
+
def _validate_single_metric(single_metric_result):
|
|
526
303
|
if isinstance(single_metric_result, list):
|
|
527
304
|
if isinstance(single_metric_result[0], list):
|
|
528
|
-
assert
|
|
529
|
-
f
|
|
530
|
-
f"Got {'a dict where the value of ' + str(key) + ' is of type ' if key is not None else ''}"
|
|
531
|
-
f"List[List[{', '.join(type(cm).__name__ for cm in single_metric_result[0])}]]."
|
|
532
|
-
)
|
|
533
|
-
|
|
305
|
+
assert isinstance(single_metric_result[0][0], ConfusionMatrixElement), \
|
|
306
|
+
f'{supported_types_message}Got List[List[{type(single_metric_result[0][0])}]].'
|
|
534
307
|
else:
|
|
535
|
-
assert
|
|
536
|
-
|
|
537
|
-
f
|
|
538
|
-
f"List[{', '.join(type(v).__name__ for v in single_metric_result)}]."
|
|
539
|
-
)
|
|
308
|
+
assert isinstance(single_metric_result[0], (
|
|
309
|
+
float, int,
|
|
310
|
+
type(None))), f'{supported_types_message}Got List[{type(single_metric_result[0])}].'
|
|
540
311
|
else:
|
|
541
312
|
assert isinstance(single_metric_result,
|
|
542
|
-
np.ndarray), f'{supported_types_message}
|
|
543
|
-
assert len(single_metric_result.shape) == 1, (f'
|
|
313
|
+
np.ndarray), f'{supported_types_message}Got {type(single_metric_result)}.'
|
|
314
|
+
assert len(single_metric_result.shape) == 1, (f'tensorleap_custom_metric validation failed: '
|
|
544
315
|
f'The return shape should be 1D. Got {len(single_metric_result.shape)}D.')
|
|
545
316
|
|
|
546
317
|
if leap_binder.batch_size_to_validate:
|
|
547
318
|
assert len(single_metric_result) == leap_binder.batch_size_to_validate, \
|
|
548
|
-
f'
|
|
319
|
+
f'tensorleap_custom_metrix validation failed: The return len should be as the batch size.'
|
|
549
320
|
|
|
550
321
|
if isinstance(result, dict):
|
|
551
322
|
for key, value in result.items():
|
|
552
|
-
_validate_single_metric(value,key)
|
|
553
|
-
|
|
554
323
|
assert isinstance(key, str), \
|
|
555
|
-
(f'
|
|
324
|
+
(f'tensorleap_custom_metric validation failed: '
|
|
556
325
|
f'Keys in the return dict should be of type str. Got {type(key)}.')
|
|
557
326
|
_validate_single_metric(value)
|
|
558
327
|
|
|
559
328
|
if isinstance(direction, dict):
|
|
560
329
|
for direction_key in direction:
|
|
561
330
|
assert direction_key in result, \
|
|
562
|
-
(f'
|
|
331
|
+
(f'tensorleap_custom_metric validation failed: '
|
|
563
332
|
f'Keys in the direction mapping should be part of result keys. Got key {direction_key}.')
|
|
564
333
|
|
|
565
334
|
if compute_insights is not None:
|
|
566
335
|
assert isinstance(compute_insights, dict), \
|
|
567
|
-
(f'
|
|
336
|
+
(f'tensorleap_custom_metric validation failed: '
|
|
568
337
|
f'compute_insights should be dict if using the dict results. Got {type(compute_insights)}.')
|
|
569
338
|
|
|
570
339
|
for ci_key in compute_insights:
|
|
571
340
|
assert ci_key in result, \
|
|
572
|
-
(f'
|
|
341
|
+
(f'tensorleap_custom_metric validation failed: '
|
|
573
342
|
f'Keys in the compute_insights mapping should be part of result keys. Got key {ci_key}.')
|
|
574
343
|
|
|
575
344
|
else:
|
|
@@ -577,7 +346,7 @@ def tensorleap_custom_metric(name: str,
|
|
|
577
346
|
|
|
578
347
|
if compute_insights is not None:
|
|
579
348
|
assert isinstance(compute_insights, bool), \
|
|
580
|
-
(f'
|
|
349
|
+
(f'tensorleap_custom_metric validation failed: '
|
|
581
350
|
f'compute_insights should be boolean. Got {type(compute_insights)}.')
|
|
582
351
|
|
|
583
352
|
@functools.wraps(user_function)
|
|
@@ -609,8 +378,6 @@ def tensorleap_custom_metric(name: str,
|
|
|
609
378
|
result = inner_without_validate(*args, **kwargs)
|
|
610
379
|
|
|
611
380
|
_validate_result(result)
|
|
612
|
-
if not _update_env_status is None:
|
|
613
|
-
_update_env_status("tensorleap_custom_metric","v")
|
|
614
381
|
return result
|
|
615
382
|
|
|
616
383
|
def mapping_inner(*args, **kwargs):
|
|
@@ -650,38 +417,28 @@ def tensorleap_custom_visualizer(name: str, visualizer_type: LeapDataType,
|
|
|
650
417
|
name_to_unique_name = defaultdict(set)
|
|
651
418
|
|
|
652
419
|
def decorating_function(user_function: VisualizerCallableInterface):
|
|
653
|
-
assert isinstance(visualizer_type,LeapDataType),(f"{user_function.__name__} validation failed: "
|
|
654
|
-
f"visualizer_type should be of type {LeapDataType.__name__} but got {type(visualizer_type)}"
|
|
655
|
-
)
|
|
656
|
-
|
|
657
420
|
for viz_handler in leap_binder.setup_container.visualizers:
|
|
658
421
|
if viz_handler.visualizer_handler_data.name == name:
|
|
659
422
|
raise Exception(f'Visualizer with name {name} already exists. '
|
|
660
423
|
f'Please choose another')
|
|
661
424
|
|
|
662
425
|
def _validate_input_args(*args, **kwargs):
|
|
663
|
-
assert len(args) > 0, (
|
|
664
|
-
f"{user_function.__name__}() validation failed: "
|
|
665
|
-
f"Expected at least one positional|key-word argument of type np.ndarray, "
|
|
666
|
-
f"but received none. "
|
|
667
|
-
f"Correct usage example: {user_function.__name__}(input_array: np.ndarray, ...)"
|
|
668
|
-
)
|
|
669
426
|
for i, arg in enumerate(args):
|
|
670
427
|
assert isinstance(arg, (np.ndarray, SamplePreprocessResponse)), (
|
|
671
|
-
f'
|
|
428
|
+
f'tensorleap_custom_visualizer validation failed: '
|
|
672
429
|
f'Argument #{i} should be a numpy array. Got {type(arg)}.')
|
|
673
430
|
if leap_binder.batch_size_to_validate and isinstance(arg, np.ndarray):
|
|
674
431
|
assert arg.shape[0] != leap_binder.batch_size_to_validate, \
|
|
675
|
-
(f'
|
|
432
|
+
(f'tensorleap_custom_visualizer validation failed: '
|
|
676
433
|
f'Argument #{i} should be without batch dimension. ')
|
|
677
434
|
|
|
678
435
|
for _arg_name, arg in kwargs.items():
|
|
679
436
|
assert isinstance(arg, (np.ndarray, SamplePreprocessResponse)), (
|
|
680
|
-
f'
|
|
437
|
+
f'tensorleap_custom_visualizer validation failed: '
|
|
681
438
|
f'Argument {_arg_name} should be a numpy array. Got {type(arg)}.')
|
|
682
439
|
if leap_binder.batch_size_to_validate and isinstance(arg, np.ndarray):
|
|
683
440
|
assert arg.shape[0] != leap_binder.batch_size_to_validate, \
|
|
684
|
-
(f'
|
|
441
|
+
(f'tensorleap_custom_visualizer validation failed: Argument {_arg_name} '
|
|
685
442
|
f'should be without batch dimension. ')
|
|
686
443
|
|
|
687
444
|
def _validate_result(result):
|
|
@@ -695,11 +452,8 @@ def tensorleap_custom_visualizer(name: str, visualizer_type: LeapDataType,
|
|
|
695
452
|
LeapDataType.ImageWithBBox: LeapImageWithBBox,
|
|
696
453
|
LeapDataType.ImageWithHeatmap: LeapImageWithHeatmap
|
|
697
454
|
}
|
|
698
|
-
validate_output_structure(result, func_name=user_function.__name__,
|
|
699
|
-
expected_type_name=result_type_map[visualizer_type])
|
|
700
|
-
|
|
701
455
|
assert isinstance(result, result_type_map[visualizer_type]), \
|
|
702
|
-
(f'
|
|
456
|
+
(f'tensorleap_custom_visualizer validation failed: '
|
|
703
457
|
f'The return type should be {result_type_map[visualizer_type]}. Got {type(result)}.')
|
|
704
458
|
|
|
705
459
|
@functools.wraps(user_function)
|
|
@@ -731,8 +485,6 @@ def tensorleap_custom_visualizer(name: str, visualizer_type: LeapDataType,
|
|
|
731
485
|
result = inner_without_validate(*args, **kwargs)
|
|
732
486
|
|
|
733
487
|
_validate_result(result)
|
|
734
|
-
if not _update_env_status is None:
|
|
735
|
-
_update_env_status("tensorleap_custom_visualizer","v")
|
|
736
488
|
return result
|
|
737
489
|
|
|
738
490
|
def mapping_inner(*args, **kwargs):
|
|
@@ -774,26 +526,30 @@ def tensorleap_metadata(
|
|
|
774
526
|
f'Please choose another')
|
|
775
527
|
|
|
776
528
|
def _validate_input_args(sample_id: Union[int, str], preprocess_response: PreprocessResponse):
|
|
529
|
+
assert isinstance(sample_id, (int, str)), \
|
|
530
|
+
(f'tensorleap_metadata validation failed: '
|
|
531
|
+
f'Argument sample_id should be either int or str. Got {type(sample_id)}.')
|
|
532
|
+
assert isinstance(preprocess_response, PreprocessResponse), \
|
|
533
|
+
(f'tensorleap_metadata validation failed: '
|
|
534
|
+
f'Argument preprocess_response should be a PreprocessResponse. Got {type(preprocess_response)}.')
|
|
777
535
|
assert type(sample_id) == preprocess_response.sample_id_type, \
|
|
778
|
-
(f'
|
|
536
|
+
(f'tensorleap_metadata validation failed: '
|
|
779
537
|
f'Argument sample_id should be as the same type as defined in the preprocess response '
|
|
780
538
|
f'{preprocess_response.sample_id_type}. Got {type(sample_id)}.')
|
|
781
539
|
|
|
782
540
|
def _validate_result(result):
|
|
783
541
|
supported_result_types = (type(None), int, str, bool, float, dict, np.floating,
|
|
784
542
|
np.bool_, np.unsignedinteger, np.signedinteger, np.integer)
|
|
785
|
-
validate_output_structure(result, func_name=user_function.__name__,
|
|
786
|
-
expected_type_name=supported_result_types)
|
|
787
543
|
assert isinstance(result, supported_result_types), \
|
|
788
|
-
(f'
|
|
544
|
+
(f'tensorleap_metadata validation failed: '
|
|
789
545
|
f'Unsupported return type. Got {type(result)}. should be any of {str(supported_result_types)}')
|
|
790
546
|
if isinstance(result, dict):
|
|
791
547
|
for key, value in result.items():
|
|
792
548
|
assert isinstance(key, str), \
|
|
793
|
-
(f'
|
|
549
|
+
(f'tensorleap_metadata validation failed: '
|
|
794
550
|
f'Keys in the return dict should be of type str. Got {type(key)}.')
|
|
795
551
|
assert isinstance(value, supported_result_types), \
|
|
796
|
-
(f'
|
|
552
|
+
(f'tensorleap_metadata validation failed: '
|
|
797
553
|
f'Values in the return dict should be of type {str(supported_result_types)}. Got {type(value)}.')
|
|
798
554
|
|
|
799
555
|
def inner_without_validate(sample_id, preprocess_response):
|
|
@@ -810,19 +566,15 @@ def tensorleap_metadata(
|
|
|
810
566
|
|
|
811
567
|
leap_binder.set_metadata(inner_without_validate, name, metadata_type)
|
|
812
568
|
|
|
813
|
-
def inner(
|
|
569
|
+
def inner(sample_id, preprocess_response):
|
|
814
570
|
if os.environ.get(mapping_runtime_mode_env_var_mame):
|
|
815
571
|
return None
|
|
816
|
-
|
|
817
|
-
func_name=user_function.__name__, expected_names=["idx", "preprocess"],**kwargs)
|
|
818
|
-
sample_id, preprocess_response = args if len(args)!=0 else kwargs.values()
|
|
572
|
+
|
|
819
573
|
_validate_input_args(sample_id, preprocess_response)
|
|
820
574
|
|
|
821
575
|
result = inner_without_validate(sample_id, preprocess_response)
|
|
822
576
|
|
|
823
577
|
_validate_result(result)
|
|
824
|
-
if not _update_env_status is None:
|
|
825
|
-
_update_env_status("tensorleap_metadata","v")
|
|
826
578
|
return result
|
|
827
579
|
|
|
828
580
|
return inner
|
|
@@ -885,23 +637,19 @@ def tensorleap_preprocess():
|
|
|
885
637
|
|
|
886
638
|
def _validate_input_args(*args, **kwargs):
|
|
887
639
|
assert len(args) == 0 and len(kwargs) == 0, \
|
|
888
|
-
(f'
|
|
640
|
+
(f'tensorleap_preprocess validation failed: '
|
|
889
641
|
f'The function should not take any arguments. Got {args} and {kwargs}.')
|
|
890
642
|
|
|
891
643
|
def _validate_result(result):
|
|
892
|
-
assert isinstance(result, list),
|
|
893
|
-
f
|
|
894
|
-
|
|
895
|
-
if not isinstance(result, tuple)
|
|
896
|
-
else f"{user_function.__name__}() validation failed: expected to return a single list[{PreprocessResponse.__name__}] object, "
|
|
897
|
-
f"but returned {len(result)} objects instead."
|
|
898
|
-
)
|
|
644
|
+
assert isinstance(result, list), \
|
|
645
|
+
(f'tensorleap_preprocess validation failed: '
|
|
646
|
+
f'The return type should be a list. Got {type(result)}.')
|
|
899
647
|
for i, response in enumerate(result):
|
|
900
648
|
assert isinstance(response, PreprocessResponse), \
|
|
901
|
-
(f'
|
|
649
|
+
(f'tensorleap_preprocess validation failed: '
|
|
902
650
|
f'Element #{i} in the return list should be a PreprocessResponse. Got {type(response)}.')
|
|
903
651
|
assert len(set(result)) == len(result), \
|
|
904
|
-
(f'
|
|
652
|
+
(f'tensorleap_preprocess validation failed: '
|
|
905
653
|
f'The return list should not contain duplicate PreprocessResponse objects.')
|
|
906
654
|
|
|
907
655
|
def inner(*args, **kwargs):
|
|
@@ -909,10 +657,18 @@ def tensorleap_preprocess():
|
|
|
909
657
|
return [None, None, None, None]
|
|
910
658
|
|
|
911
659
|
_validate_input_args(*args, **kwargs)
|
|
660
|
+
|
|
912
661
|
result = user_function()
|
|
913
662
|
_validate_result(result)
|
|
914
|
-
|
|
915
|
-
|
|
663
|
+
|
|
664
|
+
# Emit integration test event once per test
|
|
665
|
+
try:
|
|
666
|
+
emit_integration_event_once(AnalyticsEvent.PREPROCESS_INTEGRATION_TEST, {
|
|
667
|
+
'preprocess_responses_count': len(result)
|
|
668
|
+
})
|
|
669
|
+
except Exception as e:
|
|
670
|
+
logger.debug(f"Failed to emit preprocess integration test event: {e}")
|
|
671
|
+
|
|
916
672
|
return result
|
|
917
673
|
|
|
918
674
|
return inner
|
|
@@ -1111,23 +867,29 @@ def tensorleap_input_encoder(name: str, channel_dim=-1, model_input_index=None):
|
|
|
1111
867
|
raise Exception(f"Channel dim for input {name} is expected to be either -1 or positive")
|
|
1112
868
|
|
|
1113
869
|
def _validate_input_args(sample_id: Union[int, str], preprocess_response: PreprocessResponse):
|
|
870
|
+
assert isinstance(sample_id, (int, str)), \
|
|
871
|
+
(f'tensorleap_input_encoder validation failed: '
|
|
872
|
+
f'Argument sample_id should be either int or str. Got {type(sample_id)}.')
|
|
873
|
+
assert isinstance(preprocess_response, PreprocessResponse), \
|
|
874
|
+
(f'tensorleap_input_encoder validation failed: '
|
|
875
|
+
f'Argument preprocess_response should be a PreprocessResponse. Got {type(preprocess_response)}.')
|
|
1114
876
|
assert type(sample_id) == preprocess_response.sample_id_type, \
|
|
1115
|
-
(f'
|
|
877
|
+
(f'tensorleap_input_encoder validation failed: '
|
|
1116
878
|
f'Argument sample_id should be as the same type as defined in the preprocess response '
|
|
1117
879
|
f'{preprocess_response.sample_id_type}. Got {type(sample_id)}.')
|
|
1118
880
|
|
|
1119
881
|
def _validate_result(result):
|
|
1120
|
-
validate_output_structure(result, func_name=user_function.__name__, expected_type_name = "np.ndarray")
|
|
1121
882
|
assert isinstance(result, np.ndarray), \
|
|
1122
|
-
(f'
|
|
883
|
+
(f'tensorleap_input_encoder validation failed: '
|
|
1123
884
|
f'Unsupported return type. Should be a numpy array. Got {type(result)}.')
|
|
1124
885
|
assert result.dtype == np.float32, \
|
|
1125
|
-
(f'
|
|
886
|
+
(f'tensorleap_input_encoder validation failed: '
|
|
1126
887
|
f'The return type should be a numpy array of type float32. Got {result.dtype}.')
|
|
1127
|
-
assert channel_dim - 1 <= len(result.shape), (f'
|
|
888
|
+
assert channel_dim - 1 <= len(result.shape), (f'tensorleap_input_encoder validation failed: '
|
|
1128
889
|
f'The channel_dim ({channel_dim}) should be <= to the rank of the resulting input rank ({len(result.shape)}).')
|
|
1129
890
|
|
|
1130
891
|
def inner_without_validate(sample_id, preprocess_response):
|
|
892
|
+
|
|
1131
893
|
global _called_from_inside_tl_decorator
|
|
1132
894
|
_called_from_inside_tl_decorator += 1
|
|
1133
895
|
|
|
@@ -1141,10 +903,7 @@ def tensorleap_input_encoder(name: str, channel_dim=-1, model_input_index=None):
|
|
|
1141
903
|
leap_binder.set_input(inner_without_validate, name, channel_dim=channel_dim)
|
|
1142
904
|
|
|
1143
905
|
|
|
1144
|
-
def inner(
|
|
1145
|
-
validate_args_structure(*args, types_order=[Union[int, str], PreprocessResponse],
|
|
1146
|
-
func_name=user_function.__name__, expected_names=["idx", "preprocess"], **kwargs)
|
|
1147
|
-
sample_id, preprocess_response = args if len(args)!=0 else kwargs.values()
|
|
906
|
+
def inner(sample_id, preprocess_response):
|
|
1148
907
|
_validate_input_args(sample_id, preprocess_response)
|
|
1149
908
|
|
|
1150
909
|
result = inner_without_validate(sample_id, preprocess_response)
|
|
@@ -1152,20 +911,27 @@ def tensorleap_input_encoder(name: str, channel_dim=-1, model_input_index=None):
|
|
|
1152
911
|
_validate_result(result)
|
|
1153
912
|
|
|
1154
913
|
if _called_from_inside_tl_decorator == 0 and _called_from_inside_tl_integration_test_decorator:
|
|
1155
|
-
batch_warning(result,user_function.__name__)
|
|
1156
914
|
result = np.expand_dims(result, axis=0)
|
|
1157
|
-
|
|
1158
|
-
|
|
915
|
+
# Emit integration test event once per test
|
|
916
|
+
try:
|
|
917
|
+
emit_integration_event_once(AnalyticsEvent.INPUT_ENCODER_INTEGRATION_TEST, {
|
|
918
|
+
'encoder_name': name,
|
|
919
|
+
'channel_dim': channel_dim,
|
|
920
|
+
'model_input_index': model_input_index
|
|
921
|
+
})
|
|
922
|
+
except Exception as e:
|
|
923
|
+
logger.debug(f"Failed to emit input_encoder integration test event: {e}")
|
|
1159
924
|
|
|
1160
925
|
return result
|
|
1161
926
|
|
|
1162
927
|
|
|
928
|
+
|
|
1163
929
|
node_mapping_type = NodeMappingType.Input
|
|
1164
930
|
if model_input_index is not None:
|
|
1165
931
|
node_mapping_type = NodeMappingType(f'Input{str(model_input_index)}')
|
|
1166
932
|
inner.node_mapping = NodeMapping(name, node_mapping_type)
|
|
1167
933
|
|
|
1168
|
-
def mapping_inner(
|
|
934
|
+
def mapping_inner(sample_id, preprocess_response):
|
|
1169
935
|
class TempMapping:
|
|
1170
936
|
pass
|
|
1171
937
|
|
|
@@ -1177,11 +943,11 @@ def tensorleap_input_encoder(name: str, channel_dim=-1, model_input_index=None):
|
|
|
1177
943
|
|
|
1178
944
|
mapping_inner.node_mapping = NodeMapping(name, node_mapping_type)
|
|
1179
945
|
|
|
1180
|
-
def final_inner(
|
|
946
|
+
def final_inner(sample_id, preprocess_response):
|
|
1181
947
|
if os.environ.get(mapping_runtime_mode_env_var_mame):
|
|
1182
|
-
return mapping_inner(
|
|
948
|
+
return mapping_inner(sample_id, preprocess_response)
|
|
1183
949
|
else:
|
|
1184
|
-
return inner(
|
|
950
|
+
return inner(sample_id, preprocess_response)
|
|
1185
951
|
|
|
1186
952
|
final_inner.node_mapping = NodeMapping(name, node_mapping_type)
|
|
1187
953
|
|
|
@@ -1198,18 +964,23 @@ def tensorleap_gt_encoder(name: str):
|
|
|
1198
964
|
f'Please choose another')
|
|
1199
965
|
|
|
1200
966
|
def _validate_input_args(sample_id: Union[int, str], preprocess_response: PreprocessResponse):
|
|
967
|
+
assert isinstance(sample_id, (int, str)), \
|
|
968
|
+
(f'tensorleap_gt_encoder validation failed: '
|
|
969
|
+
f'Argument sample_id should be either int or str. Got {type(sample_id)}.')
|
|
970
|
+
assert isinstance(preprocess_response, PreprocessResponse), \
|
|
971
|
+
(f'tensorleap_gt_encoder validation failed: '
|
|
972
|
+
f'Argument preprocess_response should be a PreprocessResponse. Got {type(preprocess_response)}.')
|
|
1201
973
|
assert type(sample_id) == preprocess_response.sample_id_type, \
|
|
1202
|
-
(f'
|
|
974
|
+
(f'tensorleap_gt_encoder validation failed: '
|
|
1203
975
|
f'Argument sample_id should be as the same type as defined in the preprocess response '
|
|
1204
976
|
f'{preprocess_response.sample_id_type}. Got {type(sample_id)}.')
|
|
1205
977
|
|
|
1206
978
|
def _validate_result(result):
|
|
1207
|
-
validate_output_structure(result, func_name=user_function.__name__, expected_type_name = "np.ndarray",gt_flag=True)
|
|
1208
979
|
assert isinstance(result, np.ndarray), \
|
|
1209
|
-
(f'
|
|
980
|
+
(f'tensorleap_gt_encoder validation failed: '
|
|
1210
981
|
f'Unsupported return type. Should be a numpy array. Got {type(result)}.')
|
|
1211
982
|
assert result.dtype == np.float32, \
|
|
1212
|
-
(f'
|
|
983
|
+
(f'tensorleap_gt_encoder validation failed: '
|
|
1213
984
|
f'The return type should be a numpy array of type float32. Got {result.dtype}.')
|
|
1214
985
|
|
|
1215
986
|
def inner_without_validate(sample_id, preprocess_response):
|
|
@@ -1226,10 +997,7 @@ def tensorleap_gt_encoder(name: str):
|
|
|
1226
997
|
leap_binder.set_ground_truth(inner_without_validate, name)
|
|
1227
998
|
|
|
1228
999
|
|
|
1229
|
-
def inner(
|
|
1230
|
-
validate_args_structure(*args, types_order=[Union[int, str], PreprocessResponse],
|
|
1231
|
-
func_name=user_function.__name__, expected_names=["idx", "preprocess"], **kwargs)
|
|
1232
|
-
sample_id, preprocess_response = args
|
|
1000
|
+
def inner(sample_id, preprocess_response):
|
|
1233
1001
|
_validate_input_args(sample_id, preprocess_response)
|
|
1234
1002
|
|
|
1235
1003
|
result = inner_without_validate(sample_id, preprocess_response)
|
|
@@ -1237,15 +1005,20 @@ def tensorleap_gt_encoder(name: str):
|
|
|
1237
1005
|
_validate_result(result)
|
|
1238
1006
|
|
|
1239
1007
|
if _called_from_inside_tl_decorator == 0 and _called_from_inside_tl_integration_test_decorator:
|
|
1240
|
-
batch_warning(result, user_function.__name__)
|
|
1241
1008
|
result = np.expand_dims(result, axis=0)
|
|
1242
|
-
|
|
1243
|
-
|
|
1009
|
+
# Emit integration test event once per test
|
|
1010
|
+
try:
|
|
1011
|
+
emit_integration_event_once(AnalyticsEvent.GT_ENCODER_INTEGRATION_TEST, {
|
|
1012
|
+
'encoder_name': name
|
|
1013
|
+
})
|
|
1014
|
+
except Exception as e:
|
|
1015
|
+
logger.debug(f"Failed to emit gt_encoder integration test event: {e}")
|
|
1016
|
+
|
|
1244
1017
|
return result
|
|
1245
1018
|
|
|
1246
1019
|
inner.node_mapping = NodeMapping(name, NodeMappingType.GroundTruth)
|
|
1247
1020
|
|
|
1248
|
-
def mapping_inner(
|
|
1021
|
+
def mapping_inner(sample_id, preprocess_response):
|
|
1249
1022
|
class TempMapping:
|
|
1250
1023
|
pass
|
|
1251
1024
|
|
|
@@ -1256,11 +1029,11 @@ def tensorleap_gt_encoder(name: str):
|
|
|
1256
1029
|
|
|
1257
1030
|
mapping_inner.node_mapping = NodeMapping(name, NodeMappingType.GroundTruth)
|
|
1258
1031
|
|
|
1259
|
-
def final_inner(
|
|
1032
|
+
def final_inner(sample_id, preprocess_response):
|
|
1260
1033
|
if os.environ.get(mapping_runtime_mode_env_var_mame):
|
|
1261
|
-
return mapping_inner(
|
|
1034
|
+
return mapping_inner(sample_id, preprocess_response)
|
|
1262
1035
|
else:
|
|
1263
|
-
return inner(
|
|
1036
|
+
return inner(sample_id, preprocess_response)
|
|
1264
1037
|
|
|
1265
1038
|
final_inner.node_mapping = NodeMapping(name, NodeMappingType.GroundTruth)
|
|
1266
1039
|
|
|
@@ -1281,37 +1054,28 @@ def tensorleap_custom_loss(name: str, connects_to=None):
|
|
|
1281
1054
|
valid_types = (np.ndarray, SamplePreprocessResponse)
|
|
1282
1055
|
|
|
1283
1056
|
def _validate_input_args(*args, **kwargs):
|
|
1284
|
-
assert len(args) > 0 and len(kwargs)==0, (
|
|
1285
|
-
f"{user_function.__name__}() validation failed: "
|
|
1286
|
-
f"Expected at least one positional|key-word argument of the allowed types (np.ndarray|SamplePreprocessResponse|list(np.ndarray|SamplePreprocessResponse)). "
|
|
1287
|
-
f"but received none. "
|
|
1288
|
-
f"Correct usage example: {user_function.__name__}(input_array: np.ndarray, ...)"
|
|
1289
|
-
)
|
|
1290
1057
|
for i, arg in enumerate(args):
|
|
1291
1058
|
if isinstance(arg, list):
|
|
1292
1059
|
for y, elem in enumerate(arg):
|
|
1293
|
-
assert isinstance(elem, valid_types), (f'
|
|
1060
|
+
assert isinstance(elem, valid_types), (f'tensorleap_custom_loss validation failed: '
|
|
1294
1061
|
f'Element #{y} of list should be a numpy array. Got {type(elem)}.')
|
|
1295
1062
|
else:
|
|
1296
|
-
assert isinstance(arg, valid_types), (f'
|
|
1063
|
+
assert isinstance(arg, valid_types), (f'tensorleap_custom_loss validation failed: '
|
|
1297
1064
|
f'Argument #{i} should be a numpy array. Got {type(arg)}.')
|
|
1298
1065
|
for _arg_name, arg in kwargs.items():
|
|
1299
1066
|
if isinstance(arg, list):
|
|
1300
1067
|
for y, elem in enumerate(arg):
|
|
1301
|
-
assert isinstance(elem, valid_types), (f'
|
|
1068
|
+
assert isinstance(elem, valid_types), (f'tensorleap_custom_loss validation failed: '
|
|
1302
1069
|
f'Element #{y} of list should be a numpy array. Got {type(elem)}.')
|
|
1303
1070
|
else:
|
|
1304
|
-
assert isinstance(arg, valid_types), (f'
|
|
1071
|
+
assert isinstance(arg, valid_types), (f'tensorleap_custom_loss validation failed: '
|
|
1305
1072
|
f'Argument #{_arg_name} should be a numpy array. Got {type(arg)}.')
|
|
1306
1073
|
|
|
1307
1074
|
def _validate_result(result):
|
|
1308
|
-
validate_output_structure(result, func_name=user_function.__name__,
|
|
1309
|
-
expected_type_name="np.ndarray")
|
|
1310
1075
|
assert isinstance(result, np.ndarray), \
|
|
1311
|
-
(f'
|
|
1076
|
+
(f'tensorleap_custom_loss validation failed: '
|
|
1312
1077
|
f'The return type should be a numpy array. Got {type(result)}.')
|
|
1313
|
-
|
|
1314
|
-
f'The return type should be a 1Dim numpy array but got {result.ndim}Dim.')
|
|
1078
|
+
|
|
1315
1079
|
|
|
1316
1080
|
@functools.wraps(user_function)
|
|
1317
1081
|
def inner_without_validate(*args, **kwargs):
|
|
@@ -1342,9 +1106,6 @@ def tensorleap_custom_loss(name: str, connects_to=None):
|
|
|
1342
1106
|
result = inner_without_validate(*args, **kwargs)
|
|
1343
1107
|
|
|
1344
1108
|
_validate_result(result)
|
|
1345
|
-
if not _update_env_status is None:
|
|
1346
|
-
_update_env_status("tensorleap_custom_loss", "v")
|
|
1347
|
-
|
|
1348
1109
|
return result
|
|
1349
1110
|
|
|
1350
1111
|
def mapping_inner(*args, **kwargs):
|
|
@@ -1401,94 +1162,3 @@ def tensorleap_custom_layer(name: str):
|
|
|
1401
1162
|
return custom_layer
|
|
1402
1163
|
|
|
1403
1164
|
return decorating_function
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
def tensorleap_status_table():
|
|
1407
|
-
'''
|
|
1408
|
-
Usage example:
|
|
1409
|
-
###################
|
|
1410
|
-
leap_integration.py
|
|
1411
|
-
###################
|
|
1412
|
-
from code_loader.inner_leap_binder.leapbinder_decorators import tensorleap_status_table
|
|
1413
|
-
...
|
|
1414
|
-
...
|
|
1415
|
-
...
|
|
1416
|
-
if __name__ == '__main__':
|
|
1417
|
-
tensorleap_status_table()
|
|
1418
|
-
...
|
|
1419
|
-
'''
|
|
1420
|
-
import atexit
|
|
1421
|
-
import sys
|
|
1422
|
-
import traceback
|
|
1423
|
-
CHECK = "✅"
|
|
1424
|
-
CROSS = "❌"
|
|
1425
|
-
|
|
1426
|
-
table = [
|
|
1427
|
-
{"name": "tensorleap_preprocess", "Added to integration": CROSS},
|
|
1428
|
-
{"name": "tensorleap_integration_test", "Added to integration": CROSS},
|
|
1429
|
-
{"name": "tensorleap_input_encoder", "Added to integration": CROSS},
|
|
1430
|
-
{"name": "tensorleap_gt_encoder", "Added to integration": CROSS},
|
|
1431
|
-
{"name": "tensorleap_load_model", "Added to integration": CROSS},
|
|
1432
|
-
{"name": "tensorleap_custom_loss", "Added to integration": CROSS},
|
|
1433
|
-
{"name": "tensorleap_custom_metric (optional)", "Added to integration": CROSS},
|
|
1434
|
-
{"name": "tensorleap_metadata (optional)", "Added to integration": CROSS},
|
|
1435
|
-
{"name": "tensorleap_custom_visualizer (optional)", "Added to integration": CROSS},
|
|
1436
|
-
|
|
1437
|
-
]
|
|
1438
|
-
|
|
1439
|
-
_finalizer_called = {"done": False}
|
|
1440
|
-
|
|
1441
|
-
def _remove_suffix(s: str, suffix: str) -> str:
|
|
1442
|
-
#This is needed because str.remove_suffix was presented in python3.9+
|
|
1443
|
-
if suffix and s.endswith(suffix):
|
|
1444
|
-
return s[:-len(suffix)]
|
|
1445
|
-
return s
|
|
1446
|
-
|
|
1447
|
-
def _print_table():
|
|
1448
|
-
ready_mess = "\nAll parts have been successfully set. If no errors accured, you can now push the project to the Tensorleap system."
|
|
1449
|
-
not_ready_mess = "\nSome mandatory components have not yet been added to the Integration test. Recommended next interface to add is: "
|
|
1450
|
-
mandatory_ready_mess = "\nAll mandatory parts have been successfully set. If no errors accured, you can now push the project to the Tensorleap system or continue to the next optional reccomeded interface,adding: "
|
|
1451
|
-
|
|
1452
|
-
name_width = max(len(row["name"]) for row in table)
|
|
1453
|
-
status_width = max(len(row["Added to integration"]) for row in table)
|
|
1454
|
-
header = f"{'Decorator Name'.ljust(name_width)} | {'Added to integration'.ljust(status_width)}"
|
|
1455
|
-
sep = "-" * len(header)
|
|
1456
|
-
print("\n" + header)
|
|
1457
|
-
print(sep)
|
|
1458
|
-
ready=True
|
|
1459
|
-
for row in table:
|
|
1460
|
-
print(f"{row['name'].ljust(name_width)} | {row['Added to integration'].ljust(status_width)}")
|
|
1461
|
-
if row['Added to integration']==CROSS and ready:
|
|
1462
|
-
ready=False
|
|
1463
|
-
next_step=row['name']
|
|
1464
|
-
|
|
1465
|
-
|
|
1466
|
-
print(ready_mess) if ready else print(mandatory_ready_mess+next_step) if "optional" in next_step else print(not_ready_mess+next_step)
|
|
1467
|
-
def update_env_params(name: str, status: str = "✓"):
|
|
1468
|
-
for row in table:
|
|
1469
|
-
if _remove_suffix(row["name"]," (optional)") == name:
|
|
1470
|
-
row["Added to integration"] = CHECK if status=="v" else CROSS
|
|
1471
|
-
break
|
|
1472
|
-
def run_on_exit():
|
|
1473
|
-
if _finalizer_called["done"]:
|
|
1474
|
-
return
|
|
1475
|
-
_finalizer_called["done"] = True
|
|
1476
|
-
_print_table()
|
|
1477
|
-
def handle_exception(exc_type, exc_value, exc_traceback):
|
|
1478
|
-
traceback.print_exception(exc_type, exc_value, exc_traceback)
|
|
1479
|
-
run_on_exit()
|
|
1480
|
-
atexit.register(run_on_exit)
|
|
1481
|
-
sys.excepthook = handle_exception
|
|
1482
|
-
global _update_env_status
|
|
1483
|
-
_update_env_status = update_env_params
|
|
1484
|
-
return update_env_params
|
|
1485
|
-
|
|
1486
|
-
|
|
1487
|
-
|
|
1488
|
-
|
|
1489
|
-
|
|
1490
|
-
|
|
1491
|
-
|
|
1492
|
-
|
|
1493
|
-
|
|
1494
|
-
|
code_loader/mixpanel_tracker.py
CHANGED
|
@@ -5,12 +5,53 @@ import os
|
|
|
5
5
|
import sys
|
|
6
6
|
import getpass
|
|
7
7
|
import uuid
|
|
8
|
-
|
|
8
|
+
import logging
|
|
9
|
+
from enum import Enum
|
|
10
|
+
from typing import Optional, Dict, Any, Set, Union, TypedDict
|
|
9
11
|
import mixpanel # type: ignore[import]
|
|
10
12
|
|
|
13
|
+
logger = logging.getLogger(__name__)
|
|
14
|
+
|
|
11
15
|
TRACKING_VERSION = '1'
|
|
12
16
|
|
|
13
17
|
|
|
18
|
+
class AnalyticsEvent(str, Enum):
|
|
19
|
+
"""Enumeration of all tracked analytics events."""
|
|
20
|
+
CODE_LOADER_LOADED = "code_loader_loaded"
|
|
21
|
+
LOAD_MODEL_INTEGRATION_TEST = "load_model_integration_test"
|
|
22
|
+
PREPROCESS_INTEGRATION_TEST = "preprocess_integration_test"
|
|
23
|
+
INPUT_ENCODER_INTEGRATION_TEST = "input_encoder_integration_test"
|
|
24
|
+
GT_ENCODER_INTEGRATION_TEST = "gt_encoder_integration_test"
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class CodeLoaderLoadedProps(TypedDict, total=False):
|
|
28
|
+
"""Properties for code_loader_loaded event."""
|
|
29
|
+
event_type: str
|
|
30
|
+
code_path: str
|
|
31
|
+
code_entry_name: str
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class LoadModelEventProps(TypedDict, total=False):
|
|
35
|
+
"""Properties for load_model_integration_test event."""
|
|
36
|
+
prediction_types_count: int
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class PreprocessEventProps(TypedDict, total=False):
|
|
40
|
+
"""Properties for preprocess_integration_test event."""
|
|
41
|
+
preprocess_responses_count: int
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class InputEncoderEventProps(TypedDict, total=False):
|
|
45
|
+
"""Properties for input_encoder_integration_test event."""
|
|
46
|
+
encoder_name: str
|
|
47
|
+
channel_dim: int
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class GtEncoderEventProps(TypedDict, total=False):
|
|
51
|
+
"""Properties for gt_encoder_integration_test event."""
|
|
52
|
+
encoder_name: str
|
|
53
|
+
|
|
54
|
+
|
|
14
55
|
class MixpanelTracker:
|
|
15
56
|
"""Handles Mixpanel event tracking for code-loader."""
|
|
16
57
|
|
|
@@ -28,7 +69,8 @@ class MixpanelTracker:
|
|
|
28
69
|
if self._user_id is None:
|
|
29
70
|
try:
|
|
30
71
|
self._user_id = getpass.getuser()
|
|
31
|
-
except Exception:
|
|
72
|
+
except Exception as e:
|
|
73
|
+
logger.debug(f"Failed to get username via getpass: {e}")
|
|
32
74
|
# Fallback to environment variables or default
|
|
33
75
|
self._user_id = os.environ.get('USER', os.environ.get('USERNAME', 'unknown'))
|
|
34
76
|
return self._user_id or 'unknown'
|
|
@@ -43,8 +85,8 @@ class MixpanelTracker:
|
|
|
43
85
|
user_id = f.read().strip()
|
|
44
86
|
if user_id:
|
|
45
87
|
return user_id
|
|
46
|
-
except Exception:
|
|
47
|
-
|
|
88
|
+
except Exception as e:
|
|
89
|
+
logger.debug(f"Failed to read TensorLeap user ID: {e}")
|
|
48
90
|
return None
|
|
49
91
|
|
|
50
92
|
def _get_or_create_device_id(self) -> str:
|
|
@@ -73,7 +115,8 @@ class MixpanelTracker:
|
|
|
73
115
|
f.write(device_id)
|
|
74
116
|
|
|
75
117
|
return device_id
|
|
76
|
-
except Exception:
|
|
118
|
+
except Exception as e:
|
|
119
|
+
logger.debug(f"Failed to read/write device ID file: {e}")
|
|
77
120
|
# Fallback to generating a new UUID if file operations fail
|
|
78
121
|
return str(uuid.uuid4())
|
|
79
122
|
|
|
@@ -90,10 +133,11 @@ class MixpanelTracker:
|
|
|
90
133
|
|
|
91
134
|
return self._get_or_create_device_id()
|
|
92
135
|
|
|
93
|
-
def
|
|
94
|
-
"""
|
|
136
|
+
def _track_event(self, event_name: Union[str, AnalyticsEvent], event_properties: Optional[Dict[str, Any]] = None) -> None:
|
|
137
|
+
"""Internal method to track any event with device identification.
|
|
95
138
|
|
|
96
139
|
Args:
|
|
140
|
+
event_name: The name of the event to track (string or AnalyticsEvent enum)
|
|
97
141
|
event_properties: Optional additional properties to include in the event
|
|
98
142
|
"""
|
|
99
143
|
# Skip tracking if IS_TENSORLEAP_PLATFORM environment variable is set to 'true'
|
|
@@ -122,9 +166,26 @@ class MixpanelTracker:
|
|
|
122
166
|
if event_properties:
|
|
123
167
|
properties.update(event_properties)
|
|
124
168
|
|
|
125
|
-
self.mp.track(distinct_id,
|
|
169
|
+
self.mp.track(distinct_id, str(event_name), properties)
|
|
126
170
|
except Exception as e:
|
|
127
|
-
|
|
171
|
+
logger.debug(f"Failed to track event '{event_name}': {e}")
|
|
172
|
+
|
|
173
|
+
def track_code_loader_loaded(self, event_properties: Optional[Dict[str, Any]] = None) -> None:
|
|
174
|
+
"""Track code loader loaded event with device identification.
|
|
175
|
+
|
|
176
|
+
Args:
|
|
177
|
+
event_properties: Optional additional properties to include in the event
|
|
178
|
+
"""
|
|
179
|
+
self._track_event(AnalyticsEvent.CODE_LOADER_LOADED, event_properties)
|
|
180
|
+
|
|
181
|
+
def track_integration_test_event(self, event_name: Union[str, AnalyticsEvent], event_properties: Optional[Dict[str, Any]] = None) -> None:
|
|
182
|
+
"""Track an integration test event with device identification.
|
|
183
|
+
|
|
184
|
+
Args:
|
|
185
|
+
event_name: The name of the event to track (string or AnalyticsEvent enum)
|
|
186
|
+
event_properties: Optional additional properties to include in the event
|
|
187
|
+
"""
|
|
188
|
+
self._track_event(event_name, event_properties)
|
|
128
189
|
|
|
129
190
|
|
|
130
191
|
# Global tracker instance
|
|
@@ -140,3 +201,30 @@ def get_tracker() -> MixpanelTracker:
|
|
|
140
201
|
|
|
141
202
|
def track_code_loader_loaded(event_properties: Optional[Dict[str, Any]] = None) -> None:
|
|
142
203
|
get_tracker().track_code_loader_loaded(event_properties)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def track_integration_test_event(event_name: Union[str, AnalyticsEvent], event_properties: Optional[Dict[str, Any]] = None) -> None:
|
|
207
|
+
get_tracker().track_integration_test_event(event_name, event_properties)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
# Module-level set to track which integration test events have been emitted
|
|
211
|
+
_integration_events_emitted: Set[str] = set()
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
def emit_integration_event_once(event_name: Union[str, AnalyticsEvent], props: Dict[str, Any]) -> None:
|
|
215
|
+
"""Emit an integration test event only once per test run."""
|
|
216
|
+
event_name_str = str(event_name)
|
|
217
|
+
if event_name_str in _integration_events_emitted:
|
|
218
|
+
return
|
|
219
|
+
|
|
220
|
+
try:
|
|
221
|
+
track_integration_test_event(event_name, props)
|
|
222
|
+
_integration_events_emitted.add(event_name_str)
|
|
223
|
+
except Exception as e:
|
|
224
|
+
logger.debug(f"Failed to emit integration event once '{event_name}': {e}")
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
def clear_integration_events() -> None:
|
|
228
|
+
"""Clear the integration events set for a new test run."""
|
|
229
|
+
global _integration_events_emitted
|
|
230
|
+
_integration_events_emitted.clear()
|
|
@@ -324,7 +324,7 @@ def plot_image_mask(leap_data: LeapImageMask, title: str) -> None:
|
|
|
324
324
|
|
|
325
325
|
# fill the instance mask with a translucent color
|
|
326
326
|
overlayed_image[instance_mask] = (
|
|
327
|
-
overlayed_image[instance_mask] * (1 - 0.5) + np.array(colors[i][:image.shape[-1]], dtype=
|
|
327
|
+
overlayed_image[instance_mask] * (1 - 0.5) + np.array(colors[i][:image.shape[-1]], dtype=image.dtype) * 0.5)
|
|
328
328
|
|
|
329
329
|
# Display the result using matplotlib
|
|
330
330
|
fig, ax = plt.subplots(1)
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
|
|
2
2
|
code_loader/__init__.py,sha256=outxRQ0M-zMfV0QGVJmAed5qWfRmyD0TV6-goEGAzBw,406
|
|
3
3
|
code_loader/contract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
-
code_loader/contract/datasetclasses.py,sha256=
|
|
4
|
+
code_loader/contract/datasetclasses.py,sha256=u0gfDDy02skhFG3ejJOxqxCnykhAcBPGJfv8Bi4s9eQ,8966
|
|
5
5
|
code_loader/contract/enums.py,sha256=GEFkvUMXnCNt-GOoz7NJ9ecQZ2PPDettJNOsxsiM0wk,1622
|
|
6
6
|
code_loader/contract/exceptions.py,sha256=jWqu5i7t-0IG0jGRsKF4DjJdrsdpJjIYpUkN1F4RiyQ,51
|
|
7
7
|
code_loader/contract/mapping.py,sha256=sWJhpng-IkOzQnWQdMT5w2ZZ3X1Z_OOzSwCLXIS7oxE,1446
|
|
@@ -21,17 +21,17 @@ code_loader/experiment_api/utils.py,sha256=XZHtxge12TS4H4-8PjV3sKuhp8Ud6ojAiIzTZ
|
|
|
21
21
|
code_loader/experiment_api/workingspace_config_utils.py,sha256=DLzXQCg4dgTV_YgaSbeTVzq-2ja_SQw4zi7LXwKL9cY,990
|
|
22
22
|
code_loader/inner_leap_binder/__init__.py,sha256=koOlJyMNYzGbEsoIbXathSmQ-L38N_pEXH_HvL7beXU,99
|
|
23
23
|
code_loader/inner_leap_binder/leapbinder.py,sha256=Q3D9yVM-GNEJfYRFvMV__BoZbcWOgnWKhrZXAv6Tu7o,33232
|
|
24
|
-
code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=
|
|
24
|
+
code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=cQwk6sHC6il4eqhxv6rnM-abP7VTL2glYnXNeU26zq4,53943
|
|
25
25
|
code_loader/leaploader.py,sha256=6D6xZzMI6qSNIb3tuKLB3BbK5H8QS1_r7iQjIXO3OkM,29795
|
|
26
26
|
code_loader/leaploaderbase.py,sha256=LIFcC6xo6V_iiGN3BjibXETu_l84EWM_WIOKAvkfTiM,4458
|
|
27
|
-
code_loader/mixpanel_tracker.py,sha256=
|
|
27
|
+
code_loader/mixpanel_tracker.py,sha256=eKvymkw7X2Ht6iw-a0V9VQm6OnB9kW7hYy35YtwRAvU,8457
|
|
28
28
|
code_loader/plot_functions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
|
-
code_loader/plot_functions/plot_functions.py,sha256=
|
|
29
|
+
code_loader/plot_functions/plot_functions.py,sha256=OGFLfbL31N2wuwcXIxxQ14f0Kuuvv1BZkAuFi2c0ma4,14560
|
|
30
30
|
code_loader/plot_functions/visualize.py,sha256=gsBAYYkwMh7jIpJeDMPS8G4CW-pxwx6LznoQIvi4vpo,657
|
|
31
31
|
code_loader/utils.py,sha256=gXENTYpjdidq2dx0gVbXlErPeHoNs-4TYAZbLRe0y2c,2712
|
|
32
32
|
code_loader/visualizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
33
33
|
code_loader/visualizers/default_visualizers.py,sha256=onRnLE_TXfgLN4o52hQIOOhUcFexGlqJ3xSpQDVLuZM,2604
|
|
34
|
-
code_loader-1.0.
|
|
35
|
-
code_loader-1.0.
|
|
36
|
-
code_loader-1.0.
|
|
37
|
-
code_loader-1.0.
|
|
34
|
+
code_loader-1.0.141.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
|
|
35
|
+
code_loader-1.0.141.dist-info/METADATA,sha256=lsbN9TJFGKpD9hcJSu9-7DLnTRcCqSF8yJl24bi7Ku8,1090
|
|
36
|
+
code_loader-1.0.141.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
37
|
+
code_loader-1.0.141.dist-info/RECORD,,
|
|
File without changes
|