code-loader 1.0.131__py3-none-any.whl → 1.0.132__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of code-loader might be problematic. Click here for more details.

@@ -92,6 +92,20 @@ def tensorleap_load_model(prediction_types: Optional[List[PredictionTypeHandler]
92
92
  def _convert_onnx_inputs_to_correct_type(
93
93
  self, float_arrays_inputs: Dict[str, np.ndarray]
94
94
  ) -> Dict[str, np.ndarray]:
95
+ ONNX_TYPE_TO_NP = {
96
+ "tensor(float)": np.float32,
97
+ "tensor(double)": np.float64,
98
+ "tensor(int64)": np.int64,
99
+ "tensor(int32)": np.int32,
100
+ "tensor(int16)": np.int16,
101
+ "tensor(int8)": np.int8,
102
+ "tensor(uint64)": np.uint64,
103
+ "tensor(uint32)": np.uint32,
104
+ "tensor(uint16)": np.uint16,
105
+ "tensor(uint8)": np.uint8,
106
+ "tensor(bool)": np.bool_,
107
+ }
108
+
95
109
  """
96
110
  Cast user-provided NumPy inputs to match the dtypes/shapes
97
111
  expected by an ONNX Runtime InferenceSession.
@@ -106,7 +120,11 @@ def tensorleap_load_model(prediction_types: Optional[List[PredictionTypeHandler]
106
120
  continue
107
121
 
108
122
  info = meta[name]
109
- want_dtype = np.dtype(info.type) # ONNX Runtime gives NumPy dtype string
123
+ onnx_type = info.type
124
+ want_dtype = ONNX_TYPE_TO_NP.get(onnx_type)
125
+
126
+ if want_dtype is None:
127
+ raise TypeError(f"Unsupported ONNX input type: {onnx_type}")
110
128
 
111
129
  # Cast dtype if needed
112
130
  if arr.dtype != want_dtype:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: code-loader
3
- Version: 1.0.131
3
+ Version: 1.0.132
4
4
  Summary:
5
5
  Home-page: https://github.com/tensorleap/code-loader
6
6
  License: MIT
@@ -21,7 +21,7 @@ code_loader/experiment_api/utils.py,sha256=XZHtxge12TS4H4-8PjV3sKuhp8Ud6ojAiIzTZ
21
21
  code_loader/experiment_api/workingspace_config_utils.py,sha256=DLzXQCg4dgTV_YgaSbeTVzq-2ja_SQw4zi7LXwKL9cY,990
22
22
  code_loader/inner_leap_binder/__init__.py,sha256=koOlJyMNYzGbEsoIbXathSmQ-L38N_pEXH_HvL7beXU,99
23
23
  code_loader/inner_leap_binder/leapbinder.py,sha256=Q3D9yVM-GNEJfYRFvMV__BoZbcWOgnWKhrZXAv6Tu7o,33232
24
- code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=wXZT-wNvixOC3-iKOf1YMWbr0DWQgSA5WsS2UetQ90k,48693
24
+ code_loader/inner_leap_binder/leapbinder_decorators.py,sha256=GNvckEpiFHpz3wf4S-e_js5u1WhUY6ntqqyjFCAdo_0,49478
25
25
  code_loader/leaploader.py,sha256=85XUWd7Y8kup76xeqefgd8db7pGaeHMhE7QlmYlNFMw,29747
26
26
  code_loader/leaploaderbase.py,sha256=LIFcC6xo6V_iiGN3BjibXETu_l84EWM_WIOKAvkfTiM,4458
27
27
  code_loader/mixpanel_tracker.py,sha256=mJaJvs8Pc5w3FEmSSObFIMVekcs5pKdM3iZmN4wVFqA,4822
@@ -31,7 +31,7 @@ code_loader/plot_functions/visualize.py,sha256=gsBAYYkwMh7jIpJeDMPS8G4CW-pxwx6Lz
31
31
  code_loader/utils.py,sha256=gXENTYpjdidq2dx0gVbXlErPeHoNs-4TYAZbLRe0y2c,2712
32
32
  code_loader/visualizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
33
  code_loader/visualizers/default_visualizers.py,sha256=onRnLE_TXfgLN4o52hQIOOhUcFexGlqJ3xSpQDVLuZM,2604
34
- code_loader-1.0.131.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
35
- code_loader-1.0.131.dist-info/METADATA,sha256=J6wQd25HCrreLLrxFsLGpQN-rskZXT2jqeTOhJBcyQM,1090
36
- code_loader-1.0.131.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
37
- code_loader-1.0.131.dist-info/RECORD,,
34
+ code_loader-1.0.132.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
35
+ code_loader-1.0.132.dist-info/METADATA,sha256=LznX_8RDqvRcsffXTU_q_1zXqqpyUosLei2w2VlRIMU,1090
36
+ code_loader-1.0.132.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
37
+ code_loader-1.0.132.dist-info/RECORD,,