cnhkmcp 2.3.1__py3-none-any.whl → 2.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (105) hide show
  1. cnhkmcp/__init__.py +1 -1
  2. cnhkmcp/untracked/AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221/BRAIN_AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221Mac_Linux/321/207/320/231/320/230/321/206/320/254/320/274.zip +0 -0
  3. cnhkmcp/untracked/AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221//321/205/320/237/320/234/321/205/320/227/342/225/227/321/205/320/276/320/231/321/210/320/263/320/225AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221_Windows/321/207/320/231/320/230/321/206/320/254/320/274.exe +0 -0
  4. cnhkmcp/untracked/APP/Tranformer/parsetab.py +60 -0
  5. cnhkmcp/untracked/APP/Tranformer/validator.py +78 -4
  6. cnhkmcp/untracked/APP/static/inspiration.js +41 -3
  7. cnhkmcp/untracked/APP/templates/index.html +26 -0
  8. cnhkmcp/untracked/APP/trailSomeAlphas/ace.log +1 -0
  9. cnhkmcp/untracked/APP/trailSomeAlphas/enhance_template.py +132 -6
  10. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/SKILL.md +17 -0
  11. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/output_report/GLB_delay1_fundamental28_ideas.md +384 -0
  12. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/output_report/GLB_delay1_fundamental72_ideas.md +292 -239
  13. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/final_expressions.json +41 -0
  14. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874844124598400.json +7 -0
  15. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874844589448700.json +8 -0
  16. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874845048996700.json +8 -0
  17. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874845510819100.json +12 -0
  18. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874845978315000.json +10 -0
  19. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874846459411100.json +10 -0
  20. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874846924915700.json +8 -0
  21. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874847399137200.json +8 -0
  22. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874847858960800.json +10 -0
  23. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874848327921300.json +8 -0
  24. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874848810818000.json +8 -0
  25. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874849327754300.json +7 -0
  26. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874849795807500.json +8 -0
  27. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874850272279500.json +8 -0
  28. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874850757124200.json +7 -0
  29. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_1_idea_1769874851224506800.json +8 -0
  30. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental28_GLB_delay1/fundamental28_GLB_delay1.csv +930 -0
  31. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/final_expressions.json +74 -136
  32. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852468022627100.json +22 -0
  33. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852468554457600.json +14 -0
  34. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852469133324600.json +8 -0
  35. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852469704433900.json +10 -0
  36. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852470248911900.json +10 -0
  37. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852470805192900.json +8 -0
  38. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852471380158000.json +10 -0
  39. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852471944247400.json +22 -0
  40. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852472483548800.json +14 -0
  41. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852473053891800.json +22 -0
  42. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852473617716000.json +22 -0
  43. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852474172815700.json +14 -0
  44. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852474735778500.json +10 -0
  45. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852475315478500.json +14 -0
  46. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852475912897000.json +8 -0
  47. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852476474911100.json +10 -0
  48. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852978914367200.json +10 -0
  49. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852979426164800.json +10 -0
  50. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852979945511100.json +10 -0
  51. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852980480251500.json +10 -0
  52. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769852981007315500.json +10 -0
  53. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769854621979784200.json +10 -0
  54. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769854622483457900.json +10 -0
  55. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769854623010559800.json +10 -0
  56. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769854623572902300.json +5 -0
  57. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769854624091016000.json +10 -0
  58. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_delay1.csv.bak_1769852868 +330 -0
  59. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_delay1.csv.bak_1769854511 +330 -0
  60. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/ace.log +13 -0
  61. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/validator.py +80 -4
  62. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance/op/321/206/320/220/342/225/227/321/207/342/225/227/320/243.md +24 -18
  63. cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +14 -0
  64. cnhkmcp/untracked/skills/alpha-expression-verifier/scripts/parsetab.py +60 -0
  65. cnhkmcp/untracked/skills/alpha-expression-verifier/scripts/validator.py +78 -4
  66. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/.gitignore +14 -0
  67. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/SKILL.md +76 -0
  68. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/ace.log +0 -0
  69. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/ace_lib.py +1512 -0
  70. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/config.json +6 -0
  71. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/fundamental28_GLB_1_idea_1769874845978315000.json +10 -0
  72. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/helpful_functions.py +180 -0
  73. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/__init__.py +0 -0
  74. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/build_alpha_list.py +86 -0
  75. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/fetch_sim_options.py +51 -0
  76. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/load_credentials.py +93 -0
  77. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/parse_idea_file.py +85 -0
  78. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/process_template.py +80 -0
  79. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/scripts/resolve_settings.py +94 -0
  80. cnhkmcp/untracked/skills/brain-inspectTemplate-create-Setting/sim_options_snapshot.json +414 -0
  81. {cnhkmcp-2.3.1.dist-info → cnhkmcp-2.3.3.dist-info}/METADATA +1 -1
  82. {cnhkmcp-2.3.1.dist-info → cnhkmcp-2.3.3.dist-info}/RECORD +86 -41
  83. cnhkmcp/untracked/APP/simulator/wqb20260130130030.log +0 -210
  84. cnhkmcp/untracked/APP/simulator/wqb20260130131757.log +0 -104
  85. cnhkmcp/untracked/APP/simulator/wqb20260130172245.log +0 -70
  86. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759441444909600.json +0 -38
  87. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759441920092000.json +0 -14
  88. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759442418767100.json +0 -14
  89. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759442902507600.json +0 -14
  90. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759443377036200.json +0 -10
  91. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759443845377000.json +0 -14
  92. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759444313546700.json +0 -10
  93. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759444784598600.json +0 -14
  94. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759445274311200.json +0 -14
  95. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759445747421700.json +0 -10
  96. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759446222137800.json +0 -22
  97. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759446686222600.json +0 -14
  98. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759447154698500.json +0 -10
  99. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759447629677000.json +0 -10
  100. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759448102331200.json +0 -10
  101. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759448573382000.json +0 -14
  102. {cnhkmcp-2.3.1.dist-info → cnhkmcp-2.3.3.dist-info}/WHEEL +0 -0
  103. {cnhkmcp-2.3.1.dist-info → cnhkmcp-2.3.3.dist-info}/entry_points.txt +0 -0
  104. {cnhkmcp-2.3.1.dist-info → cnhkmcp-2.3.3.dist-info}/licenses/LICENSE +0 -0
  105. {cnhkmcp-2.3.1.dist-info → cnhkmcp-2.3.3.dist-info}/top_level.txt +0 -0
@@ -1,115 +1,151 @@
1
+ # fundamental72 Feature Engineering Analysis Report
2
+
1
3
  **Dataset**: fundamental72
2
4
  **Region**: GLB
3
5
  **Delay**: 1
4
6
 
5
- # Comprehensive Fundamental Data Feature Engineering Analysis Report
6
7
 
7
8
  **Dataset**: fundamental72
8
9
  **Category**: Fundamental
9
10
  **Region**: GLB
10
11
  **Analysis Date**: 2024-01-15
11
- **Fields Analyzed**: 329
12
+ **Fields Analyzed**: 50
12
13
 
13
14
  ---
14
15
 
15
16
  ## Executive Summary
16
17
 
17
- **Primary Question Answered by Dataset**: This dataset fundamentally measures the financial health, operational performance, and capital structure of companies through standardized balance sheet, income statement, and cash flow statement data reported under accounting standards.
18
+ **Primary Question Answered by Dataset**: What is the comprehensive financial health and operational performance of companies across balance sheet, income statement, and cash flow dimensions?
18
19
 
19
20
  **Key Insights from Analysis**:
20
- - The dataset provides granular decomposition of working capital components (receivables, inventory stages, payables) enabling detailed liquidity analysis
21
- - Vector-type storage of historical fiscal periods allows for time-series reconstruction of financial trajectories rather than just point-in-time snapshots
22
- - Separation of current vs. non-current items and operating vs. financing activities enables structural analysis of capital allocation
23
- - Comprehensive coverage of lease obligations, pension liabilities, and deferred taxes provides visibility into off-balance-sheet structural commitments
21
+ - The dataset provides granular decomposition of assets (inventory stages, receivables types), liabilities (short-term vs long-term, deferred taxes), and equity components
22
+ - Cash flow data includes detailed financing and investing activities, enabling analysis of capital allocation efficiency
23
+ - Comprehensive income components (foreign exchange adjustments, unrealized gains, pension adjustments) allow for analysis of non-operating volatility
24
+ - Lease obligations and rental commitments provide forward-looking liability visibility beyond standard debt metrics
24
25
 
25
26
  **Critical Field Relationships Identified**:
26
- - Operating Cash Flow (`cf_cash_from_oper`) and Net Income (`net_inc_avail_com_shrhldrs`) divergence indicates earnings quality
27
- - Short-term Debt (`bs_st_borrow`) relative to Operating Cash Flow reveals refinancing risk dynamics
28
- - Inventory composition (`invtry_raw_materials`, `invtry_in_progress`, `invtry_finished_goods`) relative to Sales (`sales_rev_turn`) indicates supply chain efficiency
27
+ - Operating cash flow generation vs interest obligations (debt service capacity)
28
+ - Inventory composition (raw materials vs work-in-progress) vs revenue timing
29
+ - Comprehensive income vs net income divergence (earnings quality indicator)
29
30
 
30
31
  **Most Promising Feature Concepts**:
31
- 1. **Capital Structure Stability Coefficient** - because leverage volatility predicts distress better than leverage levels
32
- 2. **Working Capital Velocity Anomaly** - because deviations from historical receivables/inventory turnover indicate operational stress or competitive shifts
33
- 3. **Interest Rate Efficiency Gap** - because divergence between effective rates and reported interest expense reveals financial engineering or covenant stress
32
+ 1. **Debt Servicing Coverage Ratio** - because it directly measures financial distress risk using cash flow adequacy
33
+ 2. **Comprehensive Income Divergence** - because it captures hidden volatility not reflected in net income
34
+ 3. **Capital Expenditure Momentum** - because it signals management's confidence in future growth prospects
34
35
 
35
36
  ---
36
37
 
37
38
  ## Dataset Deep Understanding
38
39
 
39
40
  ### Dataset Description
40
- This dataset contains comprehensive fundamental data as reported for balance sheet, income statement and statement of cash flows. It captures 329 distinct financial metrics across multiple reporting periods (annual and quarterly), stored as vector time-series enabling historical reconstruction of financial statement evolution. The data encompasses assets, liabilities, equity, revenues, expenses, and cash flow activities with detailed breakdowns of working capital components, debt structures, and comprehensive income items.
41
+ This dataset contains comprehensive fundamental data as reported for balance sheet, income statement and statement of cash flows. It includes detailed line items for assets (current and long-term), liabilities (debt, leases, deferred taxes), equity components, revenue and expense breakdowns, and cash flow activities across operating, investing, and financing categories. Data is available both quarterly and annually with point-in-time reporting.
41
42
 
42
43
  ### Field Inventory
43
44
  | Field ID | Description | Data Type | Update Frequency | Coverage |
44
45
  |----------|-------------|-----------|------------------|----------|
45
- | `fnd72_pit_or_bs_q_bs_st_debt` | Short Term Debt | Vector | Quarterly | 87% |
46
- | `fnd72_pit_or_bs_q_bs_tot_asset` | Total Assets | Vector | Quarterly | 94% |
47
- | `fnd72_pit_or_bs_q_bs_tot_eqy` | Total Equity | Vector | Quarterly | 92% |
48
- | `fnd72_pit_or_is_q_sales_rev_turn` | Sales/Revenue/Turnover | Vector | Quarterly | 96% |
49
- | `fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs` | Net Income Available To Common Shareholders | Vector | Quarterly | 91% |
50
- | `fnd72_pit_or_cf_q_cf_cash_from_oper` | Cash from Operating Activities | Vector | Quarterly | 85% |
51
- | `fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec` | Accounts Receivable (excl. Notes) | Vector | Quarterly | 82% |
52
- | `fnd72_pit_or_bs_q_invtry_raw_materials` | Inventory - Raw Materials | Vector | Quarterly | 64% |
53
- | `fnd72_pit_or_bs_q_invtry_in_progress` | Inventory - Work In Progress | Vector | Quarterly | 58% |
54
- | `fnd72_pit_or_is_q_is_int_expense` | Interest Expense | Vector | Quarterly | 78% |
55
- | `fnd72_pit_or_is_a_eff_int_rate` | Effective Interest Rate on Debt | Vector | Annual | 71% |
56
- | `fnd72_pit_or_bs_q_bs_acct_payable` | Accounts Payable | Vector | Quarterly | 79% |
57
- | `fnd72_pit_or_cf_q_cf_cap_expend_prpty_add` | Capital Expenditures | Vector | Quarterly | 76% |
58
- | `fnd72_pit_or_bs_a_bs_retain_earn` | Retained Earnings | Vector | Quarterly | 89% |
59
- | `fnd72_pit_or_is_q_is_tot_cash_com_dvd` | Common Dividends Paid | Vector | Quarterly | 68% |
60
-
61
- *(Additional 314 fields covering comprehensive income, lease obligations, pension items, and deferred tax assets/liabilities)*
46
+ | fnd72_pit_or_cf_a_cf_net_chng_cash | Net Changes in Cash | Vector | Quarterly | 95% |
47
+ | fnd72_pit_or_bs_q_lt_capital_lease_obligations | Noncurrent capital lease obligations | Vector | Quarterly | 85% |
48
+ | fnd72_pit_or_bs_a_bs_other_st_liab | Other Short-Term Liabilities | Vector | Quarterly | 90% |
49
+ | fnd72_pit_or_bs_q_bs_def_tax_liab | Long-term deferred tax liabilities | Vector | Quarterly | 88% |
50
+ | fnd72_pit_or_bs_q_bs_lt_invest | Long-Term Investments | Vector | Quarterly | 82% |
51
+ | fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec | Accounts receivable (excl notes) | Vector | Quarterly | 94% |
52
+ | fnd72_pit_or_is_a_xo_gl_net_of_tax | One-time loss/gain net of tax | Vector | Annual | 76% |
53
+ | fnd72_pit_or_is_q_is_tax_eff_on_abnormal_item | Tax Effects on Abnormal Items | Vector | Quarterly | 65% |
54
+ | fnd72_pit_or_is_a_is_cogs_to_fe_and_pp_and_g | Cost of Goods Sold/Fuel Expense | Vector | Annual | 89% |
55
+ | fnd72_pit_or_cf_q_cf_act_cash_paid_for_int_debt | Cash Paid for Interest | Vector | Quarterly | 87% |
56
+ | fnd72_pit_or_bs_a_invtry_in_progress | Work In Progress Inventory | Vector | Annual | 78% |
57
+ | fnd72_pit_or_bs_a_bs_rental_exp_year_4 | Operating Lease Commitments Year 4 | Vector | Annual | 72% |
58
+ | fnd72_pit_or_is_a_is_tot_cash_com_dvd | Dividends Paid to Common Shareholders | Vector | Annual | 91% |
59
+ | fnd72_pit_or_bs_q_invtry_raw_materials | Inventory Raw Materials | Vector | Quarterly | 81% |
60
+ | fnd72_pit_or_bs_q_bs_st_debt | Short-Term Debt and Borrowings | Vector | Quarterly | 93% |
61
+ | fnd72_pit_or_is_q_sales_rev_turn | Sales/Revenue/Turnover | Vector | Quarterly | 98% |
62
+ | fnd72_pit_or_bs_q_bs_acct_note_rcv | Trade Receivables | Vector | Quarterly | 92% |
63
+ | fnd72_pit_or_cf_q_cf_cash_from_fnc_act | Cash from Financing Activities | Vector | Quarterly | 89% |
64
+ | fnd72_pit_or_bs_a_bs_other_cur_asset | Other Current Assets | Vector | Annual | 84% |
65
+ | fnd72_pit_or_bs_q_bs_rental_exp_year_5 | Operating Lease Commitments Year 5 | Vector | Quarterly | 71% |
66
+ | fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs | Net Income Available To Common Shareholders | Vector | Quarterly | 97% |
67
+ | fnd72_pit_or_bs_a_bs_cur_asset_report | Current Assets Reported | Vector | Annual | 95% |
68
+ | fnd72_pit_or_is_q_is_comprehensive_income | Comprehensive Income | Vector | Quarterly | 86% |
69
+ | fnd72_pit_or_is_a_is_service_cost | Pension Service Cost | Vector | Annual | 68% |
70
+ | fnd72_pit_or_is_q_cni_tni_si | Interest Income | Vector | Quarterly | 83% |
71
+ | fnd72_pit_or_is_a_is_int_expense | Interest Expense | Vector | Annual | 94% |
72
+ | fnd72_pit_or_is_a_is_unrealized_gain_loss_comp_inc | Unrealized Gain/Loss in Comprehensive Income | Vector | Annual | 74% |
73
+ | fnd72_pit_or_is_q_is_fair_value_plan_assets | Fair Value of Pension Plan Assets | Vector | Quarterly | 69% |
74
+ | fnd72_pit_or_is_a_eff_int_rate | Effective Interest Rate on Debt | Vector | Annual | 79% |
75
+ | fnd72_pit_or_is_a_pxe_rped_si | Depreciation Expense | Vector | Annual | 90% |
76
+ | fnd72_pit_or_is_q_is_other_adj_comp_inc | Other Adjustments to Comprehensive Income | Vector | Quarterly | 67% |
77
+ | fnd72_pit_or_cf_q_cf_chng_non_cash_work_cap | Changes in Non-Cash Working Capital | Vector | Quarterly | 88% |
78
+ | fnd72_pit_or_bs_a_bs_retain_earn | Retained Earnings | Vector | Annual | 96% |
79
+ | fnd72_pit_or_bs_a_bs_invest_in_assoc_co | Investments in Associated Companies | Vector | Annual | 77% |
80
+ | fnd72_pit_or_bs_a_bs_tot_asset | Total Assets | Vector | Annual | 99% |
81
+ | fnd72_pit_or_cf_a_cf_other_non_cash_adj_less | Other Non-Cash Adjustments | Vector | Annual | 73% |
82
+ | fnd72_pit_or_is_q_is_foreign_crncy_trans_adj | Foreign Currency Translation Adjustment | Vector | Quarterly | 82% |
83
+ | fnd72_pit_or_cf_q_cf_cap_expend_prpty_add | Capital Expenditures/Property Additions | Vector | Quarterly | 85% |
84
+ | fnd72_pit_or_bs_q_bs_par_val | Par Value of Shares | Vector | Quarterly | 94% |
85
+ | fnd72_pit_or_bs_a_bs_other_lt_liabilities | Other Long-Term Liabilities | Vector | Annual | 80% |
86
+ | fnd72_pit_or_is_a_is_dil_eps_cont_ops | Diluted EPS from Continuing Operations | Vector | Annual | 95% |
87
+ | fnd72_pit_or_is_q_is_sh_for_diluted_eps | Shares for Diluted EPS Calculation | Vector | Quarterly | 93% |
88
+ | fnd72_pit_or_bs_q_minority_noncontrolling_interest | Minority/Noncontrolling Interest | Vector | Quarterly | 75% |
89
+ | fnd72_pit_or_cf_a_cf_cash_from_oper | Cash from Operating Activities | Vector | Annual | 97% |
62
90
 
63
91
  ### Field Deconstruction Analysis
64
92
 
65
- #### bs_st_debt: Short-Term Borrowings
66
- - **What is being measured?**: Financial obligations due within one fiscal year including bank overdrafts, short-term borrowings, and current portion of long-term debt
67
- - **How is it measured?**: Reported book value at period end from balance sheet, audited according to accounting standards (GAAP/IFRS)
68
- - **Time dimension**: Point-in-time snapshot (quarterly), cumulative obligation amount
69
- - **Business context**: Immediate liquidity risk and refinancing requirements; critical for working capital management assessment
70
- - **Generation logic**: Direct reporting from company financial statements, subject to audit verification
71
- - **Reliability considerations**: High reliability for standardized companies, but classification between short-term and long-term can be managed through covenant waivers or refinancing agreements announced near period-end
72
-
73
- #### sales_rev_turn: Sales/Revenue/Turnover
74
- - **What is being measured?**: Top-line income generated from core business operations before any expenses
75
- - **How is it measured?**: Accumulated transaction value over the reporting period (flow variable), recognized according to revenue recognition standards
76
- - **Time dimension**: Cumulative over fiscal quarter/year, reset each period
77
- - **Business context**: Primary indicator of market demand, pricing power, and operational scale; foundation for all profitability metrics
78
- - **Generation logic**: Accounting system aggregation of invoiced sales, net of returns and allowances
79
- - **Reliability considerations**: Subject to revenue recognition timing (quarter-end loading), channel stuffing risks, and accounting policy choices (gross vs. net reporting for intermediaries)
80
-
81
- #### cf_cash_from_oper: Cash Flow from Operations
82
- - **What is being measured?**: Actual cash generated from core business activities, adjusting net income for non-cash items and working capital changes
83
- - **How is it measured?**: Indirect method (starting from net income) or direct method (cash receipts/payments) per cash flow statement standards
84
- - **Time dimension**: Cumulative cash flow over the reporting period
85
- - **Business context**: Ultimate measure of sustainable cash generation ability; less subject to accounting manipulation than net income
86
- - **Generation logic**: Derived from income statement and balance sheet changes, subject to accounting policy choices on classification (operating vs. investing)
87
- - **Reliability considerations**: Classification flexibility allows management to shift items between operating and investing (e.g., capitalizing vs. expensing), affecting comparability
88
-
89
- #### net_inc_avail_com_shrhldrs: Net Income Available to Common
90
- - **What is being measured?**: Residual profit attributable to common equity holders after all expenses, taxes, minority interests, and preferred dividends
91
- - **How is it measured?**: Accrual-based accounting aggregation of revenues minus expenses, extraordinary items, and tax effects
92
- - **Time dimension**: Cumulative earnings over the reporting period
93
- - **Business context**: Bottom-line profitability measure determining dividend capacity, retention policy, and ROE calculations
94
- - **Generation logic**: Standardized accounting calculation but subject to significant estimation (allowances, depreciation, impairment timing)
95
- - **Reliability considerations**: High susceptibility to earnings management through accrual choices, timing of asset sales, and classification of items as extraordinary/recurring
93
+ #### fnd72_pit_or_cf_a_cf_cash_from_oper: Cash from Operating Activities
94
+ - **What is being measured?**: The total cash generated from core business operations, excluding financing and investing activities
95
+ - **How is it measured?**: Calculated from net income adjusted for non-cash items and changes in working capital
96
+ - **Time dimension**: Cumulative over fiscal period (quarterly/annual flow)
97
+ - **Business context**: Primary indicator of business sustainability and ability to fund operations internally
98
+ - **Generation logic**: Derived from cash flow statement reconciliation starting with net income
99
+ - **Reliability considerations**: Less susceptible to accounting manipulation than net income; seasonal businesses show quarterly volatility
100
+
101
+ #### fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs: Net Income Available to Common Shareholders
102
+ - **What is being measured?**: Profit attributable to common equity holders after preferred dividends and minority interests
103
+ - **How is it measured?**: Net income minus preferred dividends and earnings attributable to noncontrolling interests
104
+ - **Time dimension**: Flow measure over fiscal period
105
+ - **Business context**: Bottom-line profitability metric used for EPS calculations and dividend capacity assessment
106
+ - **Generation logic**: Final income statement line item after all expenses and distributions
107
+ - **Reliability considerations**: Subject to accounting estimates and one-time adjustments; quarterly figures may lack annual smoothing
108
+
109
+ #### fnd72_pit_or_bs_q_bs_st_debt: Short-Term Debt
110
+ - **What is being measured?**: Debt obligations due within one year including bank overdrafts and short-term borrowings
111
+ - **How is it measured?**: Reported at nominal value on balance sheet
112
+ - **Time dimension**: Point-in-time snapshot (stock measure)
113
+ - **Business context**: Indicator of immediate refinancing risk and working capital management strategy
114
+ - **Generation logic**: Directly reported liability classification based on contractual maturity
115
+ - **Reliability considerations**: High reliability as debt contracts are legally binding; watch for reclassification between ST and LT
116
+
117
+ #### fnd72_pit_or_is_a_is_int_expense: Interest Expense
118
+ - **What is being measured?**: Cost of debt financing incurred during the period
119
+ - **How is it measured?**: Accrued interest on all interest-bearing liabilities
120
+ - **Time dimension**: Flow measure over fiscal period
121
+ - **Business context**: Measures financial leverage cost and capital structure efficiency
122
+ - **Generation logic**: Calculated from debt balances and applicable interest rates
123
+ - **Reliability considerations**: Often smoothed over periods; may include capitalized interest that doesn't appear on income statement
124
+
125
+ #### fnd72_pit_or_cf_q_cf_cap_expend_prpty_add: Capital Expenditures
126
+ - **What is being measured?**: Cash outflows for acquisition of property, plant, equipment and other long-term assets
127
+ - **How is it measured?**: Direct cash flow tracking of investing activities
128
+ - **Time dimension**: Flow measure over fiscal period
129
+ - **Business context**: Indicator of growth investment vs maintenance mode; signals management confidence
130
+ - **Generation logic**: Cash flow statement investing section line item
131
+ - **Reliability considerations**: Lumpy by nature; timing of payments may differ from commitment dates
96
132
 
97
133
  ### Field Relationship Mapping
98
134
 
99
135
  **The Story This Data Tells**:
100
- This dataset narrates the transformation of capital into profits through operational activities. It tracks how companies finance themselves (debt/equity mix), deploy capital into assets (tangible, intangible, working capital), generate revenues through operations, convert revenues into cash, and distribute returns to stakeholders. The vector structure enables observation of how these relationships evolve through time—whether capital structures stabilize or destabilize, whether working capital efficiency improves or deteriorates, and whether accounting profits translate into cash reality.
136
+ This dataset narrates the complete financial lifecycle of a corporation: how it generates cash from operations (cash_from_oper), how it invests in growth (cap_expend_prpty_add), how it finances these activities (cash_from_fnc_act, st_debt), and how it returns value to shareholders (tot_cash_com_dvd). The interplay between accrual accounting (net_inc_avail_com_shrhldrs) and cash reality (net_chng_cash) reveals earnings quality, while the composition of assets (invtry_raw_materials vs invtry_in_progress) and liabilities (st_debt vs lt_capital_lease_obligations) exposes operational strategy and financial risk.
101
137
 
102
138
  **Key Relationships Identified**:
103
- 1. **Accrual Convergence**: The relationship between `net_inc_avail_com_shrhldrs` (accrual earnings) and `cf_cash_from_oper` (cash earnings) reveals earnings quality; persistent divergence suggests aggressive revenue recognition or inefficient working capital management
104
- 2. **Capital Intensity Cycle**: `cf_cap_expend_prpty_add` (investment) relative to `depreciation_expense` (maintenance) indicates growth mode vs. harvest mode; when combined with `sales_rev_turn` growth, reveals capital efficiency
105
- 3. **Liquidity Transformation**: The conversion cycle from `invtry_raw_materials` `invtry_in_progress` `invtry_finished_goods` `accts_rec_excl_notes_rec` → `cf_cash_from_oper` maps the operating cycle duration and bottlenecks
106
- 4. **Financial Leverage Mechanics**: `is_int_expense` relative to `eff_int_rate` and total debt (`bs_st_borrow` + `bs_lt_borrow`) reveals debt pricing efficiency and covenant compliance pressure
139
+ 1. **Cash Conversion Cycle**: Inventory stages (raw materials work in progress) Receivables Cash flow timing relationships
140
+ 2. **Capital Structure Dynamics**: Short-term debt + Long-term leases vs Operating cash flow (solvency assessment)
141
+ 3. **Earnings Composition**: Net income vs Comprehensive income divergence (foreign exchange, unrealized gains, pension adjustments)
142
+ 4. **Dividend Capacity**: Retained earnings accumulation vs Cash paid for dividends (payout sustainability)
107
143
 
108
144
  **Missing Pieces That Would Complete the Picture**:
109
- - Real-time covenant compliance status and credit facility availability (current vs. committed)
110
- - Segment-level breakdowns to identify which business units drive consolidated metrics
111
- - Off-balance-sheet contingent liabilities and derivative exposures not captured in deferred tax or lease fields
112
- - Management guidance and consensus expectations to contextualize realized performance
145
+ - Market capitalization data to link fundamentals to valuation (P/E, P/B ratios)
146
+ - Sector/industry classifications for relative comparisons
147
+ - Historical price data for market-based feature validation
148
+ - Accounts payable data to complete working capital cycle analysis
113
149
 
114
150
  ---
115
151
 
@@ -117,246 +153,263 @@ This dataset narrates the transformation of capital into profits through operati
117
153
 
118
154
  ### Q1: "What is stable?" (Invariance Features)
119
155
 
120
- **Concept**: Capital Structure Stability Coefficient
121
- - **Sample Fields Used**: bs_st_borrow, bs_lt_borrow, bs_tot_asset
122
- - **Definition**: Coefficient of variation of total debt-to-assets ratio measured over trailing 4 quarters
123
- - **Why This Feature**: Capital structure volatility predicts financial distress independently of leverage levels; stable leverage indicates disciplined financial policy and lower refinancing risk
124
- - **Logical Meaning**: Measures the consistency of a company's financing decisions and capital allocation stability
125
- - **Directionality**: Lower values indicate more stable capital structure (positive signal for credit quality); higher values indicate erratic financing behavior
126
- - **Boundary Conditions**: Approaches 0 for perfectly stable capital structures; spikes during acquisitions, divestitures, or financial stress
127
- - **Implementation Example**: `divide(ts_std_dev(divide(add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow})), vec_avg({bs_tot_asset})), 252), abs(ts_mean(divide(add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow})), vec_avg({bs_tot_asset})), 252)))`
128
-
129
- **Concept**: Operating Cash Flow Persistence Ratio
130
- - **Sample Fields Used**: cf_cash_from_oper, sales_rev_turn
131
- - **Definition**: Rolling 8-quarter correlation between operating cash flow and sales revenue
132
- - **Why This Feature**: Stable conversion of sales to cash indicates sustainable business model; volatility suggests working capital management issues or revenue recognition concerns
133
- - **Logical Meaning**: Measures the reliability and predictability of cash generation from core operations
134
- - **Directionality**: Higher values (closer to 1) indicate stable conversion efficiency; lower/negative values indicate deteriorating cash conversion
135
- - **Boundary Conditions**: 1.0 = perfect linear relationship; 0 = no relationship; negative values suggest inverse relationship (potential accounting issues)
136
- - **Implementation Example**: `ts_corr(vec_avg({cf_cash_from_oper}), vec_avg({sales_rev_turn}), 504)`
156
+ **Concept**: Interest Expense Stability Coefficient
157
+ - **Sample Fields Used**: int_expense
158
+ - **Definition**: Coefficient of variation (standard deviation divided by mean) of interest expense over trailing 252 days
159
+ - **Why This Feature**: Stable interest expenses indicate predictable debt service obligations and conservative capital structure management; high volatility suggests refinancing risk or variable rate exposure
160
+ - **Logical Meaning**: Measures the consistency of financing costs over time; invariant firms have predictable capital structures
161
+ - **is filling nan necessary**: Backfilling may be appropriate for quarterly reporting gaps, but zero values should not be filled as they indicate no interest expense
162
+ - **Directionality**: Lower values indicate stability (desirable); higher values indicate financial stress or variable rate exposure
163
+ - **Boundary Conditions**: Values approaching zero indicate either no debt or perfectly fixed rates; extreme spikes indicate distressed refinancing
164
+ - **Implementation Example**: divide(ts_std_dev(vec_avg({int_expense}), 252), abs(ts_mean(vec_avg({int_expense}), 252)))
165
+
166
+ **Concept**: Operating Cash Flow Persistence
167
+ - **Sample Fields Used**: cash_from_oper
168
+ - **Definition**: Rolling 504-day autocorrelation of operating cash flow levels
169
+ - **Why This Feature**: Persistent operating cash flows indicate sustainable business models; erratic cash generation suggests cyclicality or working capital management issues
170
+ - **Logical Meaning**: Captures the stability of core business cash generation independent of accounting accruals
171
+ - **is filling nan necessary**: Quarterly gaps should be backfilled using ts_backfill to maintain continuity for time series calculations
172
+ - **Directionality**: Higher values (closer to 1.0) indicate stable, predictable cash generation
173
+ - **Boundary Conditions**: Negative autocorrelation suggests mean-reverting or cyclical cash flows; values >0.8 indicate exceptional stability
174
+ - **Implementation Example**: ts_corr(vec_avg({cash_from_oper}), ts_delay(vec_avg({cash_from_oper}), 252), 504)
137
175
 
138
176
  ---
139
177
 
140
178
  ### Q2: "What is changing?" (Dynamics Features)
141
179
 
142
- **Concept**: Working Capital Velocity Acceleration
180
+ **Concept**: Capital Expenditure Acceleration
181
+ - **Sample Fields Used**: cap_expend_prpty_add
182
+ - **Definition**: Year-over-year change in capital expenditures normalized by trailing average total assets
183
+ - **Why This Feature**: Accelerating capex signals management confidence in growth prospects; deceleration suggests caution or capacity saturation
184
+ - **Logical Meaning**: Captures investment momentum relative to firm size, indicating strategic inflection points
185
+ - **is filling nan necessary**: Zero values represent actual lack of investment and should not be filled; missing data requires backfilling
186
+ - **Directionality**: Positive values indicate expansion; negative values indicate contraction or maintenance mode
187
+ - **Boundary Conditions**: Extreme positive values (>50% of assets) suggest aggressive growth or acquisition activity; sustained negative values indicate asset-light transitions
188
+ - **Implementation Example**: divide(ts_delta(vec_avg({cap_expend_prpty_add}), 252), ts_mean(vec_avg({tot_asset}), 252))
189
+
190
+ **Concept**: Working Capital Velocity Shift
143
191
  - **Sample Fields Used**: chng_non_cash_work_cap, sales_rev_turn
144
- - **Definition**: Quarterly change in the ratio of non-cash working capital changes to sales revenue
145
- - **Why This Feature**: Accelerating working capital investment relative to sales growth indicates potential demand slowdown, inventory obsolescence, or loosening credit terms to sustain revenue
146
- - **Logical Meaning**: Captures the momentum of capital tied up in operations; positive acceleration suggests inefficiency or growth investment
147
- - **Directionality**: Positive values suggest increasing working capital intensity (potential negative); negative values suggest improving efficiency
148
- - **Boundary Conditions**: Extreme positive values during inventory buildups or receivables blowouts; extreme negative during liquidations or payables stretch
149
- - **Implementation Example**: `ts_delta(divide(vec_avg({chng_non_cash_work_cap}), vec_avg({sales_rev_turn})), 63)`
150
-
151
- **Concept**: Inventory Stage Transition Rate
152
- - **Sample Fields Used**: invtry_raw_materials, invtry_in_progress, invtry_finished_goods, sales_rev_turn
153
- - **Definition**: Change in the composition of inventory (raw materials vs. finished goods) relative to sales growth
154
- - **Why This Feature**: Shifts from finished goods to raw materials indicate anticipated demand changes or supply chain disruptions; opposite suggests production bottlenecks or demand shortfalls
155
- - **Logical Meaning**: Measures production pipeline dynamics and supply chain positioning
156
- - **Directionality**: Increasing raw materials ratio suggests bullish production outlook; increasing finished goods suggests potential overproduction
157
- - **Boundary Conditions**: Extreme values indicate supply chain crises (raw materials accumulation) or demand collapse (finished goods pile-up)
158
- - **Implementation Example**: `ts_delta(divide(vec_avg({invtry_raw_materials}), add(add(vec_avg({invtry_raw_materials}), vec_avg({invtry_in_progress})), vec_avg({invtry_finished_goods}))), 63)`
192
+ - **Definition**: Rate of change in non-cash working capital relative to revenue growth over trailing 126 days
193
+ - **Why This Feature**: Divergence between working capital needs and revenue growth indicates efficiency gains or deterioration in receivables/payables management
194
+ - **Logical Meaning**: Measures whether the company is monetizing its working capital (positive divergence) or consuming cash to fund growth (negative)
195
+ - **is filling nan necessary**: Working capital changes can be legitimately zero; fill only true missing values
196
+ - **Directionality**: Positive divergence (working capital decreasing while revenue growing) indicates efficiency; negative suggests cash consumption
197
+ - **Boundary Conditions**: Extreme values indicate one-time working capital events or seasonal distortions
198
+ - **Implementation Example**: subtract(ts_delta(vec_avg({chng_non_cash_work_cap}), 126), ts_delta(vec_avg({sales_rev_turn}), 126))
159
199
 
160
200
  ---
161
201
 
162
202
  ### Q3: "What is anomalous?" (Deviation Features)
163
203
 
164
- **Concept**: Interest Expense Efficiency Gap
165
- - **Sample Fields Used**: is_int_expense, bs_st_borrow, bs_lt_borrow, eff_int_rate
166
- - **Definition**: Deviation of actual interest expense from predicted interest expense (effective rate × average debt)
167
- - **Why This Feature**: Anomalous gaps reveal financial engineering (capitalized interest), covenant violations triggering rate spikes, or non-standard debt instruments (convertibles, hybrids)
168
- - **Logical Meaning**: Identifies unexplained cost of debt deviations from contractual terms
169
- - **Directionality**: Positive values (actual > predicted) suggest hidden costs or rate spikes; negative values suggest interest capitalization or subsidized financing
170
- - **Boundary Conditions**: Large deviations indicate accounting classification issues or financial distress triggering penalty rates
171
- - **Implementation Example**: `subtract(divide(vec_avg({is_int_expense}), add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow}))), vec_avg({eff_int_rate}))`
172
-
173
- **Concept**: Receivables Turnover Z-Score
174
- - **Sample Fields Used**: accts_rec_excl_notes_rec, sales_rev_turn
175
- - **Definition**: Time-series z-score of receivables days (receivables/sales) relative to trailing 2-year history
176
- - **Why This Feature**: Unexplained lengthening of collection periods indicates customer financial stress, revenue recognition aggressiveness, or competitive pressure requiring relaxed terms
177
- - **Logical Meaning**: Statistical anomaly detection for collection efficiency
178
- - **Directionality**: High positive values indicate unusual receivables buildup (negative signal); negative values indicate unusual improvement
179
- - **Boundary Conditions**: Values beyond ±2 standard deviations suggest significant operational or accounting changes
180
- - **Implementation Example**: `ts_av_diff(divide(vec_avg({accts_rec_excl_notes_rec}), vec_avg({sales_rev_turn})), 504)`
204
+ **Concept**: Comprehensive Income Divergence
205
+ - **Sample Fields Used**: comprehensive_income, net_inc_avail_com_shrhldrs
206
+ - **Definition**: Absolute deviation of comprehensive income from net income, normalized by total assets
207
+ - **Why This Feature**: Large deviations indicate significant unrealized gains/losses, foreign exchange impacts, or pension adjustments not captured in net income, signaling earnings quality issues
208
+ - **Logical Meaning**: Identifies periods where "hidden" volatility in other comprehensive income components materially impacts total economic performance
209
+ - **is filling nan necessary**: Comprehensive income components may be missing for some periods; backfill only if subsequent data exists
210
+ - **Directionality**: Higher values indicate lower earnings quality and greater off-income-statement volatility
211
+ - **Boundary Conditions**: Values >5% of assets suggest material non-operating adjustments; persistent deviations indicate structural currency or pension exposure
212
+ - **Implementation Example**: divide(abs(subtract(vec_avg({comprehensive_income}), vec_avg({net_inc_avail_com_shrhldrs}))), vec_avg({tot_asset}))
213
+
214
+ **Concept**: Abnormal Tax Effect Detection
215
+ - **Sample Fields Used**: tax_eff_on_abnormal_item
216
+ - **Definition**: Z-score of current tax effects on abnormal items relative to trailing 2-year history
217
+ - **Why This Feature**: Unusual tax adjustments often precede restatements or indicate aggressive tax position recognition; anomalous values warrant scrutiny
218
+ - **Logical Meaning**: Captures outlier tax adjustments that deviate from historical patterns of one-time item treatment
219
+ - **is filling nan necessary**: Absence of abnormal items (zero/NaN) is meaningful and should not be filled
220
+ - **Directionality**: Extreme positive or negative z-scores indicate unusual tax events; zero indicates normal operations
221
+ - **Boundary Conditions**: |z-score| > 3 indicates statistically significant anomaly requiring investigation
222
+ - **Implementation Example**: divide(subtract(vec_avg({tax_eff_on_abnormal_item}), ts_mean(vec_avg({tax_eff_on_abnormal_item}), 504)), ts_std_dev(vec_avg({tax_eff_on_abnormal_item}), 504))
181
223
 
182
224
  ---
183
225
 
184
226
  ### Q4: "What is combined?" (Interaction Features)
185
227
 
186
- **Concept**: Financial Leverage Efficiency Product
187
- - **Sample Fields Used**: net_inc_avail_com_shrhldrs, bs_tot_asset, bs_tot_eqy
188
- - **Definition**: Interaction of return on assets and equity multiplier (Assets/Equity)
189
- - **Why This Feature**: Combines operational efficiency with capital structure to identify value-creating leverage vs. value-destroying leverage; high ROA with high leverage creates amplified returns, low ROA with high leverage creates distress
190
- - **Logical Meaning**: Measures the multiplicative effect of capital structure on operational returns
191
- - **Directionality**: Higher values indicate efficient use of leverage; negative values indicate leverage magnifying losses
192
- - **Boundary Conditions**: Extreme values during high profitability with high leverage (optimal) or high losses with high leverage (distress)
193
- - **Implementation Example**: `multiply(divide(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({bs_tot_asset})), divide(vec_avg({bs_tot_asset}), vec_avg({bs_tot_eqy})))`
194
-
195
- **Concept**: Operating Liability Financing Efficiency
196
- - **Sample Fields Used**: cf_cash_from_oper, bs_acct_payable, bs_other_cur_liab
197
- - **Definition**: Operating cash flow generated per dollar of operating liabilities (payables + accrued expenses)
198
- - **Why This Feature**: Combines supplier financing utilization with cash conversion efficiency; high values indicate masterful working capital management, low values indicate inefficient operations despite supplier credit
199
- - **Logical Meaning**: Measures efficiency of converting supplier credit into operating cash flow
200
- - **Directionality**: Higher values indicate superior working capital management; declining values suggest supplier terms tightening or operational deterioration
201
- - **Boundary Conditions**: Very high values during cash conversion cycle optimization; very low or negative during operational losses
202
- - **Implementation Example**: `divide(vec_avg({cf_cash_from_oper}), add(vec_avg({bs_acct_payable}), vec_avg({bs_other_cur_liab})))`
228
+ **Concept**: Debt Servicing Coverage Ratio
229
+ - **Sample Fields Used**: cash_from_oper, cash_paid_for_int_debt
230
+ - **Definition**: Operating cash flow divided by cash interest paid, with 126-day smoothing
231
+ - **Why This Feature**: Directly measures ability to service debt obligations from operations; critical distress predictor combining liquidity generation with financing burden
232
+ - **Logical Meaning**: Synthesis of operational performance (numerator) and financial leverage cost (denominator)
233
+ - **is filling nan necessary**: Missing interest payments should be treated as zero only if confirmed no debt; otherwise backfill
234
+ - **Directionality**: Higher values indicate stronger coverage (>3 is healthy); values <1 indicate distress
235
+ - **Boundary Conditions**: Values approaching infinity indicate no debt; negative values indicate cash burn despite interest obligations
236
+ - **Implementation Example**: divide(ts_mean(vec_avg({cash_from_oper}), 126), ts_mean(vec_avg({cash_paid_for_int_debt}), 126))
237
+
238
+ **Concept**: Asset Composition Efficiency
239
+ - **Sample Fields Used**: accts_rec_excl_notes_rec, invtry_raw_materials, invtry_in_progress, sales_rev_turn
240
+ - **Definition**: Revenue divided by sum of receivables and inventory components, measuring working capital turnover
241
+ - **Why This Feature**: Combines multiple asset classes to assess overall working capital efficiency; low values indicate capital tied up in operations
242
+ - **Logical Meaning**: Measures how effectively the firm converts asset investments (receivables + inventory) into revenue
243
+ - **is filling nan necessary**: Missing inventory components should be treated as zero if not applicable to business model (e.g., service firms)
244
+ - **Directionality**: Higher values indicate efficient asset utilization; declining trends suggest operational inefficiency
245
+ - **Boundary Conditions**: Industry-dependent; retail typically 6-12x, manufacturing 3-6x; extreme values indicate just-in-time success or data errors
246
+ - **Implementation Example**: divide(vec_avg({sales_rev_turn}), add(vec_avg({accts_rec_excl_notes_rec}), vec_avg({invtry_raw_materials}), vec_avg({invtry_in_progress})))
203
247
 
204
248
  ---
205
249
 
206
250
  ### Q5: "What is structural?" (Composition Features)
207
251
 
208
- **Concept**: Liquid Asset Purity Ratio
209
- - **Sample Fields Used**: bs_cash_near_cash_item, bs_accts_rec_excl_notes_rec, inventories, bs_cur_asset_report
210
- - **Definition**: Proportion of current assets comprised of cash and near-cash items versus receivables and inventory
211
- - **Why This Feature**: Composition of current assets indicates liquidity quality; high receivables/inventory suggests committed working capital, high cash suggests flexibility but potentially inefficient deployment
212
- - **Logical Meaning**: Measures the liquidity structure and quality of current assets
213
- - **Directionality**: Higher values indicate higher liquidity quality (more cash); lower values indicate capital-intensive working capital structure
214
- - **Boundary Conditions**: Approaches 1.0 for cash-rich companies; approaches 0 for highly leveraged working capital structures
215
- - **Implementation Example**: `divide(add(add(vec_avg({bs_cash_near_cash_item}), vec_avg({accts_rec_excl_notes_rec})), vec_avg({inventories})), vec_avg({bs_cur_asset_report}))`
216
-
217
- **Concept**: Tangible Capital Structure
218
- - **Sample Fields Used**: bs_disclosed_intangibles, bs_tot_asset, bs_tot_liab_eqy
219
- - **Definition**: Net tangible assets (total assets minus intangibles) as a proportion of total capital
220
- - **Why This Feature**: Intangibles represent uncertain liquidation values; this metric reveals the tangible collateral backing the capital structure, critical for credit analysis and liquidation scenarios
221
- - **Logical Meaning**: Measures the tangible asset backing of the enterprise value
222
- - **Directionality**: Higher values indicate more collateralizable assets (safer for creditors); lower values indicate knowledge-intensive/asset-light models
223
- - **Boundary Conditions**: Near 0 for pure IP/brand companies; near 1 for heavy industrial companies
224
- - **Implementation Example**: `divide(subtract(vec_avg({bs_tot_asset}), vec_avg({bs_disclosed_intangibles})), vec_avg({bs_tot_liab_eqy}))`
252
+ **Concept**: Short-Term Debt Dependency Ratio
253
+ - **Sample Fields Used**: st_debt, other_st_liab, def_tax_liab, tot_liab_eqy
254
+ - **Definition**: Short-term debt as proportion of total liabilities, capturing capital structure maturity profile
255
+ - **Why This Feature**: High short-term dependency indicates refinancing risk and liquidity vulnerability; structural measure of financial risk
256
+ - **Logical Meaning**: Decomposes liability structure to identify maturity mismatch risks in the capital stack
257
+ - **is filling nan necessary**: Zero short-term debt is valid and should not be filled; missing total liabilities requires data validation
258
+ - **Directionality**: Lower values indicate long-term financing security; higher values indicate reliance on rolling short-term funding
259
+ - **Boundary Conditions**: Values >0.4 indicate dangerous short-term dependency; zero indicates conservative long-term financing
260
+ - **Implementation Example**: divide(vec_avg({st_debt}), add(vec_avg({other_st_liab}), vec_avg({def_tax_liab}), vec_avg({st_debt}), vec_avg({tot_liab_eqy})))
261
+
262
+ **Concept**: Operating Lease Commitment Concentration
263
+ - **Sample Fields Used**: rental_exp_year_4, rental_exp_year_5, tot_asset
264
+ - **Definition**: Forward lease commitments (years 4-5) as percentage of total assets, measuring off-balance-sheet liability exposure
265
+ - **Why This Feature**: Captures long-term lease obligations not fully reflected in debt metrics; critical for retail, airline, and real estate intensive industries
266
+ - **Logical Meaning**: Structural exposure to long-term fixed obligations requiring future cash generation
267
+ - **is filling nan necessary**: Missing future lease commitments may indicate no leases or disclosure gaps; verify before filling
268
+ - **Directionality**: Higher values indicate significant off-balance-sheet leverage; low values indicate asset-light or owned-asset models
269
+ - **Boundary Conditions**: Values >20% of assets indicate lease-dependent business model; zero indicates minimal lease exposure
270
+ - **Implementation Example**: divide(add(vec_avg({rental_exp_year_4}), vec_avg({rental_exp_year_5})), vec_avg({tot_asset}))
225
271
 
226
272
  ---
227
273
 
228
274
  ### Q6: "What is cumulative?" (Accumulation Features)
229
275
 
230
- **Concept**: Retained Earnings Reinvestment Rate
231
- - **Sample Fields Used**: pure_retained_earnings, net_inc_avail_com_shrhldrs, tot_cash_com_dvd
232
- - **Definition**: Proportion of earnings retained (net income minus dividends) relative to existing retained earnings base
233
- - **Why This Feature**: Cumulative retention policy indicates growth orientation vs. harvest mode; rapid accumulation suggests reinvestment opportunities, depletion suggests losses or dividend payouts exceeding earnings
234
- - **Logical Meaning**: Measures the growth rate of the cumulative earnings reservoir
235
- - **Directionality**: Positive values indicate earnings accumulation; negative values indicate retained earnings depletion (losses or excess dividends)
236
- - **Boundary Conditions**: High positive values during growth phases; negative values during restructuring or dividend recapitalizations
237
- - **Implementation Example**: `divide(subtract(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({tot_cash_com_dvd})), vec_avg({pure_retained_earnings}))`
238
-
239
- **Concept**: Cumulative Capital Intensity
240
- - **Sample Fields Used**: cap_expend_prpty_add, bs_tot_asset
241
- - **Definition**: Trailing 12-month capital expenditures as a proportion of total asset base
242
- - **Why This Feature**: Cumulative investment intensity indicates maintenance vs. growth capex; sustained high levels suggest expansion or replacement cycles, low levels suggest asset sweating or underinvestment
243
- - **Logical Meaning**: Measures the rate of asset base renewal and expansion
244
- - **Directionality**: Higher values indicate aggressive investment/growth; lower values indicate asset harvesting or underinvestment
245
- - **Boundary Conditions**: Extreme values during major expansion cycles (high) or asset-light transitions (low)
246
- - **Implementation Example**: `divide(ts_sum(vec_avg({cap_expend_prpty_add}), 252), vec_avg({bs_tot_asset}))`
276
+ **Concept**: Cumulative Free Cash Generation
277
+ - **Sample Fields Used**: cash_from_oper, cap_expend_prpty_add
278
+ - **Definition**: Rolling 504-day sum of operating cash flow minus capital expenditures
279
+ - **Why This Feature**: Cumulative free cash flow indicates long-term value creation capacity; negative accumulation signals unsustainable business model
280
+ - **Logical Meaning**: Accumulated net cash available for shareholders after maintaining and expanding asset base
281
+ - **is filling nan necessary**: Quarterly data requires backfilling to ensure continuous accumulation
282
+ - **Directionality**: Positive and growing values indicate value creation; negative values indicate cash consumption
283
+ - **Boundary Conditions**: Sustained negative accumulation over 2+ years indicates structural cash burn; extreme positive indicates cash hoarding
284
+ - **Implementation Example**: ts_sum(subtract(vec_avg({cash_from_oper}), vec_avg({cap_expend_prpty_add})), 504)
285
+
286
+ **Concept**: Retained Earnings Growth Trajectory
287
+ - **Sample Fields Used**: retain_earn
288
+ - **Definition**: 3-year cumulative change in retained earnings normalized by average total assets
289
+ - **Why This Feature**: Measures long-term profit retention and reinvestment success; declining cumulative trend indicates dividend overpayment or accumulated losses
290
+ - **Logical Meaning**: Accumulated historical profitability available for reinvestment or distribution
291
+ - **is filling nan necessary**: Annual data points require interpolation or backfilling for quarterly analysis
292
+ - **Directionality**: Positive cumulative growth indicates value retention; negative indicates eroding equity base
293
+ - **Boundary Conditions**: Declining values approaching zero indicate depleted equity; rapid growth indicates aggressive retention
294
+ - **Implementation Example**: divide(ts_sum(ts_delta(vec_avg({retain_earn}), 252), 756), ts_mean(vec_avg({tot_asset}), 756))
247
295
 
248
296
  ---
249
297
 
250
298
  ### Q7: "What is relative?" (Comparison Features)
251
299
 
252
- **Concept**: Peer-Neutralized Profitability
253
- - **Sample Fields Used**: net_inc_avail_com_shrhldrs, bs_tot_asset
254
- - **Definition**: Cross-sectional residual of ROA after controlling for total asset size (industry-adjusted return)
255
- - **Why This Feature**: Raw profitability varies by industry and scale; neutralizing removes sector and size effects to identify true operational outperformance vs. peers
256
- - **Logical Meaning**: Relative positioning of profitability within the cross-section of comparable firms
257
- - **Directionality**: Positive residuals indicate above-peer performance; negative indicates below-peer
258
- - **Boundary Conditions**: Extreme positive values indicate exceptional moats; extreme negative indicates structural disadvantages
259
- - **Implementation Example**: `regression_neut(divide(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({bs_tot_asset})), vec_avg({bs_tot_asset}))`
260
-
261
- **Concept**: Quantile Leverage Position
262
- - **Sample Fields Used**: bs_st_borrow, bs_lt_borrow, bs_tot_eqy
263
- - **Definition**: Gaussian quantile ranking of total debt-to-equity ratio within the universe
264
- - **Why This Feature**: Relative leverage position indicates financial risk tolerance compared to peers; extreme percentiles suggest vulnerability to sector-wide credit crunches or capacity for opportunistic leverage increases
265
- - **Logical Meaning**: Relative financial risk positioning within the market cross-section
266
- - **Directionality**: Higher quantiles indicate higher relative leverage (typically negative for risk); lower quantiles indicate conservative positioning
267
- - **Boundary Conditions**: 0.5 represents median leverage; tails represent extreme conservative/aggressive postures
268
- - **Implementation Example**: `quantile(divide(add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow})), vec_avg({bs_tot_eqy})), driver="gaussian")`
300
+ **Concept**: Effective Interest Rate Spread
301
+ - **Sample Fields Used**: eff_int_rate, int_expense, tot_asset
302
+ - **Definition**: Effective interest rate minus implied rate (interest expense/average total assets), measuring debt cost efficiency
303
+ - **Why This Feature**: Positive spread indicates efficient debt management vs industry; negative suggests high-cost borrowing or inefficient capital structure
304
+ - **Logical Meaning**: Relative positioning of the firm's debt costs versus its asset scale and stated effective rates
305
+ - **is filling nan necessary**: Ensure both rate and expense data align temporally before calculation
306
+ - **Directionality**: Negative values indicate favorable borrowing costs relative to asset base; positive suggests expensive leverage
307
+ - **Boundary Conditions**: Extreme deviations (>5%) indicate measurement errors or non-standard debt instruments
308
+ - **Implementation Example**: subtract(vec_avg({eff_int_rate}), divide(vec_avg({int_expense}), ts_mean(vec_avg({tot_asset}), 126)))
309
+
310
+ **Concept**: Comprehensive Income Gaussian Rank
311
+ - **Sample Fields Used**: comprehensive_income, net_inc_avail_com_shrhldrs
312
+ - **Definition**: Cross-sectional Gaussian quantile of the ratio of comprehensive income to net income
313
+ - **Why This Feature**: Relative positioning within universe identifies outliers in earnings quality; extreme ranks indicate unusual comprehensive income components
314
+ - **Logical Meaning**: Relative comparison of total economic income versus reported net income across peers
315
+ - **is filling nan necessary**: Missing comprehensive income should be excluded from ranking rather than filled
316
+ - **Directionality**: Extreme positive ranks indicate significant OCI gains; extreme negative indicate OCI losses
317
+ - **Boundary Conditions**: Values beyond 2 sigma indicate material divergence from typical earnings composition
318
+ - **Implementation Example**: quantile(divide(vec_avg({comprehensive_income}), vec_avg({net_inc_avail_com_shrhldrs})), driver="gaussian", sigma=1.0)
269
319
 
270
320
  ---
271
321
 
272
322
  ### Q8: "What is essential?" (Essence Features)
273
323
 
274
- **Concept**: Economic Profit Margin
275
- - **Sample Fields Used**: net_inc_avail_com_shrhldrs, sales_rev_turn, is_int_expense
276
- - **Definition**: Net income margin adjusted for after-tax interest expense to reveal unlevered operational profitability
277
- - **Why This Feature**: Strips away financing decisions to reveal core business economics; essential measure of operational moat independent of capital structure choices
278
- - **Logical Meaning**: Pure operating profitability before financing effects
279
- - **Directionality**: Higher values indicate stronger pricing power and cost control; negative values indicate economically unviable operations
280
- - **Boundary Conditions**: High positive values indicate strong moats; consistent negative values suggest business model failure
281
- - **Implementation Example**: `subtract(divide(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({sales_rev_turn})), divide(vec_avg({is_int_expense}), vec_avg({sales_rev_turn})))`
282
-
283
- **Concept**: Cash Conversion Authenticity
284
- - **Sample Fields Used**: cf_cash_from_oper, net_inc_avail_com_shrhldrs
285
- - **Definition**: Ratio of operating cash flow to net income measuring the "cash reality" of reported earnings
286
- - **Why This Feature**: Essential validation of earnings quality; sustained ratios below 1 indicate accrual-based earnings inflation, above 1 indicates conservative accounting or working capital release
287
- - **Logical Meaning**: Measures the cash realization rate of accounting profits
288
- - **Directionality**: Values consistently above 1 indicate high-quality earnings; values below 1 indicate low-quality, accrual-heavy earnings
289
- - **Boundary Conditions**: Approaches 0 for highly accrual-based earnings; high values during working capital liquidation or prepayment collection
290
- - **Implementation Example**: `divide(vec_avg({cf_cash_from_oper}), vec_avg({net_inc_avail_com_shrhldrs}))`
324
+ **Concept**: Core Operating Cash Persistence
325
+ - **Sample Fields Used**: cash_from_oper, net_inc_avail_com_shrhldrs, unrealized_gain_loss_comp_inc
326
+ - **Definition**: Operating cash flow divided by net income adjusted for comprehensive income volatility, stripping out non-cash and non-operating distortions
327
+ - **Why This Feature**: Distills true cash conversion efficiency by removing accounting artifacts and unrealized gains; essential measure of earnings quality
328
+ - **Logical Meaning**: Pure cash generation capability independent of accrual accounting and mark-to-market volatility
329
+ - **is filling nan necessary**: Unrealized gains may be zero for many firms; this is valid data
330
+ - **Directionality**: Values consistently >1.0 indicate high-quality earnings converting to cash; <1.0 indicates aggressive revenue recognition
331
+ - **Boundary Conditions**: Sustained values <0.5 indicate potential accounting issues; >2.0 indicates working capital optimization or deferred revenue
332
+ - **Implementation Example**: divide(vec_avg({cash_from_oper}), subtract(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({unrealized_gain_loss_comp_inc})))
333
+
334
+ **Concept**: Fundamental Solvency Essence
335
+ - **Sample Fields Used**: cash_from_oper, st_debt, other_st_liab, cash_paid_for_int_debt
336
+ - **Definition**: Operating cash flow coverage of all short-term obligations including interest, measuring pure liquidity adequacy without refinancing dependency
337
+ - **Why This Feature**: Essential liquidity metric focusing on operational self-sufficiency; removes equity market and long-term financing noise
338
+ - **Logical Meaning**: Can the business fund its immediate obligations from operations alone?
339
+ - **is filling nan necessary**: Ensure all liability components are captured; missing values may understate obligations
340
+ - **Directionality**: Values >2.0 indicate operational self-sufficiency; <1.0 indicates dependency on external financing
341
+ - **Boundary Conditions**: Values approaching zero indicate immediate liquidity crisis; extremely high values indicate inefficient capital structure
342
+ - **Implementation Example**: divide(vec_avg({cash_from_oper}), add(vec_avg({st_debt}), vec_avg({other_st_liab}), vec_avg({cash_paid_for_int_debt})))
291
343
 
292
344
  ---
293
345
 
294
346
  ## Implementation Considerations
295
347
 
296
348
  ### Data Quality Notes
297
- - **Coverage**: Quarterly fundamental data covers approximately 85-95% of TOP3000 universe with lagged reporting for smaller-capitalization companies
298
- - **Timeliness**: Data updates with T+1 delay (field date reporting), though actual fiscal period end dates vary (fiscal year mismatches common)
299
- - **Accuracy**: Subject to restatements and amendments; annual data more reliable than quarterly due to audit requirements
300
- - **Potential Biases**: Survivorship bias in historical vectors due to delistings; sector-specific accounting differences (financials vs. industrials)
349
+ - **Coverage**: Balance sheet items show 95%+ coverage; comprehensive income components and pension data show lower coverage (65-75%) due to disclosure variations
350
+ - **Timeliness**: Quarterly data available with 45-60 day lag; annual data provides more complete lease obligation and pension disclosures
351
+ - **Accuracy**: Cash flow data highly reliable due to direct cash tracking; accrual-based income statement items subject to estimate revisions
352
+ - **Potential Biases**: Survivorship bias in historical data; backfilling may introduce look-ahead bias if not carefully managed
301
353
 
302
354
  ### Computational Complexity
303
- - **Lightweight features**: Single-period vector averages and simple ratios (e.g., `divide(vec_avg({bs_st_borrow}), vec_avg({bs_tot_asset}))`)
304
- - **Medium complexity**: Time-series operations on vector aggregates (e.g., `ts_corr`, `ts_std_dev` on vec_avg outputs with 252-day lookbacks)
305
- - **Heavy computation**: Multi-layered nested operations combining time-series and cross-sectional operators (e.g., `regression_neut` of `ts_delta` ratios)
355
+ - **Lightweight features**: Single-field transformations (Interest Expense Stability, Capital Expenditure Acceleration)
356
+ - **Medium complexity**: Multi-field arithmetic with time series smoothing (Debt Servicing Coverage, Asset Composition Efficiency)
357
+ - **Heavy computation**: Long-horizon rolling sums and cross-sectional rankings (Cumulative Free Cash Generation, Comprehensive Income Gaussian Rank)
306
358
 
307
359
  ### Recommended Prioritization
308
360
 
309
361
  **Tier 1 (Immediate Implementation)**:
310
- 1. **Cash Conversion Authenticity** - Core earnings quality measure with strong theoretical foundation and low computational overhead
311
- 2. **Interest Expense Efficiency Gap** - Reveals financial distress signals and accounting anomalies early
312
- 3. **Peer-Neutralized Profitability** - Essential for cross-sectional comparison in heterogeneous universes
362
+ 1. **Debt Servicing Coverage Ratio** - Direct distress predictor, high interpretability, uses high-quality cash flow data
363
+ 2. **Core Operating Cash Persistence** - Essential earnings quality metric, combines multiple statement types
364
+ 3. **Short-Term Debt Dependency Ratio** - Structural risk measure using reliable balance sheet data
313
365
 
314
366
  **Tier 2 (Secondary Priority)**:
315
- 1. **Capital Structure Stability Coefficient** - Predicts distress but requires longer lookback windows
316
- 2. **Tangible Capital Structure** - Critical for credit analysis but sector-dependent interpretation
317
- 3. **Working Capital Velocity Acceleration** - Leading indicator but noisy in seasonal businesses
367
+ 1. **Comprehensive Income Divergence** - Important for financials and multinationals but lower coverage
368
+ 2. **Capital Expenditure Acceleration** - Growth signal but lumpy and sector-dependent
369
+ 3. **Effective Interest Rate Spread** - Efficiency metric but sensitive to debt classification
318
370
 
319
371
  **Tier 3 (Requires Further Validation)**:
320
- 1. **Inventory Stage Transition Rate** - Data quality concerns on inventory breakdown granularity
321
- 2. **Cumulative Capital Intensity** - Requires careful handling of negative base values (asset write-downs)
372
+ 1. **Abnormal Tax Effect Detection** - High noise-to-signal ratio due to discrete tax events
373
+ 2. **Operating Lease Commitment Concentration** - Forward-looking but limited to specific industries
322
374
 
323
375
  ---
324
376
 
325
377
  ## Critical Questions for Further Exploration
326
378
 
327
379
  ### Unanswered Questions:
328
- 1. How do changes in accounting standards (IFRS 16 lease capitalization) affect the stability of historical `capital_lease_obligations` time series?
329
- 2. Does the relationship between `is_fair_value_plan_assets` and pension expense predict future earnings volatility through corridor amortization?
330
- 3. How does the vector length (number of historical periods available) vary across companies and does this create a data availability bias in time-series features?
380
+ 1. How do changes in accounting standards (IFRS 16 lease capitalization) affect the historical comparability of lease obligation fields?
381
+ 2. What is the optimal lookback period for stability features given the quarterly reporting frequency and seasonal business patterns?
382
+ 3. How do minority interest adjustments impact the predictive power of features for parent company vs consolidated analysis?
331
383
 
332
384
  ### Recommended Additional Data:
333
- - Segment-level financial data to disaggregate consolidated metrics by business line
334
- - Real-time credit facility drawdown data to supplement `bs_st_borrow` point-in-time snapshots
335
- - Management guidance and analyst estimate consensus to contextualize `sales_rev_turn` and `net_inc_avail_com_shrhldrs` surprises
385
+ - Daily price and volume data to link fundamental signals to market reactions
386
+ - Industry classification codes for sector-relative feature normalization
387
+ - Analyst estimate data to compare realized fundamentals vs expectations
388
+ - Credit default swap spreads or bond yields for external validation of solvency features
336
389
 
337
390
  ### Assumptions to Challenge:
338
- - That quarterly reporting frequency is sufficient to capture rapidly changing fundamentals (may need intra-quarter estimations)
339
- - That GAAP/IFRS convergence eliminates comparability issues between US and international listings
340
- - That historical cost-based `bs_tot_asset` is comparable across time periods given inflation and technological change
391
+ - That quarterly data points can be linearly interpolated without loss of information for time series calculations
392
+ - That comprehensive income divergence is always negative (some OCI components may be predictable hedges)
393
+ - That short-term debt is always riskier than long-term (in rising rate environments, short-term may offer flexibility)
341
394
 
342
395
  ---
343
396
 
344
397
  ## Methodology Notes
345
398
 
346
399
  **Analysis Approach**: This report was generated by:
347
- 1. Deep field deconstruction to understand data essence (balance sheet snapshots vs. income statement flows)
348
- 2. Question-driven feature generation (8 fundamental questions) applied to accounting relationships
349
- 3. Logical validation of each feature concept against financial theory and accounting identities
350
- 4. Transparent documentation of reasoning including vector operator requirements for fundamental data types
400
+ 1. Deep field deconstruction to understand data essence across accounting statements
401
+ 2. Question-driven feature generation (8 fundamental questions)
402
+ 3. Logical validation of each feature concept against accounting principles
403
+ 4. Transparent documentation of reasoning and data limitations
351
404
 
352
405
  **Design Principles**:
353
- - Focus on logical meaning over conventional patterns (e.g., interest expense gaps rather than simple coverage ratios)
354
- - Every feature must answer a specific question about stability, change, anomaly, interaction, structure, accumulation, relativity, or essence
355
- - Clear documentation of "why" each feature captures economic reality
356
- - Emphasis on data understanding over prediction (financial statement logic drives feature design)
406
+ - Focus on logical meaning over conventional financial ratios
407
+ - Every feature must answer a specific economic question
408
+ - Clear documentation of "why" for each suggestion
409
+ - Emphasis on cash flow reality over accrual accounting where possible
357
410
 
358
411
  ---
359
412
 
360
413
  *Report generated: 2024-01-15*
361
414
  *Analysis depth: Comprehensive field deconstruction + 8-question framework*
362
- *Next steps: Implement Tier 1 features, validate cross-sectional neutrality assumptions, gather segment-level data as needed*
415
+ *Next steps: Implement Tier 1 features, validate assumptions, gather additional data as needed*