cnhkmcp 2.3.0__py3-none-any.whl → 2.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cnhkmcp/__init__.py +1 -1
- cnhkmcp/untracked/APP/simulator/wqb20260130130030.log +210 -0
- cnhkmcp/untracked/APP/simulator/wqb20260130131757.log +104 -0
- cnhkmcp/untracked/APP/simulator/wqb20260130172245.log +70 -0
- cnhkmcp/untracked/APP/static/inspiration.js +5 -1
- cnhkmcp/untracked/APP/templates/index.html +7 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/run_pipeline.py +135 -85
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/output_report/GLB_delay1_fundamental72_ideas.md +362 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/final_expressions.json +138 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759441444909600.json +38 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759441920092000.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759442418767100.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759442902507600.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759443377036200.json +10 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759443845377000.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759444313546700.json +10 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759444784598600.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759445274311200.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759445747421700.json +10 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759446222137800.json +22 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759446686222600.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759447154698500.json +10 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759447629677000.json +10 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759448102331200.json +10 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_1_idea_1769759448573382000.json +14 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/fundamental72_GLB_delay1/fundamental72_GLB_delay1.csv +330 -0
- cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/fetch_dataset.py +7 -1
- cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +13 -2
- cnhkmcp/untracked/back_up/platform_functions.py +2 -2
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/platform_functions.py +2 -2
- cnhkmcp/untracked/platform_functions.py +2 -2
- {cnhkmcp-2.3.0.dist-info → cnhkmcp-2.3.1.dist-info}/METADATA +1 -1
- {cnhkmcp-2.3.0.dist-info → cnhkmcp-2.3.1.dist-info}/RECORD +37 -15
- {cnhkmcp-2.3.0.dist-info → cnhkmcp-2.3.1.dist-info}/WHEEL +0 -0
- {cnhkmcp-2.3.0.dist-info → cnhkmcp-2.3.1.dist-info}/entry_points.txt +0 -0
- {cnhkmcp-2.3.0.dist-info → cnhkmcp-2.3.1.dist-info}/licenses/LICENSE +0 -0
- {cnhkmcp-2.3.0.dist-info → cnhkmcp-2.3.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,362 @@
|
|
|
1
|
+
**Dataset**: fundamental72
|
|
2
|
+
**Region**: GLB
|
|
3
|
+
**Delay**: 1
|
|
4
|
+
|
|
5
|
+
# Comprehensive Fundamental Data Feature Engineering Analysis Report
|
|
6
|
+
|
|
7
|
+
**Dataset**: fundamental72
|
|
8
|
+
**Category**: Fundamental
|
|
9
|
+
**Region**: GLB
|
|
10
|
+
**Analysis Date**: 2024-01-15
|
|
11
|
+
**Fields Analyzed**: 329
|
|
12
|
+
|
|
13
|
+
---
|
|
14
|
+
|
|
15
|
+
## Executive Summary
|
|
16
|
+
|
|
17
|
+
**Primary Question Answered by Dataset**: This dataset fundamentally measures the financial health, operational performance, and capital structure of companies through standardized balance sheet, income statement, and cash flow statement data reported under accounting standards.
|
|
18
|
+
|
|
19
|
+
**Key Insights from Analysis**:
|
|
20
|
+
- The dataset provides granular decomposition of working capital components (receivables, inventory stages, payables) enabling detailed liquidity analysis
|
|
21
|
+
- Vector-type storage of historical fiscal periods allows for time-series reconstruction of financial trajectories rather than just point-in-time snapshots
|
|
22
|
+
- Separation of current vs. non-current items and operating vs. financing activities enables structural analysis of capital allocation
|
|
23
|
+
- Comprehensive coverage of lease obligations, pension liabilities, and deferred taxes provides visibility into off-balance-sheet structural commitments
|
|
24
|
+
|
|
25
|
+
**Critical Field Relationships Identified**:
|
|
26
|
+
- Operating Cash Flow (`cf_cash_from_oper`) and Net Income (`net_inc_avail_com_shrhldrs`) divergence indicates earnings quality
|
|
27
|
+
- Short-term Debt (`bs_st_borrow`) relative to Operating Cash Flow reveals refinancing risk dynamics
|
|
28
|
+
- Inventory composition (`invtry_raw_materials`, `invtry_in_progress`, `invtry_finished_goods`) relative to Sales (`sales_rev_turn`) indicates supply chain efficiency
|
|
29
|
+
|
|
30
|
+
**Most Promising Feature Concepts**:
|
|
31
|
+
1. **Capital Structure Stability Coefficient** - because leverage volatility predicts distress better than leverage levels
|
|
32
|
+
2. **Working Capital Velocity Anomaly** - because deviations from historical receivables/inventory turnover indicate operational stress or competitive shifts
|
|
33
|
+
3. **Interest Rate Efficiency Gap** - because divergence between effective rates and reported interest expense reveals financial engineering or covenant stress
|
|
34
|
+
|
|
35
|
+
---
|
|
36
|
+
|
|
37
|
+
## Dataset Deep Understanding
|
|
38
|
+
|
|
39
|
+
### Dataset Description
|
|
40
|
+
This dataset contains comprehensive fundamental data as reported for balance sheet, income statement and statement of cash flows. It captures 329 distinct financial metrics across multiple reporting periods (annual and quarterly), stored as vector time-series enabling historical reconstruction of financial statement evolution. The data encompasses assets, liabilities, equity, revenues, expenses, and cash flow activities with detailed breakdowns of working capital components, debt structures, and comprehensive income items.
|
|
41
|
+
|
|
42
|
+
### Field Inventory
|
|
43
|
+
| Field ID | Description | Data Type | Update Frequency | Coverage |
|
|
44
|
+
|----------|-------------|-----------|------------------|----------|
|
|
45
|
+
| `fnd72_pit_or_bs_q_bs_st_debt` | Short Term Debt | Vector | Quarterly | 87% |
|
|
46
|
+
| `fnd72_pit_or_bs_q_bs_tot_asset` | Total Assets | Vector | Quarterly | 94% |
|
|
47
|
+
| `fnd72_pit_or_bs_q_bs_tot_eqy` | Total Equity | Vector | Quarterly | 92% |
|
|
48
|
+
| `fnd72_pit_or_is_q_sales_rev_turn` | Sales/Revenue/Turnover | Vector | Quarterly | 96% |
|
|
49
|
+
| `fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs` | Net Income Available To Common Shareholders | Vector | Quarterly | 91% |
|
|
50
|
+
| `fnd72_pit_or_cf_q_cf_cash_from_oper` | Cash from Operating Activities | Vector | Quarterly | 85% |
|
|
51
|
+
| `fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec` | Accounts Receivable (excl. Notes) | Vector | Quarterly | 82% |
|
|
52
|
+
| `fnd72_pit_or_bs_q_invtry_raw_materials` | Inventory - Raw Materials | Vector | Quarterly | 64% |
|
|
53
|
+
| `fnd72_pit_or_bs_q_invtry_in_progress` | Inventory - Work In Progress | Vector | Quarterly | 58% |
|
|
54
|
+
| `fnd72_pit_or_is_q_is_int_expense` | Interest Expense | Vector | Quarterly | 78% |
|
|
55
|
+
| `fnd72_pit_or_is_a_eff_int_rate` | Effective Interest Rate on Debt | Vector | Annual | 71% |
|
|
56
|
+
| `fnd72_pit_or_bs_q_bs_acct_payable` | Accounts Payable | Vector | Quarterly | 79% |
|
|
57
|
+
| `fnd72_pit_or_cf_q_cf_cap_expend_prpty_add` | Capital Expenditures | Vector | Quarterly | 76% |
|
|
58
|
+
| `fnd72_pit_or_bs_a_bs_retain_earn` | Retained Earnings | Vector | Quarterly | 89% |
|
|
59
|
+
| `fnd72_pit_or_is_q_is_tot_cash_com_dvd` | Common Dividends Paid | Vector | Quarterly | 68% |
|
|
60
|
+
|
|
61
|
+
*(Additional 314 fields covering comprehensive income, lease obligations, pension items, and deferred tax assets/liabilities)*
|
|
62
|
+
|
|
63
|
+
### Field Deconstruction Analysis
|
|
64
|
+
|
|
65
|
+
#### bs_st_debt: Short-Term Borrowings
|
|
66
|
+
- **What is being measured?**: Financial obligations due within one fiscal year including bank overdrafts, short-term borrowings, and current portion of long-term debt
|
|
67
|
+
- **How is it measured?**: Reported book value at period end from balance sheet, audited according to accounting standards (GAAP/IFRS)
|
|
68
|
+
- **Time dimension**: Point-in-time snapshot (quarterly), cumulative obligation amount
|
|
69
|
+
- **Business context**: Immediate liquidity risk and refinancing requirements; critical for working capital management assessment
|
|
70
|
+
- **Generation logic**: Direct reporting from company financial statements, subject to audit verification
|
|
71
|
+
- **Reliability considerations**: High reliability for standardized companies, but classification between short-term and long-term can be managed through covenant waivers or refinancing agreements announced near period-end
|
|
72
|
+
|
|
73
|
+
#### sales_rev_turn: Sales/Revenue/Turnover
|
|
74
|
+
- **What is being measured?**: Top-line income generated from core business operations before any expenses
|
|
75
|
+
- **How is it measured?**: Accumulated transaction value over the reporting period (flow variable), recognized according to revenue recognition standards
|
|
76
|
+
- **Time dimension**: Cumulative over fiscal quarter/year, reset each period
|
|
77
|
+
- **Business context**: Primary indicator of market demand, pricing power, and operational scale; foundation for all profitability metrics
|
|
78
|
+
- **Generation logic**: Accounting system aggregation of invoiced sales, net of returns and allowances
|
|
79
|
+
- **Reliability considerations**: Subject to revenue recognition timing (quarter-end loading), channel stuffing risks, and accounting policy choices (gross vs. net reporting for intermediaries)
|
|
80
|
+
|
|
81
|
+
#### cf_cash_from_oper: Cash Flow from Operations
|
|
82
|
+
- **What is being measured?**: Actual cash generated from core business activities, adjusting net income for non-cash items and working capital changes
|
|
83
|
+
- **How is it measured?**: Indirect method (starting from net income) or direct method (cash receipts/payments) per cash flow statement standards
|
|
84
|
+
- **Time dimension**: Cumulative cash flow over the reporting period
|
|
85
|
+
- **Business context**: Ultimate measure of sustainable cash generation ability; less subject to accounting manipulation than net income
|
|
86
|
+
- **Generation logic**: Derived from income statement and balance sheet changes, subject to accounting policy choices on classification (operating vs. investing)
|
|
87
|
+
- **Reliability considerations**: Classification flexibility allows management to shift items between operating and investing (e.g., capitalizing vs. expensing), affecting comparability
|
|
88
|
+
|
|
89
|
+
#### net_inc_avail_com_shrhldrs: Net Income Available to Common
|
|
90
|
+
- **What is being measured?**: Residual profit attributable to common equity holders after all expenses, taxes, minority interests, and preferred dividends
|
|
91
|
+
- **How is it measured?**: Accrual-based accounting aggregation of revenues minus expenses, extraordinary items, and tax effects
|
|
92
|
+
- **Time dimension**: Cumulative earnings over the reporting period
|
|
93
|
+
- **Business context**: Bottom-line profitability measure determining dividend capacity, retention policy, and ROE calculations
|
|
94
|
+
- **Generation logic**: Standardized accounting calculation but subject to significant estimation (allowances, depreciation, impairment timing)
|
|
95
|
+
- **Reliability considerations**: High susceptibility to earnings management through accrual choices, timing of asset sales, and classification of items as extraordinary/recurring
|
|
96
|
+
|
|
97
|
+
### Field Relationship Mapping
|
|
98
|
+
|
|
99
|
+
**The Story This Data Tells**:
|
|
100
|
+
This dataset narrates the transformation of capital into profits through operational activities. It tracks how companies finance themselves (debt/equity mix), deploy capital into assets (tangible, intangible, working capital), generate revenues through operations, convert revenues into cash, and distribute returns to stakeholders. The vector structure enables observation of how these relationships evolve through time—whether capital structures stabilize or destabilize, whether working capital efficiency improves or deteriorates, and whether accounting profits translate into cash reality.
|
|
101
|
+
|
|
102
|
+
**Key Relationships Identified**:
|
|
103
|
+
1. **Accrual Convergence**: The relationship between `net_inc_avail_com_shrhldrs` (accrual earnings) and `cf_cash_from_oper` (cash earnings) reveals earnings quality; persistent divergence suggests aggressive revenue recognition or inefficient working capital management
|
|
104
|
+
2. **Capital Intensity Cycle**: `cf_cap_expend_prpty_add` (investment) relative to `depreciation_expense` (maintenance) indicates growth mode vs. harvest mode; when combined with `sales_rev_turn` growth, reveals capital efficiency
|
|
105
|
+
3. **Liquidity Transformation**: The conversion cycle from `invtry_raw_materials` → `invtry_in_progress` → `invtry_finished_goods` → `accts_rec_excl_notes_rec` → `cf_cash_from_oper` maps the operating cycle duration and bottlenecks
|
|
106
|
+
4. **Financial Leverage Mechanics**: `is_int_expense` relative to `eff_int_rate` and total debt (`bs_st_borrow` + `bs_lt_borrow`) reveals debt pricing efficiency and covenant compliance pressure
|
|
107
|
+
|
|
108
|
+
**Missing Pieces That Would Complete the Picture**:
|
|
109
|
+
- Real-time covenant compliance status and credit facility availability (current vs. committed)
|
|
110
|
+
- Segment-level breakdowns to identify which business units drive consolidated metrics
|
|
111
|
+
- Off-balance-sheet contingent liabilities and derivative exposures not captured in deferred tax or lease fields
|
|
112
|
+
- Management guidance and consensus expectations to contextualize realized performance
|
|
113
|
+
|
|
114
|
+
---
|
|
115
|
+
|
|
116
|
+
## Feature Concepts by Question Type
|
|
117
|
+
|
|
118
|
+
### Q1: "What is stable?" (Invariance Features)
|
|
119
|
+
|
|
120
|
+
**Concept**: Capital Structure Stability Coefficient
|
|
121
|
+
- **Sample Fields Used**: bs_st_borrow, bs_lt_borrow, bs_tot_asset
|
|
122
|
+
- **Definition**: Coefficient of variation of total debt-to-assets ratio measured over trailing 4 quarters
|
|
123
|
+
- **Why This Feature**: Capital structure volatility predicts financial distress independently of leverage levels; stable leverage indicates disciplined financial policy and lower refinancing risk
|
|
124
|
+
- **Logical Meaning**: Measures the consistency of a company's financing decisions and capital allocation stability
|
|
125
|
+
- **Directionality**: Lower values indicate more stable capital structure (positive signal for credit quality); higher values indicate erratic financing behavior
|
|
126
|
+
- **Boundary Conditions**: Approaches 0 for perfectly stable capital structures; spikes during acquisitions, divestitures, or financial stress
|
|
127
|
+
- **Implementation Example**: `divide(ts_std_dev(divide(add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow})), vec_avg({bs_tot_asset})), 252), abs(ts_mean(divide(add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow})), vec_avg({bs_tot_asset})), 252)))`
|
|
128
|
+
|
|
129
|
+
**Concept**: Operating Cash Flow Persistence Ratio
|
|
130
|
+
- **Sample Fields Used**: cf_cash_from_oper, sales_rev_turn
|
|
131
|
+
- **Definition**: Rolling 8-quarter correlation between operating cash flow and sales revenue
|
|
132
|
+
- **Why This Feature**: Stable conversion of sales to cash indicates sustainable business model; volatility suggests working capital management issues or revenue recognition concerns
|
|
133
|
+
- **Logical Meaning**: Measures the reliability and predictability of cash generation from core operations
|
|
134
|
+
- **Directionality**: Higher values (closer to 1) indicate stable conversion efficiency; lower/negative values indicate deteriorating cash conversion
|
|
135
|
+
- **Boundary Conditions**: 1.0 = perfect linear relationship; 0 = no relationship; negative values suggest inverse relationship (potential accounting issues)
|
|
136
|
+
- **Implementation Example**: `ts_corr(vec_avg({cf_cash_from_oper}), vec_avg({sales_rev_turn}), 504)`
|
|
137
|
+
|
|
138
|
+
---
|
|
139
|
+
|
|
140
|
+
### Q2: "What is changing?" (Dynamics Features)
|
|
141
|
+
|
|
142
|
+
**Concept**: Working Capital Velocity Acceleration
|
|
143
|
+
- **Sample Fields Used**: chng_non_cash_work_cap, sales_rev_turn
|
|
144
|
+
- **Definition**: Quarterly change in the ratio of non-cash working capital changes to sales revenue
|
|
145
|
+
- **Why This Feature**: Accelerating working capital investment relative to sales growth indicates potential demand slowdown, inventory obsolescence, or loosening credit terms to sustain revenue
|
|
146
|
+
- **Logical Meaning**: Captures the momentum of capital tied up in operations; positive acceleration suggests inefficiency or growth investment
|
|
147
|
+
- **Directionality**: Positive values suggest increasing working capital intensity (potential negative); negative values suggest improving efficiency
|
|
148
|
+
- **Boundary Conditions**: Extreme positive values during inventory buildups or receivables blowouts; extreme negative during liquidations or payables stretch
|
|
149
|
+
- **Implementation Example**: `ts_delta(divide(vec_avg({chng_non_cash_work_cap}), vec_avg({sales_rev_turn})), 63)`
|
|
150
|
+
|
|
151
|
+
**Concept**: Inventory Stage Transition Rate
|
|
152
|
+
- **Sample Fields Used**: invtry_raw_materials, invtry_in_progress, invtry_finished_goods, sales_rev_turn
|
|
153
|
+
- **Definition**: Change in the composition of inventory (raw materials vs. finished goods) relative to sales growth
|
|
154
|
+
- **Why This Feature**: Shifts from finished goods to raw materials indicate anticipated demand changes or supply chain disruptions; opposite suggests production bottlenecks or demand shortfalls
|
|
155
|
+
- **Logical Meaning**: Measures production pipeline dynamics and supply chain positioning
|
|
156
|
+
- **Directionality**: Increasing raw materials ratio suggests bullish production outlook; increasing finished goods suggests potential overproduction
|
|
157
|
+
- **Boundary Conditions**: Extreme values indicate supply chain crises (raw materials accumulation) or demand collapse (finished goods pile-up)
|
|
158
|
+
- **Implementation Example**: `ts_delta(divide(vec_avg({invtry_raw_materials}), add(add(vec_avg({invtry_raw_materials}), vec_avg({invtry_in_progress})), vec_avg({invtry_finished_goods}))), 63)`
|
|
159
|
+
|
|
160
|
+
---
|
|
161
|
+
|
|
162
|
+
### Q3: "What is anomalous?" (Deviation Features)
|
|
163
|
+
|
|
164
|
+
**Concept**: Interest Expense Efficiency Gap
|
|
165
|
+
- **Sample Fields Used**: is_int_expense, bs_st_borrow, bs_lt_borrow, eff_int_rate
|
|
166
|
+
- **Definition**: Deviation of actual interest expense from predicted interest expense (effective rate × average debt)
|
|
167
|
+
- **Why This Feature**: Anomalous gaps reveal financial engineering (capitalized interest), covenant violations triggering rate spikes, or non-standard debt instruments (convertibles, hybrids)
|
|
168
|
+
- **Logical Meaning**: Identifies unexplained cost of debt deviations from contractual terms
|
|
169
|
+
- **Directionality**: Positive values (actual > predicted) suggest hidden costs or rate spikes; negative values suggest interest capitalization or subsidized financing
|
|
170
|
+
- **Boundary Conditions**: Large deviations indicate accounting classification issues or financial distress triggering penalty rates
|
|
171
|
+
- **Implementation Example**: `subtract(divide(vec_avg({is_int_expense}), add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow}))), vec_avg({eff_int_rate}))`
|
|
172
|
+
|
|
173
|
+
**Concept**: Receivables Turnover Z-Score
|
|
174
|
+
- **Sample Fields Used**: accts_rec_excl_notes_rec, sales_rev_turn
|
|
175
|
+
- **Definition**: Time-series z-score of receivables days (receivables/sales) relative to trailing 2-year history
|
|
176
|
+
- **Why This Feature**: Unexplained lengthening of collection periods indicates customer financial stress, revenue recognition aggressiveness, or competitive pressure requiring relaxed terms
|
|
177
|
+
- **Logical Meaning**: Statistical anomaly detection for collection efficiency
|
|
178
|
+
- **Directionality**: High positive values indicate unusual receivables buildup (negative signal); negative values indicate unusual improvement
|
|
179
|
+
- **Boundary Conditions**: Values beyond ±2 standard deviations suggest significant operational or accounting changes
|
|
180
|
+
- **Implementation Example**: `ts_av_diff(divide(vec_avg({accts_rec_excl_notes_rec}), vec_avg({sales_rev_turn})), 504)`
|
|
181
|
+
|
|
182
|
+
---
|
|
183
|
+
|
|
184
|
+
### Q4: "What is combined?" (Interaction Features)
|
|
185
|
+
|
|
186
|
+
**Concept**: Financial Leverage Efficiency Product
|
|
187
|
+
- **Sample Fields Used**: net_inc_avail_com_shrhldrs, bs_tot_asset, bs_tot_eqy
|
|
188
|
+
- **Definition**: Interaction of return on assets and equity multiplier (Assets/Equity)
|
|
189
|
+
- **Why This Feature**: Combines operational efficiency with capital structure to identify value-creating leverage vs. value-destroying leverage; high ROA with high leverage creates amplified returns, low ROA with high leverage creates distress
|
|
190
|
+
- **Logical Meaning**: Measures the multiplicative effect of capital structure on operational returns
|
|
191
|
+
- **Directionality**: Higher values indicate efficient use of leverage; negative values indicate leverage magnifying losses
|
|
192
|
+
- **Boundary Conditions**: Extreme values during high profitability with high leverage (optimal) or high losses with high leverage (distress)
|
|
193
|
+
- **Implementation Example**: `multiply(divide(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({bs_tot_asset})), divide(vec_avg({bs_tot_asset}), vec_avg({bs_tot_eqy})))`
|
|
194
|
+
|
|
195
|
+
**Concept**: Operating Liability Financing Efficiency
|
|
196
|
+
- **Sample Fields Used**: cf_cash_from_oper, bs_acct_payable, bs_other_cur_liab
|
|
197
|
+
- **Definition**: Operating cash flow generated per dollar of operating liabilities (payables + accrued expenses)
|
|
198
|
+
- **Why This Feature**: Combines supplier financing utilization with cash conversion efficiency; high values indicate masterful working capital management, low values indicate inefficient operations despite supplier credit
|
|
199
|
+
- **Logical Meaning**: Measures efficiency of converting supplier credit into operating cash flow
|
|
200
|
+
- **Directionality**: Higher values indicate superior working capital management; declining values suggest supplier terms tightening or operational deterioration
|
|
201
|
+
- **Boundary Conditions**: Very high values during cash conversion cycle optimization; very low or negative during operational losses
|
|
202
|
+
- **Implementation Example**: `divide(vec_avg({cf_cash_from_oper}), add(vec_avg({bs_acct_payable}), vec_avg({bs_other_cur_liab})))`
|
|
203
|
+
|
|
204
|
+
---
|
|
205
|
+
|
|
206
|
+
### Q5: "What is structural?" (Composition Features)
|
|
207
|
+
|
|
208
|
+
**Concept**: Liquid Asset Purity Ratio
|
|
209
|
+
- **Sample Fields Used**: bs_cash_near_cash_item, bs_accts_rec_excl_notes_rec, inventories, bs_cur_asset_report
|
|
210
|
+
- **Definition**: Proportion of current assets comprised of cash and near-cash items versus receivables and inventory
|
|
211
|
+
- **Why This Feature**: Composition of current assets indicates liquidity quality; high receivables/inventory suggests committed working capital, high cash suggests flexibility but potentially inefficient deployment
|
|
212
|
+
- **Logical Meaning**: Measures the liquidity structure and quality of current assets
|
|
213
|
+
- **Directionality**: Higher values indicate higher liquidity quality (more cash); lower values indicate capital-intensive working capital structure
|
|
214
|
+
- **Boundary Conditions**: Approaches 1.0 for cash-rich companies; approaches 0 for highly leveraged working capital structures
|
|
215
|
+
- **Implementation Example**: `divide(add(add(vec_avg({bs_cash_near_cash_item}), vec_avg({accts_rec_excl_notes_rec})), vec_avg({inventories})), vec_avg({bs_cur_asset_report}))`
|
|
216
|
+
|
|
217
|
+
**Concept**: Tangible Capital Structure
|
|
218
|
+
- **Sample Fields Used**: bs_disclosed_intangibles, bs_tot_asset, bs_tot_liab_eqy
|
|
219
|
+
- **Definition**: Net tangible assets (total assets minus intangibles) as a proportion of total capital
|
|
220
|
+
- **Why This Feature**: Intangibles represent uncertain liquidation values; this metric reveals the tangible collateral backing the capital structure, critical for credit analysis and liquidation scenarios
|
|
221
|
+
- **Logical Meaning**: Measures the tangible asset backing of the enterprise value
|
|
222
|
+
- **Directionality**: Higher values indicate more collateralizable assets (safer for creditors); lower values indicate knowledge-intensive/asset-light models
|
|
223
|
+
- **Boundary Conditions**: Near 0 for pure IP/brand companies; near 1 for heavy industrial companies
|
|
224
|
+
- **Implementation Example**: `divide(subtract(vec_avg({bs_tot_asset}), vec_avg({bs_disclosed_intangibles})), vec_avg({bs_tot_liab_eqy}))`
|
|
225
|
+
|
|
226
|
+
---
|
|
227
|
+
|
|
228
|
+
### Q6: "What is cumulative?" (Accumulation Features)
|
|
229
|
+
|
|
230
|
+
**Concept**: Retained Earnings Reinvestment Rate
|
|
231
|
+
- **Sample Fields Used**: pure_retained_earnings, net_inc_avail_com_shrhldrs, tot_cash_com_dvd
|
|
232
|
+
- **Definition**: Proportion of earnings retained (net income minus dividends) relative to existing retained earnings base
|
|
233
|
+
- **Why This Feature**: Cumulative retention policy indicates growth orientation vs. harvest mode; rapid accumulation suggests reinvestment opportunities, depletion suggests losses or dividend payouts exceeding earnings
|
|
234
|
+
- **Logical Meaning**: Measures the growth rate of the cumulative earnings reservoir
|
|
235
|
+
- **Directionality**: Positive values indicate earnings accumulation; negative values indicate retained earnings depletion (losses or excess dividends)
|
|
236
|
+
- **Boundary Conditions**: High positive values during growth phases; negative values during restructuring or dividend recapitalizations
|
|
237
|
+
- **Implementation Example**: `divide(subtract(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({tot_cash_com_dvd})), vec_avg({pure_retained_earnings}))`
|
|
238
|
+
|
|
239
|
+
**Concept**: Cumulative Capital Intensity
|
|
240
|
+
- **Sample Fields Used**: cap_expend_prpty_add, bs_tot_asset
|
|
241
|
+
- **Definition**: Trailing 12-month capital expenditures as a proportion of total asset base
|
|
242
|
+
- **Why This Feature**: Cumulative investment intensity indicates maintenance vs. growth capex; sustained high levels suggest expansion or replacement cycles, low levels suggest asset sweating or underinvestment
|
|
243
|
+
- **Logical Meaning**: Measures the rate of asset base renewal and expansion
|
|
244
|
+
- **Directionality**: Higher values indicate aggressive investment/growth; lower values indicate asset harvesting or underinvestment
|
|
245
|
+
- **Boundary Conditions**: Extreme values during major expansion cycles (high) or asset-light transitions (low)
|
|
246
|
+
- **Implementation Example**: `divide(ts_sum(vec_avg({cap_expend_prpty_add}), 252), vec_avg({bs_tot_asset}))`
|
|
247
|
+
|
|
248
|
+
---
|
|
249
|
+
|
|
250
|
+
### Q7: "What is relative?" (Comparison Features)
|
|
251
|
+
|
|
252
|
+
**Concept**: Peer-Neutralized Profitability
|
|
253
|
+
- **Sample Fields Used**: net_inc_avail_com_shrhldrs, bs_tot_asset
|
|
254
|
+
- **Definition**: Cross-sectional residual of ROA after controlling for total asset size (industry-adjusted return)
|
|
255
|
+
- **Why This Feature**: Raw profitability varies by industry and scale; neutralizing removes sector and size effects to identify true operational outperformance vs. peers
|
|
256
|
+
- **Logical Meaning**: Relative positioning of profitability within the cross-section of comparable firms
|
|
257
|
+
- **Directionality**: Positive residuals indicate above-peer performance; negative indicates below-peer
|
|
258
|
+
- **Boundary Conditions**: Extreme positive values indicate exceptional moats; extreme negative indicates structural disadvantages
|
|
259
|
+
- **Implementation Example**: `regression_neut(divide(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({bs_tot_asset})), vec_avg({bs_tot_asset}))`
|
|
260
|
+
|
|
261
|
+
**Concept**: Quantile Leverage Position
|
|
262
|
+
- **Sample Fields Used**: bs_st_borrow, bs_lt_borrow, bs_tot_eqy
|
|
263
|
+
- **Definition**: Gaussian quantile ranking of total debt-to-equity ratio within the universe
|
|
264
|
+
- **Why This Feature**: Relative leverage position indicates financial risk tolerance compared to peers; extreme percentiles suggest vulnerability to sector-wide credit crunches or capacity for opportunistic leverage increases
|
|
265
|
+
- **Logical Meaning**: Relative financial risk positioning within the market cross-section
|
|
266
|
+
- **Directionality**: Higher quantiles indicate higher relative leverage (typically negative for risk); lower quantiles indicate conservative positioning
|
|
267
|
+
- **Boundary Conditions**: 0.5 represents median leverage; tails represent extreme conservative/aggressive postures
|
|
268
|
+
- **Implementation Example**: `quantile(divide(add(vec_avg({bs_st_borrow}), vec_avg({bs_lt_borrow})), vec_avg({bs_tot_eqy})), driver="gaussian")`
|
|
269
|
+
|
|
270
|
+
---
|
|
271
|
+
|
|
272
|
+
### Q8: "What is essential?" (Essence Features)
|
|
273
|
+
|
|
274
|
+
**Concept**: Economic Profit Margin
|
|
275
|
+
- **Sample Fields Used**: net_inc_avail_com_shrhldrs, sales_rev_turn, is_int_expense
|
|
276
|
+
- **Definition**: Net income margin adjusted for after-tax interest expense to reveal unlevered operational profitability
|
|
277
|
+
- **Why This Feature**: Strips away financing decisions to reveal core business economics; essential measure of operational moat independent of capital structure choices
|
|
278
|
+
- **Logical Meaning**: Pure operating profitability before financing effects
|
|
279
|
+
- **Directionality**: Higher values indicate stronger pricing power and cost control; negative values indicate economically unviable operations
|
|
280
|
+
- **Boundary Conditions**: High positive values indicate strong moats; consistent negative values suggest business model failure
|
|
281
|
+
- **Implementation Example**: `subtract(divide(vec_avg({net_inc_avail_com_shrhldrs}), vec_avg({sales_rev_turn})), divide(vec_avg({is_int_expense}), vec_avg({sales_rev_turn})))`
|
|
282
|
+
|
|
283
|
+
**Concept**: Cash Conversion Authenticity
|
|
284
|
+
- **Sample Fields Used**: cf_cash_from_oper, net_inc_avail_com_shrhldrs
|
|
285
|
+
- **Definition**: Ratio of operating cash flow to net income measuring the "cash reality" of reported earnings
|
|
286
|
+
- **Why This Feature**: Essential validation of earnings quality; sustained ratios below 1 indicate accrual-based earnings inflation, above 1 indicates conservative accounting or working capital release
|
|
287
|
+
- **Logical Meaning**: Measures the cash realization rate of accounting profits
|
|
288
|
+
- **Directionality**: Values consistently above 1 indicate high-quality earnings; values below 1 indicate low-quality, accrual-heavy earnings
|
|
289
|
+
- **Boundary Conditions**: Approaches 0 for highly accrual-based earnings; high values during working capital liquidation or prepayment collection
|
|
290
|
+
- **Implementation Example**: `divide(vec_avg({cf_cash_from_oper}), vec_avg({net_inc_avail_com_shrhldrs}))`
|
|
291
|
+
|
|
292
|
+
---
|
|
293
|
+
|
|
294
|
+
## Implementation Considerations
|
|
295
|
+
|
|
296
|
+
### Data Quality Notes
|
|
297
|
+
- **Coverage**: Quarterly fundamental data covers approximately 85-95% of TOP3000 universe with lagged reporting for smaller-capitalization companies
|
|
298
|
+
- **Timeliness**: Data updates with T+1 delay (field date reporting), though actual fiscal period end dates vary (fiscal year mismatches common)
|
|
299
|
+
- **Accuracy**: Subject to restatements and amendments; annual data more reliable than quarterly due to audit requirements
|
|
300
|
+
- **Potential Biases**: Survivorship bias in historical vectors due to delistings; sector-specific accounting differences (financials vs. industrials)
|
|
301
|
+
|
|
302
|
+
### Computational Complexity
|
|
303
|
+
- **Lightweight features**: Single-period vector averages and simple ratios (e.g., `divide(vec_avg({bs_st_borrow}), vec_avg({bs_tot_asset}))`)
|
|
304
|
+
- **Medium complexity**: Time-series operations on vector aggregates (e.g., `ts_corr`, `ts_std_dev` on vec_avg outputs with 252-day lookbacks)
|
|
305
|
+
- **Heavy computation**: Multi-layered nested operations combining time-series and cross-sectional operators (e.g., `regression_neut` of `ts_delta` ratios)
|
|
306
|
+
|
|
307
|
+
### Recommended Prioritization
|
|
308
|
+
|
|
309
|
+
**Tier 1 (Immediate Implementation)**:
|
|
310
|
+
1. **Cash Conversion Authenticity** - Core earnings quality measure with strong theoretical foundation and low computational overhead
|
|
311
|
+
2. **Interest Expense Efficiency Gap** - Reveals financial distress signals and accounting anomalies early
|
|
312
|
+
3. **Peer-Neutralized Profitability** - Essential for cross-sectional comparison in heterogeneous universes
|
|
313
|
+
|
|
314
|
+
**Tier 2 (Secondary Priority)**:
|
|
315
|
+
1. **Capital Structure Stability Coefficient** - Predicts distress but requires longer lookback windows
|
|
316
|
+
2. **Tangible Capital Structure** - Critical for credit analysis but sector-dependent interpretation
|
|
317
|
+
3. **Working Capital Velocity Acceleration** - Leading indicator but noisy in seasonal businesses
|
|
318
|
+
|
|
319
|
+
**Tier 3 (Requires Further Validation)**:
|
|
320
|
+
1. **Inventory Stage Transition Rate** - Data quality concerns on inventory breakdown granularity
|
|
321
|
+
2. **Cumulative Capital Intensity** - Requires careful handling of negative base values (asset write-downs)
|
|
322
|
+
|
|
323
|
+
---
|
|
324
|
+
|
|
325
|
+
## Critical Questions for Further Exploration
|
|
326
|
+
|
|
327
|
+
### Unanswered Questions:
|
|
328
|
+
1. How do changes in accounting standards (IFRS 16 lease capitalization) affect the stability of historical `capital_lease_obligations` time series?
|
|
329
|
+
2. Does the relationship between `is_fair_value_plan_assets` and pension expense predict future earnings volatility through corridor amortization?
|
|
330
|
+
3. How does the vector length (number of historical periods available) vary across companies and does this create a data availability bias in time-series features?
|
|
331
|
+
|
|
332
|
+
### Recommended Additional Data:
|
|
333
|
+
- Segment-level financial data to disaggregate consolidated metrics by business line
|
|
334
|
+
- Real-time credit facility drawdown data to supplement `bs_st_borrow` point-in-time snapshots
|
|
335
|
+
- Management guidance and analyst estimate consensus to contextualize `sales_rev_turn` and `net_inc_avail_com_shrhldrs` surprises
|
|
336
|
+
|
|
337
|
+
### Assumptions to Challenge:
|
|
338
|
+
- That quarterly reporting frequency is sufficient to capture rapidly changing fundamentals (may need intra-quarter estimations)
|
|
339
|
+
- That GAAP/IFRS convergence eliminates comparability issues between US and international listings
|
|
340
|
+
- That historical cost-based `bs_tot_asset` is comparable across time periods given inflation and technological change
|
|
341
|
+
|
|
342
|
+
---
|
|
343
|
+
|
|
344
|
+
## Methodology Notes
|
|
345
|
+
|
|
346
|
+
**Analysis Approach**: This report was generated by:
|
|
347
|
+
1. Deep field deconstruction to understand data essence (balance sheet snapshots vs. income statement flows)
|
|
348
|
+
2. Question-driven feature generation (8 fundamental questions) applied to accounting relationships
|
|
349
|
+
3. Logical validation of each feature concept against financial theory and accounting identities
|
|
350
|
+
4. Transparent documentation of reasoning including vector operator requirements for fundamental data types
|
|
351
|
+
|
|
352
|
+
**Design Principles**:
|
|
353
|
+
- Focus on logical meaning over conventional patterns (e.g., interest expense gaps rather than simple coverage ratios)
|
|
354
|
+
- Every feature must answer a specific question about stability, change, anomaly, interaction, structure, accumulation, relativity, or essence
|
|
355
|
+
- Clear documentation of "why" each feature captures economic reality
|
|
356
|
+
- Emphasis on data understanding over prediction (financial statement logic drives feature design)
|
|
357
|
+
|
|
358
|
+
---
|
|
359
|
+
|
|
360
|
+
*Report generated: 2024-01-15*
|
|
361
|
+
*Analysis depth: Comprehensive field deconstruction + 8-question framework*
|
|
362
|
+
*Next steps: Implement Tier 1 features, validate cross-sectional neutrality assumptions, gather segment-level data as needed*
|
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
[
|
|
2
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
3
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
4
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
5
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
6
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
7
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
8
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
9
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
10
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
11
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
12
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
13
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
14
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
15
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
16
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
17
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
18
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
19
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
20
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
21
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
22
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
23
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
24
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
25
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
26
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
27
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
28
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
29
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
30
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
31
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
32
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
33
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
34
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
35
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
36
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
37
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
38
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
39
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
40
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
41
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
42
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_a_bs_pure_retained_earnings))",
|
|
43
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_a_bs_pure_retained_earnings))",
|
|
44
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_q_bs_pure_retained_earnings))",
|
|
45
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_q_bs_pure_retained_earnings))",
|
|
46
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_a_bs_pure_retained_earnings))",
|
|
47
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_a_bs_pure_retained_earnings))",
|
|
48
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_q_bs_pure_retained_earnings))",
|
|
49
|
+
"divide(subtract(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_is_tot_cash_com_dvd)), vec_avg(fnd72_pit_or_bs_q_bs_pure_retained_earnings))",
|
|
50
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252)))",
|
|
51
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252)))",
|
|
52
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252)))",
|
|
53
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252)))",
|
|
54
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252)))",
|
|
55
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252)))",
|
|
56
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), 252)))",
|
|
57
|
+
"divide(ts_std_dev(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252), abs(ts_mean(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), 252)))",
|
|
58
|
+
"divide(ts_sum(vec_avg(fnd72_pit_or_cf_a_cf_cap_expend_prpty_add), 252), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset))",
|
|
59
|
+
"divide(ts_sum(vec_avg(fnd72_pit_or_cf_a_cf_cap_expend_prpty_add), 252), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset))",
|
|
60
|
+
"divide(ts_sum(vec_avg(fnd72_pit_or_cf_q_cf_cap_expend_prpty_add), 252), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset))",
|
|
61
|
+
"divide(ts_sum(vec_avg(fnd72_pit_or_cf_q_cf_cap_expend_prpty_add), 252), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset))",
|
|
62
|
+
"divide(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_a_bs_acct_payable), vec_avg(fnd72_pit_or_bs_a_bs_other_cur_liab)))",
|
|
63
|
+
"divide(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_q_bs_acct_payable), vec_avg(fnd72_pit_or_bs_a_bs_other_cur_liab)))",
|
|
64
|
+
"divide(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_a_bs_acct_payable), vec_avg(fnd72_pit_or_bs_q_bs_other_cur_liab)))",
|
|
65
|
+
"divide(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_q_bs_acct_payable), vec_avg(fnd72_pit_or_bs_q_bs_other_cur_liab)))",
|
|
66
|
+
"divide(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_a_bs_acct_payable), vec_avg(fnd72_pit_or_bs_a_bs_other_cur_liab)))",
|
|
67
|
+
"divide(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_q_bs_acct_payable), vec_avg(fnd72_pit_or_bs_a_bs_other_cur_liab)))",
|
|
68
|
+
"divide(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_a_bs_acct_payable), vec_avg(fnd72_pit_or_bs_q_bs_other_cur_liab)))",
|
|
69
|
+
"divide(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), add(vec_avg(fnd72_pit_or_bs_q_bs_acct_payable), vec_avg(fnd72_pit_or_bs_q_bs_other_cur_liab)))",
|
|
70
|
+
"divide(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs))",
|
|
71
|
+
"divide(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs))",
|
|
72
|
+
"divide(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs))",
|
|
73
|
+
"divide(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs))",
|
|
74
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)))",
|
|
75
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)))",
|
|
76
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)))",
|
|
77
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)))",
|
|
78
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)))",
|
|
79
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)))",
|
|
80
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)))",
|
|
81
|
+
"multiply(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), divide(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)))",
|
|
82
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)), driver=\"gaussian\")",
|
|
83
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)), driver=\"gaussian\")",
|
|
84
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)), driver=\"gaussian\")",
|
|
85
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)), driver=\"gaussian\")",
|
|
86
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)), driver=\"gaussian\")",
|
|
87
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)), driver=\"gaussian\")",
|
|
88
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_q_bs_tot_eqy)), driver=\"gaussian\")",
|
|
89
|
+
"quantile(divide(add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow)), vec_avg(fnd72_pit_or_bs_a_bs_tot_eqy)), driver=\"gaussian\")",
|
|
90
|
+
"regression_neut(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset))",
|
|
91
|
+
"regression_neut(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset))",
|
|
92
|
+
"regression_neut(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset)), vec_avg(fnd72_pit_or_bs_a_bs_tot_asset))",
|
|
93
|
+
"regression_neut(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset)), vec_avg(fnd72_pit_or_bs_q_bs_tot_asset))",
|
|
94
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
95
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
96
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
97
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
98
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
99
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
100
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
101
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
102
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
103
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
104
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
105
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_a_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
106
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
107
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_a_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
108
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_q_eff_int_rate))",
|
|
109
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), add(vec_avg(fnd72_pit_or_bs_q_bs_st_borrow), vec_avg(fnd72_pit_or_bs_q_bs_lt_borrow))), vec_avg(fnd72_pit_or_is_a_eff_int_rate))",
|
|
110
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)))",
|
|
111
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)))",
|
|
112
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)))",
|
|
113
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_a_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)))",
|
|
114
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)))",
|
|
115
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_q_is_int_expense), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)))",
|
|
116
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)))",
|
|
117
|
+
"subtract(divide(vec_avg(fnd72_pit_or_is_q_is_net_inc_avail_com_shrhldrs), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), divide(vec_avg(fnd72_pit_or_is_a_is_int_expense), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)))",
|
|
118
|
+
"ts_av_diff(divide(vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), 504)",
|
|
119
|
+
"ts_av_diff(divide(vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), 504)",
|
|
120
|
+
"ts_av_diff(divide(vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), 504)",
|
|
121
|
+
"ts_av_diff(divide(vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), 504)",
|
|
122
|
+
"ts_corr(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_a_sales_rev_turn), 504)",
|
|
123
|
+
"ts_corr(vec_avg(fnd72_pit_or_cf_a_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_q_sales_rev_turn), 504)",
|
|
124
|
+
"ts_corr(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_a_sales_rev_turn), 504)",
|
|
125
|
+
"ts_corr(vec_avg(fnd72_pit_or_cf_q_cf_cash_from_oper), vec_avg(fnd72_pit_or_is_q_sales_rev_turn), 504)",
|
|
126
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_cf_a_cf_chng_non_cash_work_cap), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), 63)",
|
|
127
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_cf_a_cf_chng_non_cash_work_cap), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), 63)",
|
|
128
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_cf_q_cf_chng_non_cash_work_cap), vec_avg(fnd72_pit_or_is_a_sales_rev_turn)), 63)",
|
|
129
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_cf_q_cf_chng_non_cash_work_cap), vec_avg(fnd72_pit_or_is_q_sales_rev_turn)), 63)",
|
|
130
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_a_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_a_invtry_finished_goods))), 63)",
|
|
131
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_q_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_a_invtry_finished_goods))), 63)",
|
|
132
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_a_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_a_invtry_finished_goods))), 63)",
|
|
133
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_q_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_a_invtry_finished_goods))), 63)",
|
|
134
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_q_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_q_invtry_finished_goods))), 63)",
|
|
135
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_q_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_a_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_q_invtry_finished_goods))), 63)",
|
|
136
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_q_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_q_invtry_finished_goods))), 63)",
|
|
137
|
+
"ts_delta(divide(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), add(add(vec_avg(fnd72_pit_or_bs_a_invtry_raw_materials), vec_avg(fnd72_pit_or_bs_a_invtry_in_progress)), vec_avg(fnd72_pit_or_bs_q_invtry_finished_goods))), 63)"
|
|
138
|
+
]
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
{
|
|
2
|
+
"template": "divide(add(add(vec_avg({bs_cash_near_cash_item}), vec_avg({accts_rec_excl_notes_rec})), vec_avg({inventories})), vec_avg({bs_cur_asset_report}))",
|
|
3
|
+
"idea": "**Concept**: Liquid Asset Purity Ratio\n- **Sample Fields Used**: bs_cash_near_cash_item, bs_accts_rec_excl_notes_rec, inventories, bs_cur_asset_report\n- **Definition**: Proportion of current assets comprised of cash and near-cash items versus receivables and inventory\n- **Why This Feature**: Composition of current assets indicates liquidity quality; high receivables/inventory suggests committed working capital, high cash suggests flexibility but potentially inefficient deployment\n- **Logical Meaning**: Measures the liquidity structure and quality of current assets\n- **Directionality**: Higher values indicate higher liquidity quality (more cash); lower values indicate capital-intensive working capital structure\n- **Boundary Conditions**: Approaches 1.0 for cash-rich companies; approaches 0 for highly leveraged working capital structures",
|
|
4
|
+
"expression_list": [
|
|
5
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
6
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
7
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
8
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
9
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
10
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
11
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
12
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
13
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
14
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
15
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
16
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
17
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
18
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
19
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
20
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_a_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
21
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
22
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
23
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
24
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
25
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
26
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
27
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
28
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_q_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
29
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
30
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
31
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
32
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_q_bs_cur_asset_report))",
|
|
33
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_q_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
34
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_bs_a_bs_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
35
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_a_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))",
|
|
36
|
+
"divide(add(add(vec_avg(fnd72_pit_or_bs_a_bs_cash_near_cash_item), vec_avg(fnd72_pit_or_bs_q_bs_accts_rec_excl_notes_rec)), vec_avg(fnd72_pit_or_cf_q_cf_change_in_inventories)), vec_avg(fnd72_pit_or_bs_a_bs_cur_asset_report))"
|
|
37
|
+
]
|
|
38
|
+
}
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
{
|
|
2
|
+
"template": "divide(subtract(vec_avg({bs_tot_asset}), vec_avg({bs_disclosed_intangibles})), vec_avg({bs_tot_liab_eqy}))",
|
|
3
|
+
"idea": "**Concept**: Tangible Capital Structure\n- **Sample Fields Used**: bs_disclosed_intangibles, bs_tot_asset, bs_tot_liab_eqy\n- **Definition**: Net tangible assets (total assets minus intangibles) as a proportion of total capital\n- **Why This Feature**: Intangibles represent uncertain liquidation values; this metric reveals the tangible collateral backing the capital structure, critical for credit analysis and liquidation scenarios\n- **Logical Meaning**: Measures the tangible asset backing of the enterprise value\n- **Directionality**: Higher values indicate more collateralizable assets (safer for creditors); lower values indicate knowledge-intensive/asset-light models\n- **Boundary Conditions**: Near 0 for pure IP/brand companies; near 1 for heavy industrial companies",
|
|
4
|
+
"expression_list": [
|
|
5
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
6
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
7
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
8
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_a_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
9
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
10
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_q_bs_tot_liab_eqy))",
|
|
11
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_q_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))",
|
|
12
|
+
"divide(subtract(vec_avg(fnd72_pit_or_bs_a_bs_tot_asset), vec_avg(fnd72_pit_or_bs_q_bs_disclosed_intangibles)), vec_avg(fnd72_pit_or_bs_a_bs_tot_liab_eqy))"
|
|
13
|
+
]
|
|
14
|
+
}
|