cnhkmcp 2.2.0__py3-none-any.whl → 2.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. cnhkmcp/__init__.py +1 -1
  2. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/README.md +1 -1
  3. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/config.json +2 -2
  4. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/main.py +1 -1
  5. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/chroma.sqlite3 +0 -0
  6. cnhkmcp/untracked/APP/Tranformer/Transformer.py +2 -2
  7. cnhkmcp/untracked/APP/Tranformer/transformer_config.json +1 -1
  8. cnhkmcp/untracked/APP/blueprints/feature_engineering.py +2 -2
  9. cnhkmcp/untracked/APP/blueprints/inspiration_house.py +4 -4
  10. cnhkmcp/untracked/APP/blueprints/paper_analysis.py +3 -3
  11. cnhkmcp/untracked/APP/give_me_idea/BRAIN_Alpha_Template_Expert_SystemPrompt.md +34 -73
  12. cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py +2 -2
  13. cnhkmcp/untracked/APP/give_me_idea/what_is_Alpha_template.md +366 -1
  14. cnhkmcp/untracked/APP/static/inspiration.js +345 -13
  15. cnhkmcp/untracked/APP/templates/index.html +11 -3
  16. cnhkmcp/untracked/APP/templates/transformer_web.html +1 -1
  17. cnhkmcp/untracked/APP/trailSomeAlphas/README.md +38 -0
  18. cnhkmcp/untracked/APP/trailSomeAlphas/ace.log +66 -0
  19. cnhkmcp/untracked/APP/trailSomeAlphas/enhance_template.py +588 -0
  20. cnhkmcp/untracked/APP/trailSomeAlphas/requirements.txt +3 -0
  21. cnhkmcp/untracked/APP/trailSomeAlphas/run_pipeline.py +1001 -0
  22. cnhkmcp/untracked/APP/trailSomeAlphas/run_pipeline_step_by_step.ipynb +5258 -0
  23. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/OUTPUT_TEMPLATE.md +325 -0
  24. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/SKILL.md +503 -0
  25. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/examples.md +244 -0
  26. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/output_report/ASI_delay1_analyst11_ideas.md +285 -0
  27. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/reference.md +399 -0
  28. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/SKILL.md +40 -0
  29. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/config.json +6 -0
  30. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709385783386000.json +388 -0
  31. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709386274840400.json +131 -0
  32. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709386838244700.json +1926 -0
  33. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709387369198500.json +31 -0
  34. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709387908905800.json +1926 -0
  35. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709388486243600.json +240 -0
  36. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709389024058600.json +1926 -0
  37. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709389549608700.json +41 -0
  38. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709390068714000.json +110 -0
  39. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709390591996900.json +36 -0
  40. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709391129137100.json +31 -0
  41. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709391691643500.json +41 -0
  42. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709392192099200.json +31 -0
  43. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709392703423500.json +46 -0
  44. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709393213729400.json +246 -0
  45. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710186683932500.json +388 -0
  46. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710187165414300.json +131 -0
  47. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710187665211700.json +1926 -0
  48. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710188149193400.json +31 -0
  49. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710188667627400.json +1926 -0
  50. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710189220822000.json +240 -0
  51. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710189726189500.json +1926 -0
  52. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710190248066100.json +41 -0
  53. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710190768298700.json +110 -0
  54. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710191282588100.json +36 -0
  55. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710191838960900.json +31 -0
  56. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710192396688000.json +41 -0
  57. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710192941922400.json +31 -0
  58. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710193473524600.json +46 -0
  59. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710194001961200.json +246 -0
  60. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710420975888800.json +46 -0
  61. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710421647590100.json +196 -0
  62. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710422131378500.json +5 -0
  63. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710422644184400.json +196 -0
  64. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710423702350600.json +196 -0
  65. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710424244661800.json +5 -0
  66. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_delay1.csv +211 -0
  67. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/final_expressions.json +7062 -0
  68. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/ace.log +3 -0
  69. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/ace_lib.py +1514 -0
  70. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/fetch_dataset.py +113 -0
  71. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/helpful_functions.py +180 -0
  72. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/implement_idea.py +236 -0
  73. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/merge_expression_list.py +90 -0
  74. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/parsetab.py +60 -0
  75. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance/op/321/206/320/220/342/225/227/321/207/342/225/227/320/243.md +434 -0
  76. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance/sample_prompt.md +62 -0
  77. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance//321/205/320/235/320/245/321/205/320/253/320/260/321/205/320/275/320/240/321/206/320/220/320/255/321/210/320/220/320/223/321/211/320/220/342/225/227/321/210/342/225/233/320/241/321/211/320/243/342/225/233.md +354 -0
  78. cnhkmcp/untracked/APP/usage.md +2 -2
  79. cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +388 -8
  80. cnhkmcp/untracked/skills/alpha-expression-verifier/scripts/validator.py +889 -0
  81. cnhkmcp/untracked/skills/brain-feature-implementation/scripts/implement_idea.py +4 -3
  82. cnhkmcp/untracked/skills/brain-improve-alpha-performance/arXiv_API_Tool_Manual.md +490 -0
  83. cnhkmcp/untracked/skills/brain-improve-alpha-performance/reference.md +1 -1
  84. cnhkmcp/untracked/skills/brain-improve-alpha-performance/scripts/arxiv_api.py +229 -0
  85. cnhkmcp/untracked//321/211/320/225/320/235/321/207/342/225/234/320/276/321/205/320/231/320/235/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/230/320/241_/321/205/320/276/320/231/321/210/320/263/320/225/321/205/342/224/220/320/225/321/210/320/266/320/221/321/204/342/225/233/320/255/321/210/342/225/241/320/246/321/205/320/234/320/225.py +35 -11
  86. cnhkmcp/vector_db/_manifest.json +1 -0
  87. cnhkmcp/vector_db/_meta.json +1 -0
  88. {cnhkmcp-2.2.0.dist-info → cnhkmcp-2.3.0.dist-info}/METADATA +1 -1
  89. {cnhkmcp-2.2.0.dist-info → cnhkmcp-2.3.0.dist-info}/RECORD +96 -30
  90. /cnhkmcp/untracked/{skills/expression_verifier → APP/trailSomeAlphas/skills/brain-feature-implementation}/scripts/validator.py +0 -0
  91. /cnhkmcp/untracked/skills/{expression_verifier → alpha-expression-verifier}/SKILL.md +0 -0
  92. /cnhkmcp/untracked/skills/{expression_verifier → alpha-expression-verifier}/scripts/verify_expr.py +0 -0
  93. {cnhkmcp-2.2.0.dist-info → cnhkmcp-2.3.0.dist-info}/WHEEL +0 -0
  94. {cnhkmcp-2.2.0.dist-info → cnhkmcp-2.3.0.dist-info}/entry_points.txt +0 -0
  95. {cnhkmcp-2.2.0.dist-info → cnhkmcp-2.3.0.dist-info}/licenses/LICENSE +0 -0
  96. {cnhkmcp-2.2.0.dist-info → cnhkmcp-2.3.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,503 @@
1
+ ---
2
+ brain-data-feature-engineering methodology
3
+ ---
4
+
5
+ # BRAIN Data Feature Engineering Workflow
6
+
7
+ **Purpose**: Automatically transform BRAIN dataset fields into deep, meaningful feature engineering ideas.
8
+
9
+ ## Input Requirements
10
+
11
+ ### Required Parameters:
12
+ - **data_category**: Dataset category (e.g., "fundamental", "analyst", "news", "model")
13
+ - **delay**: Data delay setting (0 or 1)
14
+ - **region**: Market region (e.g., "USA", "EUR", "ASI")
15
+
16
+ ### Optional Parameters:
17
+ - **universe**: Trading universe (default: "TOP3000")
18
+ - **dataset_id**: Specific dataset ID (if known, skips discovery phase)
19
+
20
+ ## Workflow Overview
21
+
22
+
23
+ ### Step 2: Field Extraction and Deconstruction
24
+ - **Deconstruct each field's meaning**:
25
+ * What is being measured? (the entity/concept)
26
+ * How is it measured? (collection/calculation method)
27
+ * Time dimension? (instantaneous, cumulative, rate of change)
28
+ * Business context? (why does this field exist?)
29
+ * Generation logic? (reliability considerations)
30
+ - **Build field profiles**: Structured understanding of each field's essence
31
+
32
+ ### Step 3: Reasoning and Analysis
33
+ **performs deep analysis based on collected information:**
34
+
35
+ **A. Field Relationship Mapping**
36
+ - Analyze logical connections between fields
37
+ - Identify: independent fields, related fields, complementary fields
38
+ - Map the "story" the dataset tells
39
+ - **Key question**: What relationships are implied by these fields?
40
+
41
+ **B. Question-Driven Feature Generation (Internal Process)**
42
+ The skill asks itself these questions and generates feature concepts:
43
+
44
+ 1. **"What is stable?"** → Look for invariants
45
+ - Which fields or combinations remain relatively constant?
46
+ - What stability measures make sense?
47
+
48
+ 2. **"What is changing?"** → Analyze change patterns
49
+ - Rate of change, acceleration, volatility
50
+ - Trend vs. noise separation
51
+
52
+ 3. **"What is anomalous?"** → Identify deviations
53
+ - Outliers, unusual patterns, breaks from normal
54
+ - Deviation magnitude and significance
55
+
56
+ 4. **"What is combined?"** → Examine interactions
57
+ - How fields interact, amplify, or offset each other
58
+ - Synthesis creates new meaning
59
+
60
+ 5. **"What is structural?"** → Study compositions
61
+ - Constituent parts, proportional relationships
62
+ - Structural changes over time
63
+
64
+ 6. **"What is cumulative?"** → Explore accumulation effects
65
+ - Building up over time, decay effects
66
+ - Memory and persistence in data
67
+
68
+ 7. **"What is relative?"** → Make comparisons
69
+ - Relative positioning, ranking, normalization
70
+ - Context within dataset
71
+
72
+ 8. **"What is essential?"** → Distill to core meaning
73
+ - First principles thinking
74
+ - Strip away assumptions, get to essence
75
+
76
+ **C. Feature Concept Generation**
77
+ For each relevant question-field combination:
78
+ - Formulate feature concept that answers the question
79
+ - Define the concept clearly
80
+ - Identify the logical meaning
81
+ - Consider directionality (what high/low values mean)
82
+ - Identify boundary conditions
83
+ - Note potential issues/limitations
84
+
85
+ ### Step 4: Feature Documentation
86
+ **For each generated feature concept, document:**
87
+ - **Concept Name**: Clear, descriptive name
88
+ - **Definition**: One-sentence definition
89
+ - **Logical Meaning**: What phenomenon/concept does it represent?
90
+ - **Why It's Meaningful**: Why does this feature make sense?
91
+ - **Directionality**: Interpretation of high vs. low values
92
+ - **Boundary Conditions**: What extremes indicate
93
+ - **Data Requirements**: What fields are used and any constraints
94
+ - **Potential Issues**: Known limitations or concerns
95
+
96
+ ### Step 5: Output Generation
97
+ **Generate structured markdown report including:**
98
+
99
+ 0. **Output the report markdown format** in the following format:
100
+
101
+ # {dataset_name} Feature Engineering Analysis Report
102
+
103
+ **Dataset**: {dataset_id}
104
+ **Category**: {category}
105
+ **Region**: {region}
106
+ **Analysis Date**: {analysis_date}
107
+ **Fields Analyzed**: {field_count}
108
+
109
+ ---
110
+
111
+ ## Executive Summary
112
+
113
+ **Primary Question Answered by Dataset**: What does this dataset fundamentally measure?
114
+
115
+ **Key Insights from Analysis**:
116
+ - {insight_1}
117
+ - {insight_2}
118
+ - {insight_3}
119
+
120
+ **Critical Field Relationships Identified**:
121
+ - {relationship_1}
122
+ - {relationship_2}
123
+
124
+ **Most Promising Feature Concepts**:
125
+ 1. {top_feature_1} - because {reason_1}
126
+ 2. {top_feature_2} - because {reason_2}
127
+ 3. {top_feature_3} - because {reason_3}
128
+
129
+ ---
130
+
131
+ ## Dataset Deep Understanding
132
+
133
+ ### Dataset Description
134
+ {dataset_description}
135
+
136
+ ### Field Inventory
137
+ | Field ID | Description | Data Type | Update Frequency | Coverage |
138
+ |----------|-------------|-----------|------------------|----------|
139
+ | {field_1_id} | {field_1_desc} | {type_1} | {freq_1} | {coverage_1}% |
140
+ | {field_2_id} | {field_2_desc} | {type_2} | {freq_2} | {coverage_2}% |
141
+ | {field_3_id} | {field_3_desc} | {type_3} | {freq_3} | {coverage_3}% |
142
+
143
+ *(Additional fields as needed)*
144
+
145
+ ### Field Deconstruction Analysis
146
+
147
+ #### {field_1_id}: {field_1_name}
148
+ - **What is being measured?**: {measurement_object_1}
149
+ - **How is it measured?**: {measurement_method_1}
150
+ - **Time dimension**: {time_dimension_1}
151
+ - **Business context**: {business_context_1}
152
+ - **Generation logic**: {generation_logic_1}
153
+ - **Reliability considerations**: {reliability_1}
154
+
155
+ #### {field_2_id}: {field_2_name}
156
+ - **What is being measured?**: {measurement_object_2}
157
+ - **How is it measured?**: {measurement_method_2}
158
+ - **Time dimension**: {time_dimension_2}
159
+ - **Business context**: {business_context_2}
160
+ - **Generation logic**: {generation_logic_2}
161
+ - **Reliability considerations**: {reliability_2}
162
+
163
+ *(Additional fields as needed)*
164
+
165
+ ### Field Relationship Mapping
166
+
167
+ **The Story This Data Tells**:
168
+ {story_description}
169
+
170
+ **Key Relationships Identified**:
171
+ 1. {relationship_1_desc}
172
+ 2. {relationship_2_desc}
173
+ 3. {relationship_3_desc}
174
+
175
+ **Missing Pieces That Would Complete the Picture**:
176
+ - {missing_1}
177
+ - {missing_2}
178
+
179
+ ---
180
+
181
+ ## Feature Concepts by Question Type
182
+
183
+ ### Q1: "What is stable?" (Invariance Features)
184
+
185
+ **Concept**: {stability_feature_1_name}
186
+ - **Sample Fields Used**: fields_used_1
187
+ - **Definition**: {definition_1}
188
+ - **Why This Feature**: {why_1}
189
+ - **Logical Meaning**: {logical_meaning_1}
190
+ - **Directionality**: {directionality_1}
191
+ - **Boundary Conditions**: {boundaries_1}
192
+ - **Implementation Example**: `{implementation_1}`
193
+
194
+ **Concept**: {stability_feature_2_name}
195
+ - **Sample Fields Used**: fields_used_2
196
+ - **Definition**: {definition_2}
197
+ - **Why This Feature**: {why_2}
198
+ - **Logical Meaning**: {logical_meaning_2}
199
+ - **Directionality**: {directionality_2}
200
+ - **Boundary Conditions**: {boundaries_2}
201
+ - **Implementation Example**: `{implementation_2}`
202
+
203
+ ---
204
+
205
+ ### Q2: "What is changing?" (Dynamics Features)
206
+
207
+ **Concept**: {dynamics_feature_1_name}
208
+ - **Sample Fields Used**: fields_used_3
209
+ - **Definition**: {definition_3}
210
+ - **Why This Feature**: {why_3}
211
+ - **Logical Meaning**: {logical_meaning_3}
212
+ - **Directionality**: {directionality_3}
213
+ - **Boundary Conditions**: {boundaries_3}
214
+ - **Implementation Example**: `{implementation_3}`
215
+
216
+ **Concept**: {dynamics_feature_2_name}
217
+ - **Sample Fields Used**: fields_used_4
218
+ - **Definition**: {definition_4}
219
+ - **Why This Feature**: {why_4}
220
+ - **Logical Meaning**: {logical_meaning_4}
221
+ - **Directionality**: {directionality_4}
222
+ - **Boundary Conditions**: {boundaries_4}
223
+ - **Implementation Example**: `{implementation_4}`
224
+
225
+ ---
226
+
227
+ ### Q3: "What is anomalous?" (Deviation Features)
228
+
229
+ **Concept**: {anomaly_feature_1_name}
230
+ - **Sample Fields Used**: fields_used_5
231
+ - **Definition**: {definition_5}
232
+ - **Why This Feature**: {why_5}
233
+ - **Logical Meaning**: {logical_meaning_5}
234
+ - **Directionality**: {directionality_5}
235
+ - **Boundary Conditions**: {boundaries_5}
236
+ - **Implementation Example**: `{implementation_5}`
237
+
238
+ **Concept**: {anomaly_feature_2_name}
239
+ - **Sample Fields Used**: fields_used_6
240
+ - **Definition**: {definition_6}
241
+ - **Why This Feature**: {why_6}
242
+ - **Logical Meaning**: {logical_meaning_6}
243
+ - **Directionality**: {directionality_6}
244
+ - **Boundary Conditions**: {boundaries_6}
245
+ - **Implementation Example**: `{implementation_6}`
246
+
247
+ ---
248
+
249
+ ### Q4: "What is combined?" (Interaction Features)
250
+
251
+ **Concept**: {interaction_feature_1_name}
252
+ - **Sample Fields Used**: fields_used_7
253
+ - **Definition**: {definition_7}
254
+ - **Why This Feature**: {why_7}
255
+ - **Logical Meaning**: {logical_meaning_7}
256
+ - **Directionality**: {directionality_7}
257
+ - **Boundary Conditions**: {boundaries_7}
258
+ - **Implementation Example**: `{implementation_7}`
259
+
260
+ **Concept**: {interaction_feature_2_name}
261
+ - **Sample Fields Used**: fields_used_8
262
+ - **Definition**: {definition_8}
263
+ - **Why This Feature**: {why_8}
264
+ - **Logical Meaning**: {logical_meaning_8}
265
+ - **Directionality**: {directionality_8}
266
+ - **Boundary Conditions**: {boundaries_8}
267
+ - **Implementation Example**: `{implementation_8}`
268
+
269
+ ---
270
+
271
+ ### Q5: "What is structural?" (Composition Features)
272
+
273
+ **Concept**: {structure_feature_1_name}
274
+ - **Sample Fields Used**: fields_used_9
275
+ - **Definition**: {definition_9}
276
+ - **Why This Feature**: {why_9}
277
+ - **Logical Meaning**: {logical_meaning_9}
278
+ - **Directionality**: {directionality_9}
279
+ - **Boundary Conditions**: {boundaries_9}
280
+ - **Implementation Example**: `{implementation_9}`
281
+
282
+ **Concept**: {structure_feature_2_name}
283
+ - **Sample Fields Used**: fields_used_10
284
+ - **Definition**: {definition_10}
285
+ - **Why This Feature**: {why_10}
286
+ - **Logical Meaning**: {logical_meaning_10}
287
+ - **Directionality**: {directionality_10}
288
+ - **Boundary Conditions**: {boundaries_10}
289
+ - **Implementation Example**: `{implementation_10}`
290
+
291
+ ---
292
+
293
+ ### Q6: "What is cumulative?" (Accumulation Features)
294
+
295
+ **Concept**: {accumulation_feature_1_name}
296
+ - **Sample Fields Used**: fields_used_11
297
+ - **Definition**: {definition_11}
298
+ - **Why This Feature**: {why_11}
299
+ - **Logical Meaning**: {logical_meaning_11}
300
+ - **Directionality**: {directionality_11}
301
+ - **Boundary Conditions**: {boundaries_11}
302
+ - **Implementation Example**: `{implementation_11}`
303
+
304
+ **Concept**: {accumulation_feature_2_name}
305
+ - **Sample Fields Used**: fields_used_12
306
+ - **Definition**: {definition_12}
307
+ - **Why This Feature**: {why_12}
308
+ - **Logical Meaning**: {logical_meaning_12}
309
+ - **Directionality**: {directionality_12}
310
+ - **Boundary Conditions**: {boundaries_12}
311
+ - **Implementation Example**: `{implementation_12}`
312
+
313
+ ---
314
+
315
+ ### Q7: "What is relative?" (Comparison Features)
316
+
317
+ **Concept**: {relative_feature_1_name}
318
+ - **Sample Fields Used**: fields_used_13
319
+ - **Definition**: {definition_13}
320
+ - **Why This Feature**: {why_13}
321
+ - **Logical Meaning**: {logical_meaning_13}
322
+ - **Directionality**: {directionality_13}
323
+ - **Boundary Conditions**: {boundaries_13}
324
+ - **Implementation Example**: `{implementation_13}`
325
+
326
+ **Concept**: {relative_feature_2_name}
327
+ - **Sample Fields Used**: fields_used_14
328
+ - **Definition**: {definition_14}
329
+ - **Why This Feature**: {why_14}
330
+ - **Logical Meaning**: {logical_meaning_14}
331
+ - **Directionality**: {directionality_14}
332
+ - **Boundary Conditions**: {boundaries_14}
333
+ - **Implementation Example**: `{implementation_14}`
334
+
335
+ ---
336
+
337
+ ### Q8: "What is essential?" (Essence Features)
338
+
339
+ **Concept**: {essence_feature_1_name}
340
+ - **Sample Fields Used**: fields_used_15
341
+ - **Definition**: {definition_15}
342
+ - **Why This Feature**: {why_15}
343
+ - **Logical Meaning**: {logical_meaning_15}
344
+ - **Directionality**: {directionality_15}
345
+ - **Boundary Conditions**: {boundaries_15}
346
+ - **Implementation Example**: `{implementation_15}`
347
+
348
+ **Concept**: {essence_feature_2_name}
349
+ - **Sample Fields Used**: fields_used_16
350
+ - **Definition**: {definition_16}
351
+ - **Why This Feature**: {why_16}
352
+ - **Logical Meaning**: {logical_meaning_16}
353
+ - **Directionality**: {directionality_16}
354
+ - **Boundary Conditions**: {boundaries_16}
355
+ - **Implementation Example**: `{implementation_16}`
356
+
357
+ ---
358
+
359
+ ## Implementation Considerations
360
+
361
+ ### Data Quality Notes
362
+ - **Coverage**: {coverage_note}
363
+ - **Timeliness**: {timeliness_note}
364
+ - **Accuracy**: {accuracy_note}
365
+ - **Potential Biases**: {bias_note}
366
+
367
+ ### Computational Complexity
368
+ - **Lightweight features**: {simple_features}
369
+ - **Medium complexity**: {medium_features}
370
+ - **Heavy computation**: {complex_features}
371
+
372
+ ### Recommended Prioritization
373
+
374
+ **Tier 1 (Immediate Implementation)**:
375
+ 1. {priority_1_feature} - {priority_1_reason}
376
+ 2. {priority_2_feature} - {priority_2_reason}
377
+ 3. {priority_3_feature} - {priority_3_reason}
378
+
379
+ **Tier 2 (Secondary Priority)**:
380
+ 1. {priority_4_feature} - {priority_4_reason}
381
+ 2. {priority_5_feature} - {priority_5_reason}
382
+
383
+ **Tier 3 (Requires Further Validation)**:
384
+ 1. {priority_6_feature} - {priority_6_reason}
385
+
386
+ ---
387
+
388
+ ## Critical Questions for Further Exploration
389
+
390
+ ### Unanswered Questions:
391
+ 1. {unanswered_question_1}
392
+ 2. {unanswered_question_2}
393
+ 3. {unanswered_question_3}
394
+
395
+ ### Recommended Additional Data:
396
+ - {additional_data_1}
397
+ - {additional_data_2}
398
+ - {additional_data_3}
399
+
400
+ ### Assumptions to Challenge:
401
+ - {assumption_1}
402
+ - {assumption_2}
403
+ - {assumption_3}
404
+
405
+ ---
406
+
407
+ ## Methodology Notes
408
+
409
+ **Analysis Approach**: This report was generated by:
410
+ 1. Deep field deconstruction to understand data essence
411
+ 2. Question-driven feature generation (8 fundamental questions)
412
+ 3. Logical validation of each feature concept
413
+ 4. Transparent documentation of reasoning
414
+
415
+ **Design Principles**:
416
+ - Focus on logical meaning over conventional patterns
417
+ - Every feature must answer a specific question
418
+ - Clear documentation of "why" for each suggestion
419
+ - Emphasis on data understanding over prediction
420
+
421
+ ---
422
+
423
+ *Report generated: {generation_timestamp}*
424
+ *Analysis depth: Comprehensive field deconstruction + 8-question framework*
425
+ *Next steps: Implement Tier 1 features, validate assumptions, gather additional data as needed*
426
+
427
+
428
+
429
+ ## Core Analysis Principles
430
+
431
+ 1. **From Data Essence**: Start with what data truly means, not what it's traditionally used for
432
+ 2. **Autonomous Reasoning**: Skill performs all thinking, no user input required
433
+ 3. **Question-Driven**: Internal question bank guides feature generation
434
+ 4. **Meaning Over Patterns**: Prioritize logical meaning over conventional combinations
435
+ 5. **Transparency**: Show reasoning process in output
436
+
437
+ ## Example Output Structure
438
+
439
+ When analyzing dataset 'BEME' (Balance Sheet and Market Data), the output would include:
440
+
441
+ ### Dataset Understanding
442
+ **Fields Analyzed**: book_value, market_cap, book_to_market, etc.
443
+ **Key Observations**: Dataset compares accounting values with market valuations
444
+
445
+ ### Field Deconstruction
446
+ - **book_value**: Accountant's calculation of net asset value (quarterly, audited, historical cost-based)
447
+ - **market_cap**: Market participants' valuation (continuous, forward-looking, sentiment-influenced)
448
+ - **book_to_market**: Ratio comparing these two valuation perspectives
449
+
450
+ ### Feature Concepts Generated
451
+
452
+ **From "What is stable?"**
453
+ - "Market reevaluation stability": Rolling coefficient of variation of book_to_market
454
+ - **Logic**: Measures whether market opinion is stable or volatile
455
+ - **Meaning**: Stable values suggest consensus, volatile values suggest disagreement/uncertainty
456
+
457
+ **From "What is changing?"**
458
+ - "Value creation vs. market reevaluation decomposition": Separate book_value growth from market_cap growth
459
+ - **Logic**: Distinguish fundamental value creation from market sentiment changes
460
+ - **Meaning**: Which component drives changes in book_to_market?
461
+
462
+ **From "What is combined?"**
463
+ - "Intangible value proportion": (market_cap - book_value) / enterprise_value
464
+ - **Logic**: Quantify proportion of value from intangibles (brand, growth, etc.)
465
+ - **Meaning**: What percentage of valuation isn't captured on the balance sheet?
466
+
467
+ **(Additional question-based features would follow...)**
468
+
469
+ ## Implementation Notes
470
+
471
+ ### The skill should:
472
+ 1. **Analyze first, then generate**: Fully understand dataset before proposing features
473
+ 2. **Show reasoning**: Explain why each feature concept makes sense
474
+ 3. **Be specific**: Reference actual field names and their characteristics
475
+ 4. **Be critical**: Question assumptions and identify limitations
476
+ 5. **Be creative**: Look beyond traditional financial metrics
477
+
478
+ ### The skill should NOT:
479
+ 1. **Ask users to think**: All thinking is internal to the skill
480
+ 2. **Provide generic templates**: Each analysis should be specific to the dataset
481
+ 3. **Rely on conventional wisdom**: Challenge traditional approaches
482
+ 4. **Output patterns without meaning**: Every suggestion must have clear logic
483
+
484
+ ## Quality Assurance
485
+
486
+ **Self-Check Process:**
487
+ - [ ] All fields analyzed, not just skimmed
488
+ - [ ] Field meanings understood beyond descriptions
489
+ - [ ] Multiple question types explored
490
+ - [ ] Each feature has clear logical meaning
491
+ - [ ] Reasoning is explicit, not implicit
492
+ - [ ] Limitations are acknowledged
493
+ - [ ] Output is dataset-specific, not generic
494
+
495
+ **Validation Questions:**
496
+ - Would this analysis help someone truly understand the data?
497
+ - Are feature concepts novel yet meaningful?
498
+ - Is the reasoning process transparent?
499
+ - Does it avoid conventional thinking traps?
500
+
501
+ ---
502
+
503
+ *This skill performs deep analysis of BRAIN datasets, generating meaningful feature engineering concepts based on data essence and logical reasoning.*