cnhkmcp 2.1.9__py3-none-any.whl → 2.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (142) hide show
  1. cnhkmcp/__init__.py +1 -1
  2. cnhkmcp/untracked/AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221/BRAIN_AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221Mac_Linux/321/207/320/231/320/230/321/206/320/254/320/274.zip +0 -0
  3. cnhkmcp/untracked/AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221//321/205/320/237/320/234/321/205/320/227/342/225/227/321/205/320/276/320/231/321/210/320/263/320/225AI/321/206/320/231/320/243/321/205/342/225/226/320/265/321/204/342/225/221/342/225/221_Windows/321/207/320/231/320/230/321/206/320/254/320/274.exe +0 -0
  4. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/README.md +1 -1
  5. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/config.json +2 -2
  6. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/main.py +1 -1
  7. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/chroma.sqlite3 +0 -0
  8. cnhkmcp/untracked/APP/Tranformer/Transformer.py +2 -2
  9. cnhkmcp/untracked/APP/Tranformer/transformer_config.json +1 -1
  10. cnhkmcp/untracked/APP/blueprints/feature_engineering.py +2 -2
  11. cnhkmcp/untracked/APP/blueprints/inspiration_house.py +4 -4
  12. cnhkmcp/untracked/APP/blueprints/paper_analysis.py +3 -3
  13. cnhkmcp/untracked/APP/give_me_idea/BRAIN_Alpha_Template_Expert_SystemPrompt.md +34 -73
  14. cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py +2 -2
  15. cnhkmcp/untracked/APP/give_me_idea/what_is_Alpha_template.md +366 -1
  16. cnhkmcp/untracked/APP/static/inspiration.js +345 -13
  17. cnhkmcp/untracked/APP/templates/index.html +11 -3
  18. cnhkmcp/untracked/APP/templates/transformer_web.html +1 -1
  19. cnhkmcp/untracked/APP/trailSomeAlphas/README.md +38 -0
  20. cnhkmcp/untracked/APP/trailSomeAlphas/ace.log +66 -0
  21. cnhkmcp/untracked/APP/trailSomeAlphas/enhance_template.py +588 -0
  22. cnhkmcp/untracked/APP/trailSomeAlphas/requirements.txt +3 -0
  23. cnhkmcp/untracked/APP/trailSomeAlphas/run_pipeline.py +1001 -0
  24. cnhkmcp/untracked/APP/trailSomeAlphas/run_pipeline_step_by_step.ipynb +5258 -0
  25. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/OUTPUT_TEMPLATE.md +325 -0
  26. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/SKILL.md +503 -0
  27. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/examples.md +244 -0
  28. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/output_report/ASI_delay1_analyst11_ideas.md +285 -0
  29. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-data-feature-engineering/reference.md +399 -0
  30. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/SKILL.md +40 -0
  31. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/config.json +6 -0
  32. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709385783386000.json +388 -0
  33. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709386274840400.json +131 -0
  34. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709386838244700.json +1926 -0
  35. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709387369198500.json +31 -0
  36. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709387908905800.json +1926 -0
  37. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709388486243600.json +240 -0
  38. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709389024058600.json +1926 -0
  39. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709389549608700.json +41 -0
  40. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709390068714000.json +110 -0
  41. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709390591996900.json +36 -0
  42. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709391129137100.json +31 -0
  43. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709391691643500.json +41 -0
  44. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709392192099200.json +31 -0
  45. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709392703423500.json +46 -0
  46. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769709393213729400.json +246 -0
  47. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710186683932500.json +388 -0
  48. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710187165414300.json +131 -0
  49. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710187665211700.json +1926 -0
  50. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710188149193400.json +31 -0
  51. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710188667627400.json +1926 -0
  52. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710189220822000.json +240 -0
  53. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710189726189500.json +1926 -0
  54. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710190248066100.json +41 -0
  55. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710190768298700.json +110 -0
  56. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710191282588100.json +36 -0
  57. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710191838960900.json +31 -0
  58. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710192396688000.json +41 -0
  59. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710192941922400.json +31 -0
  60. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710193473524600.json +46 -0
  61. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710194001961200.json +246 -0
  62. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710420975888800.json +46 -0
  63. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710421647590100.json +196 -0
  64. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710422131378500.json +5 -0
  65. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710422644184400.json +196 -0
  66. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710423702350600.json +196 -0
  67. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_1_idea_1769710424244661800.json +5 -0
  68. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/analyst11_ASI_delay1.csv +211 -0
  69. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/data/analyst11_ASI_delay1/final_expressions.json +7062 -0
  70. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/ace.log +3 -0
  71. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/ace_lib.py +1514 -0
  72. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/fetch_dataset.py +113 -0
  73. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/helpful_functions.py +180 -0
  74. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/implement_idea.py +236 -0
  75. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/merge_expression_list.py +90 -0
  76. cnhkmcp/untracked/APP/trailSomeAlphas/skills/brain-feature-implementation/scripts/parsetab.py +60 -0
  77. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance/op/321/206/320/220/342/225/227/321/207/342/225/227/320/243.md +434 -0
  78. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance/sample_prompt.md +62 -0
  79. cnhkmcp/untracked/APP/trailSomeAlphas/skills/template_final_enhance//321/205/320/235/320/245/321/205/320/253/320/260/321/205/320/275/320/240/321/206/320/220/320/255/321/210/320/220/320/223/321/211/320/220/342/225/227/321/210/342/225/233/320/241/321/211/320/243/342/225/233.md +354 -0
  80. cnhkmcp/untracked/APP/usage.md +2 -2
  81. cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +388 -8
  82. cnhkmcp/untracked/skills/alpha-expression-verifier/scripts/validator.py +889 -0
  83. cnhkmcp/untracked/skills/brain-data-feature-engineering/OUTPUT_TEMPLATE.md +325 -0
  84. cnhkmcp/untracked/skills/brain-data-feature-engineering/SKILL.md +263 -0
  85. cnhkmcp/untracked/skills/brain-data-feature-engineering/examples.md +244 -0
  86. cnhkmcp/untracked/skills/brain-data-feature-engineering/reference.md +493 -0
  87. cnhkmcp/untracked/skills/brain-feature-implementation/SKILL.md +87 -0
  88. cnhkmcp/untracked/skills/brain-feature-implementation/config.json +6 -0
  89. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/analyst15_GLB_delay1.csv +289 -0
  90. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/final_expressions.json +410 -0
  91. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588244.json +4 -0
  92. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588251.json +20 -0
  93. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588273.json +23 -0
  94. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588293.json +23 -0
  95. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588319.json +23 -0
  96. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588322.json +14 -0
  97. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588325.json +20 -0
  98. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588328.json +23 -0
  99. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588354.json +23 -0
  100. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588357.json +23 -0
  101. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588361.json +23 -0
  102. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588364.json +23 -0
  103. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588368.json +23 -0
  104. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588391.json +14 -0
  105. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588394.json +23 -0
  106. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588397.json +59 -0
  107. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588400.json +35 -0
  108. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588403.json +20 -0
  109. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588428.json +23 -0
  110. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588431.json +32 -0
  111. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588434.json +20 -0
  112. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588438.json +20 -0
  113. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588441.json +14 -0
  114. cnhkmcp/untracked/skills/brain-feature-implementation/data/analyst15_GLB_delay1/idea_1768588468.json +20 -0
  115. cnhkmcp/untracked/skills/brain-feature-implementation/scripts/ace_lib.py +1514 -0
  116. cnhkmcp/untracked/skills/brain-feature-implementation/scripts/fetch_dataset.py +107 -0
  117. cnhkmcp/untracked/skills/brain-feature-implementation/scripts/helpful_functions.py +180 -0
  118. cnhkmcp/untracked/skills/brain-feature-implementation/scripts/implement_idea.py +165 -0
  119. cnhkmcp/untracked/skills/brain-feature-implementation/scripts/merge_expression_list.py +88 -0
  120. cnhkmcp/untracked/skills/brain-improve-alpha-performance/arXiv_API_Tool_Manual.md +490 -0
  121. cnhkmcp/untracked/skills/brain-improve-alpha-performance/reference.md +1 -1
  122. cnhkmcp/untracked/skills/brain-improve-alpha-performance/scripts/arxiv_api.py +229 -0
  123. cnhkmcp/untracked/skills/planning-with-files/SKILL.md +211 -0
  124. cnhkmcp/untracked/skills/planning-with-files/examples.md +202 -0
  125. cnhkmcp/untracked/skills/planning-with-files/reference.md +218 -0
  126. cnhkmcp/untracked/skills/planning-with-files/scripts/check-complete.sh +44 -0
  127. cnhkmcp/untracked/skills/planning-with-files/scripts/init-session.sh +120 -0
  128. cnhkmcp/untracked/skills/planning-with-files/templates/findings.md +95 -0
  129. cnhkmcp/untracked/skills/planning-with-files/templates/progress.md +114 -0
  130. cnhkmcp/untracked/skills/planning-with-files/templates/task_plan.md +132 -0
  131. cnhkmcp/untracked//321/211/320/225/320/235/321/207/342/225/234/320/276/321/205/320/231/320/235/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/230/320/241_/321/205/320/276/320/231/321/210/320/263/320/225/321/205/342/224/220/320/225/321/210/320/266/320/221/321/204/342/225/233/320/255/321/210/342/225/241/320/246/321/205/320/234/320/225.py +35 -11
  132. cnhkmcp/vector_db/_manifest.json +1 -0
  133. cnhkmcp/vector_db/_meta.json +1 -0
  134. {cnhkmcp-2.1.9.dist-info → cnhkmcp-2.3.0.dist-info}/METADATA +1 -1
  135. {cnhkmcp-2.1.9.dist-info → cnhkmcp-2.3.0.dist-info}/RECORD +142 -31
  136. /cnhkmcp/untracked/{skills/expression_verifier → APP/trailSomeAlphas/skills/brain-feature-implementation}/scripts/validator.py +0 -0
  137. /cnhkmcp/untracked/skills/{expression_verifier → alpha-expression-verifier}/SKILL.md +0 -0
  138. /cnhkmcp/untracked/skills/{expression_verifier → alpha-expression-verifier}/scripts/verify_expr.py +0 -0
  139. {cnhkmcp-2.1.9.dist-info → cnhkmcp-2.3.0.dist-info}/WHEEL +0 -0
  140. {cnhkmcp-2.1.9.dist-info → cnhkmcp-2.3.0.dist-info}/entry_points.txt +0 -0
  141. {cnhkmcp-2.1.9.dist-info → cnhkmcp-2.3.0.dist-info}/licenses/LICENSE +0 -0
  142. {cnhkmcp-2.1.9.dist-info → cnhkmcp-2.3.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,244 @@
1
+ # Case Study: BEME Dataset Analysis
2
+
3
+ ## Dataset Overview
4
+
5
+ **Dataset ID**: BEME (Balance Sheet and Market Data)
6
+ **Description**: Book-to-market ratio and related financial metrics derived from balance sheet data combined with market data
7
+ **Region**: USA
8
+ **Universe**: TOP3000
9
+ **Delay**: 1
10
+ **Fields Analyzed**: 45 data fields
11
+
12
+ ## Step 1: Field Deconstruction
13
+
14
+ ### Key Fields Analyzed:
15
+
16
+ 1. **book_value_per_share**
17
+ - **What is it?**: Accounting net asset value divided by shares outstanding
18
+ - **How measured?**: Quarterly financial statements (audited)
19
+ - **Time dimension**: Quarterly snapshots (lagged)
20
+ - **Business context**: Represents historical cost-based net worth
21
+ - **Generation logic**: (Total assets - Total liabilities) / shares_outstanding
22
+ - **Reliability**: High (audited), but backward-looking and conservative
23
+
24
+ 2. **market_cap**
25
+ - **What is it?**: Share price × shares outstanding (total market valuation)
26
+ - **How measured?**: Real-time market data (continuous)
27
+ - **Time dimension**: Instantaneous, changes continuously
28
+ - **Business context**: Market participants' collective assessment of value
29
+ - **Generation logic**: Last traded price × total shares
30
+ - **Reliability**: Market-based, forward-looking, sentiment-influenced
31
+
32
+ 3. **book_to_market**
33
+ - **What is it?**: Ratio of book value to market value
34
+ - **How measured?**: Calculated from book_value and market_cap
35
+ - **Time dimension**: Compares slow-moving (book) with fast-moving (market)
36
+ - **Business context**: Compares accounting perspectives with market perspective
37
+ - **Generation logic**: book_value_per_share / (market_cap / shares)
38
+ - **Reliability**: Useful but must understand both components
39
+
40
+ ### Relationship Mapping:
41
+
42
+ **The Story**: BEME tells the story of how market perception relates to accounting reality
43
+
44
+ **Key Relationships**:
45
+ - book_to_market connects two valuation perspectives
46
+ - book_value changes slowly (quarterly, accountant-determined)
47
+ - market_cap changes quickly (continuously, market-determined)
48
+ - The gap represents market's view of intangible value
49
+
50
+ **Missing Pieces**:
51
+ - Why does the gap exist? (growth expectations, brand value, competitive position)
52
+ - How persistent is the gap? (temporary vs. structural)
53
+ - What causes gap changes? (earnings surprises, market sentiment, sector rotation)
54
+
55
+ ## Step 2: Question-Driven Feature Generation
56
+
57
+ ### Q1: "What is stable?" (Analyzing Invariance)
58
+
59
+ **Feature Concept**: "Market re-evaluation stability"
60
+ - **Implementation**: Rolling coefficient of variation of book_to_market over 60 days
61
+ - **Definition**: Stability of the market's valuation vs. book value assessment
62
+ - **Meaning**: Low CV = stable consensus, High CV = disagreement or uncertainty
63
+ - **Interpretation**:
64
+ - High stability: Market has made up its mind about the company's valuation
65
+ - Low stability: Market is uncertain or volatile in its assessment
66
+ - **Why it matters**: Stable mispricing (if book_to_market ≠ 1) can indicate structural factors
67
+
68
+ **Feature Concept**: "Book value reliability"
69
+ - **Implementation**: Autocorrelation of book_value changes over quarters
70
+ - **Definition**: Consistency of book value reporting
71
+ - **Meaning**: High autocorrelation = smooth reporting, Low = volatile changes
72
+ - **Interpretation**: Sudden changes may indicate accounting adjustments or write-downs
73
+
74
+ ### Q2: "What is changing?" (Analyzing Dynamics)
75
+
76
+ **Feature Concept**: "Valuation gap velocity"
77
+ - **Implementation**: Rate of change of (market_cap - book_value × shares)
78
+ - **Definition**: How quickly is the valuation gap changing?
79
+ - **Meaning**: Fast increase = market becoming more optimistic or accounting write-downs
80
+ - **Interpretation**:
81
+ - Positive velocity and acceleration: Market optimism increasing (bubble forming?)
82
+ - Positive velocity, negative acceleration: Optimism plateauing
83
+ - **Why it matters**: Speed of gap change predicts sustainability
84
+
85
+ **Feature Concept**: "Book vs. market growth decomposition"
86
+ - **Implementation**: Separate book_value growth from market_cap growth
87
+ - **Definition**: book_growth = (BV_t - BV_{t-1}) / BV_{t-1}
88
+ - **Definition**: market_growth = (MC_t - MC_{t-1}) / MC_{t-1}
89
+ - **Meaning**: Which is driving the book_to_market change?
90
+ Interpretation**:
91
+ - book_growth > market_growth: Company building real value faster than market recognizes
92
+ - market_growth > book_growth: Market expectations running ahead of actual performance
93
+ - **Why it matters**: Distinguishes fundamental from sentiment-driven changes
94
+
95
+ ### Q3: "What is anomalous?" (Analyzing Deviation)
96
+
97
+ **Feature Concept**: "Unusual valuation persistence"
98
+ - **Implementation**: Days since book_to_market crossed 1.0 (either direction)
99
+ - **Definition**: How long has the stock been valued differently from book?
100
+ - **Meaning**: Persistent premium/discount suggests structural factors
101
+ **Interpretation**:
102
+ - High persistence: Market has structural view (e.g., growth company, asset-light model)
103
+ - Low persistence: Temporary mispricing that corrects
104
+ - **Why it matters**: Persistence indicates conviction level
105
+
106
+ **Feature Concept**: "Book value surprise magnitude"
107
+ - **Implementation**: Actual book_value vs. expected (trend-based forecast)
108
+ - **Definition**: Unexpected change in book value
109
+ - **Meaning**: Large surprises may indicate accounting adjustments
110
+ - **Interpretation**: Positive surprise = asset appreciation, Negative = write-downs
111
+
112
+ ### Q4: "What is combined?" (Analyzing Interactions)
113
+
114
+ **Feature Concept**: "Intangible value proportion"
115
+ - **Implementation**: (market_cap - book_value × shares) / enterprise_value
116
+ - **Definition**: What portion of enterprise value comes from non-book sources?
117
+ - **Meaning**: Quantifies growth expectations, brand, competitive advantages
118
+ **Interpretation**:
119
+ - High proportion: Value is in intangibles (risky but potentially high-growth)
120
+ - Low proportion: Value is in tangible assets (safer but limited growth)
121
+ - **Why it matters**: Helps understand the nature of the company's value
122
+
123
+ **Feature Concept**: "Valuation tug-of-war"
124
+ - **Implementation**: book_momentum × market_momentum (where momentum is rate of change)
125
+ - **Definition**: Are book and market moving in same or opposite directions?
126
+ - **Meaning**: Agreeing signals vs. diverging signals
127
+ **Interpretation**:
128
+ - Positive × positive: Both growing (healthy expansion)
129
+ - Positive × negative: Market doubts book value growth (potential concern)
130
+ - Negative × positive: Market optimistic despite book declines (turnaround story?)
131
+ - Negative × negative: Both declining (distressed situation)
132
+
133
+ ### Q5: "What is structural?" (Analyzing Composition)
134
+
135
+ **Feature Concept**: "Value composition stability"
136
+ - **Implementation**: Rolling correlation between book_growth and market_growth
137
+ - **Definition**: How consistent is the relationship between accounting and market value?
138
+ - **Meaning**: Stable correlation = predictable relationship, Unstable = relationship breaking down
139
+ - **Interpretation**: Declining correlation suggests business model change or market re-evaluation
140
+
141
+ **Feature Concept**: "Asset backing sufficiency"
142
+ - **Implementation**: book_value / (market_cap / shares) when book_to_market > 1
143
+ - **Definition**: How much asset coverage for market valuation?
144
+ - **Meaning**: Mercantile/asset-heavy businesses should have high ratios
145
+ - **Why it matters**: Helps identify when market undervaluation may be justified (e.g., declining industry)
146
+
147
+ ### Q6: "What is cumulative?" (Analyzing Accumulation)
148
+
149
+ **Feature Concept**: "Accumulated valuation premium/discount"
150
+ - **Implementation**: Time-weighted sum of (market_cap - book_value) over 1 year
151
+ - **Definition**: Cumulative deviation from book value over time
152
+ - **Meaning**: Persistent premium = sustained growth expectations
153
+ **Interpretation**:
154
+ - High positive accumulation: Market consistently optimistic
155
+ - Near zero: Market fluctuates around book value
156
+ - High negative accumulation: Market consistently pessimistic
157
+
158
+ **Feature Concept**: "Book quality decay"
159
+ - **Implementation**: Age of assets (based on depreciation schedules) weighted by value
160
+ - **Definition**: How old/stale is the book value?
161
+ - **Meaning**: Older book values less reliable (assets may be obsolete)
162
+ - **Why it matters**: Book value quality affects interpretation of book_to_market
163
+
164
+ ### Q7: "What is relative?" (Analyzing Comparison)
165
+
166
+ **Feature Concept**: "Sector-relative valuation gap"
167
+ - **Implementation**: Company book_to_market - sector median book_to_market
168
+ - **Definition**: How does valuation gap compare to industry peers?
169
+ - **Meaning**: Sector-relative premium or discount
170
+ **Interpretation**:
171
+ - Premium vs. sector: Justified if company has better prospects
172
+ - Discount vs. sector: Potential opportunity or justified by worse fundamentals
173
+
174
+ **Feature Concept**: "Relative book value trend"
175
+ - **Implementation**: Company's book_growth - sector average book_growth
176
+ - **Definition**: Is company building value faster or slower than peers?
177
+ - **Meaning**: Competitive positioning in asset creation
178
+
179
+ ### Q8: "What is essential?" (Analyzing Essence)
180
+
181
+ **Feature Concept**: "Core asset efficiency"
182
+ - **Implementation**: book_value / total_assets (stripping out intangibles/goodwill)
183
+ - **Definition**: What portion of assets are "hard" vs. "soft"?
184
+ - **Meaning**: Asset-light businesses have lower ratios
185
+ **Interpretation**:
186
+ - Low ratio: Intangible-based business (software, brands, networks)
187
+ - High ratio: Asset-heavy business (manufacturing, real estate)
188
+ - **Why it matters**: Affects interpretation of book_to_market (intangibles not on books)
189
+
190
+ **Feature Concept**: "Fundamental value anchor"
191
+ - **Implementation**: book_value plus time-adjusted retained earnings
192
+ - **Definition**: Book value adjusted for recent profitability
193
+ - **Meaning**: Asset base plus earnings power
194
+ **Why it's essential**: Combines two fundamental value sources
195
+
196
+ ## Step 3: Feature Documentation Table
197
+
198
+ | Feature Concept | Fields Used | Question Answered | Logical Meaning | Directionality | Boundary Conditions |
199
+ |----------------|-------------|-------------------|-----------------|----------------|---------------------|
200
+ | Market re-evaluation stability | book_to_market | What is stable? | Consensus stability | Low=stable, High=disagreement | Zero=no variation, ∞=unstable |
201
+ | Valuation gap velocity | market_cap, book_value | What is changing? | Gap change rate | Positive=widening, Negative=narrowing | Zero=no change |
202
+ | Unusual valuation persistence | book_to_market | What is anomalous? | Premium/discount persistence | High=persistent belief | Zero=fluctuating |
203
+ | Intangible value proportion | market_cap, book_value | What is combined? | Non-book value share | High=intangible-based | Zero=all tangible |
204
+ | Value composition stability | book_growth, market_growth | What is structural? | Relationship consistency | High=stable relationship | Zero=breaking down |
205
+ | Accumulated premium/discount | market_cap - book_value | What is cumulative? | Time-weighted deviation | High=consensus, Around zero=fluctuation | Negative=persistent pessimism |
206
+ | Sector-relative gap | book_to_market, sector median | What is relative? | Peer comparison | Positive=premium to peers | Zero=sector average |
207
+ | Core asset efficiency | book_value, total_assets | What is essential? | Hard asset proportion | High=asset-heavy, Low=intangible-based | 0-1 range |
208
+
209
+ ## Step 4: Implementation Insights
210
+
211
+ ### Why This Approach Works:
212
+
213
+ 1. **Novel**: Not just "moving averages of book_to_market" but deep conceptual features
214
+ 2. **Meaningful**: Each feature answers a specific question about the data
215
+ 3. **Testable**: Can validate if features capture what they claim to
216
+ 4. **Actionable**: Clear interpretation guides usage
217
+
218
+ ### Key Discoveries from Analysis:
219
+
220
+ 1. **book_to_market alone is incomplete**: Need to understand both components
221
+ 2. **Gap dynamics matter**: How the gap changes is more informative than level
222
+ 3. **Persistence is informative**: Long-term premium/discount suggests structural views
223
+ 4. **Comparative context essential**: Sector-relative measures remove noise
224
+ 5. **Asset composition affects interpretation**: Intangible-heavy businesses naturally have low book values
225
+
226
+ ### Suggestions for Further Analysis:
227
+
228
+ 1. **Add earnings data**: Connect book_to_market with profitability metrics
229
+ 2. **Add growth data**: Separate growth vs. value stories
230
+ 3. **Add sector context**: Industry cycles affect interpretation
231
+ 4. **Add sentiment data**: Market mood explains divergences
232
+ 5. **Add fundamental data**: ROE, margins, leverage affect valuation
233
+
234
+ ## Conclusion
235
+
236
+ This analysis demonstrates how questioning data essence and asking fundamental questions generates meaningful features, not just mathematical transformations. Each feature:
237
+
238
+ - Answers a specific question
239
+ - Has clear logical meaning
240
+ - Is grounded in data reality
241
+ - Avoids conventional patterns
242
+ - Reveals new insights
243
+
244
+ The book_to_market ratio becomes more than just "value indicator"—it becomes a window into market psychology, accounting reliability, and fundamental vs. sentiment-driven valuation.
@@ -0,0 +1,285 @@
1
+ # ESG Scores Feature Engineering Analysis Report
2
+
3
+ **Dataset**: analyst11
4
+ **Region**: ASI
5
+ **Delay**: 1
6
+
7
+
8
+ **Dataset**: analyst11
9
+ **Category**: Analyst
10
+ **Region**: ASI
11
+ **Analysis Date**: 2024-05-15
12
+ **Fields Analyzed**: 50
13
+
14
+ ---
15
+
16
+ ## Executive Summary
17
+
18
+ **Primary Question Answered by Dataset**: How do companies rank within their peer groups across various ESG (Environmental, Social, Governance) dimensions, with emphasis on which ESG factors show the strongest correlation to financial returns?
19
+
20
+ **Key Insights from Analysis**:
21
+ - This dataset provides multi-layered ESG rankings: raw scores, percentile rankings, and correlation-weighted rankings
22
+ - The dataset distinguishes between "correlation-weighted" (any correlation) and "positive-correlation" (only positive correlations) metrics
23
+ - Peer group comparisons are structured hierarchically: sector > industry > subsector
24
+ - The dataset emphasizes which ESG factors matter most for financial performance, not just which companies score highest
25
+
26
+ **Critical Field Relationships Identified**:
27
+ 1. Hierarchy of peer groups: sector (broadest), industry (middle), subsector (most specific)
28
+ 2. Three types of ESG metrics: raw scores, correlation-weighted, positive-correlation-weighted
29
+ 3. Three pillar structure: Environmental, Social, Governance, plus composite sustainability scores
30
+
31
+ **Most Promising Feature Concepts**:
32
+ 1. **ESG Factor Alignment Gap** - because it measures the disconnect between a company's ESG performance and what the market actually rewards financially
33
+ 2. **ESG Consensus Strength** - because it identifies companies where all peer group rankings agree, suggesting clear ESG positioning
34
+ 3. **ESG Financial Relevance Score** - because it quantifies how much a company's ESG strengths align with financially material factors
35
+
36
+ ---
37
+
38
+ ## Dataset Deep Understanding
39
+
40
+ ### Dataset Description
41
+ This dataset provides comprehensive ESG (Environmental, Social, Governance) scoring with a unique twist: it doesn't just measure ESG performance, but weights that performance by how strongly each ESG factor correlates with financial returns. The dataset includes percentile rankings within three peer group levels (sector, industry, subsector) and distinguishes between general correlation-weighted metrics and specifically positive-correlation-weighted metrics. This allows researchers to identify not just which companies are "good" at ESG, but which companies excel at the ESG factors that actually matter for financial performance.
42
+
43
+ ### Field Inventory
44
+ | Field ID | Description | Data Type | Update Frequency | Coverage |
45
+ |----------|-------------|-----------|------------------|----------|
46
+ | community_maxcorr_sector_percentile | Percentile ranking within sector peer group for community score weighted by strongest correlation to financial returns. | Float | Quarterly | ~85% |
47
+ | sustainability_sector_rank | Company's rank within its sector peer group for overall sustainability score. | Integer | Quarterly | ~85% |
48
+ | governance_corr_weighted_industry_percentile | Company's percentile within its industry based on governance score weighted by KPIs most correlated to financial returns. | Float | Quarterly | ~85% |
49
+ | workforce_sector_percentile | Company's percentile within its sector based on employee-related score. | Float | Quarterly | ~85% |
50
+ | employee_training_sector_rank | Company's rank within its sector peer group for employee training, safety, and well-being. | Integer | Quarterly | ~85% |
51
+ | sustainability_corr_weighted_industry_percentile | Company's percentile within its industry based on sustainability score weighted by KPIs most correlated to financial returns. | Float | Quarterly | ~85% |
52
+ | disclosure_transparency_sector_percentile | Percentile ranking within sector peer group for disclosure, transparency, and accountability. | Float | Quarterly | ~85% |
53
+ | workforce_corr_weighted_industry_percentile | Company's percentile within its industry based on employee-related score weighted by KPIs most correlated to financial returns. | Float | Quarterly | ~85% |
54
+ | board_independence_industry_rank | Company's rank within its industry peer group for board independence and diversity. | Integer | Quarterly | ~85% |
55
+ | workforce_positive_corr_sector_position | Company's position within its sector based on employee-related score weighted by KPIs most positively correlated to financial returns. | Float | Quarterly | ~85% |
56
+
57
+ *(Additional fields follow similar patterns)*
58
+
59
+ ### Field Deconstruction Analysis
60
+
61
+ #### community_maxcorr_sector_percentile: Community Max Correlation Sector Percentile
62
+ - **What is being measured?**: How a company's community engagement performance compares to sector peers, but only considering the aspects of community engagement that show the strongest statistical relationship to financial returns
63
+ - **How is it measured?**: Percentile ranking (0-100) within sector, with community score components weighted by their correlation coefficients to financial metrics
64
+ - **Time dimension**: Point-in-time snapshot, likely quarterly or annually updated
65
+ - **Business context**: Identifies companies that are good at the community engagement activities that actually impact financial performance
66
+ - **Generation logic**: 1) Calculate correlation between community engagement sub-scores and financial returns, 2) Weight community score by these correlations, 3) Rank within sector, 4) Convert to percentile
67
+ - **Reliability considerations**: Correlation stability over time, sector definition consistency, financial metric selection
68
+
69
+ #### sustainability_sector_rank: Sustainability Sector Rank
70
+ - **What is being measured?**: Absolute ranking position of a company's overall sustainability performance within its sector
71
+ - **How is it measured?**: Integer rank (1 = best) based on composite sustainability score
72
+ - **Time dimension**: Point-in-time ranking, ordinal rather than continuous
73
+ - **Business context**: Shows where a company stands relative to sector competitors on overall sustainability
74
+ - **Generation logic**: 1) Calculate composite sustainability score, 2) Sort all companies in sector by score, 3) Assign rank positions
75
+ - **Reliability considerations**: Rank is sensitive to number of companies in sector, composite score weighting methodology
76
+
77
+ #### governance_corr_weighted_industry_percentile: Governance Correlation Weighted Industry Percentile
78
+ - **What is being measured?**: Governance performance percentile within industry peer group, weighted by governance factors' correlation to financial returns
79
+ - **How is it measured?**: Percentile (0-100) within industry, with governance components weighted by their financial correlation
80
+ - **Time dimension**: Snapshot with correlation weighting that may change slowly
81
+ - **Business context**: Identifies governance leaders on factors that matter financially within specific industries
82
+ - **Generation logic**: Industry-level version of correlation-weighted percentile calculation
83
+ - **Reliability considerations**: Industry classification consistency, correlation calculation methodology
84
+
85
+ ### Field Relationship Mapping
86
+
87
+ **The Story This Data Tells**:
88
+ This dataset tells a sophisticated story about ESG performance with a financial lens. Instead of just asking "who's good at ESG?", it asks "who's good at the ESG factors that actually drive financial performance?" The data is structured in three dimensions: 1) ESG pillars (Environmental, Social, Governance, plus composites), 2) Peer group levels (sector, industry, subsector), and 3) Weighting methodologies (raw, correlation-weighted, positive-correlation-weighted). This creates a rich matrix for understanding not just ESG performance, but financially material ESG performance within relevant competitive contexts.
89
+
90
+ **Key Relationships Identified**:
91
+ 1. **Hierarchy consistency**: For each ESG dimension, there are parallel metrics at sector, industry, and subsector levels
92
+ 2. **Weighting gradient**: Raw scores → correlation-weighted → positive-correlation-weighted represents increasing focus on financial materiality
93
+ 3. **Pillar interdependence**: Social scores include workforce, community, human rights subcomponents; Governance includes board, disclosure, etc.
94
+ 4. **Rank vs. Percentile duality**: Some fields provide ranks (absolute position), others percentiles (relative standing)
95
+
96
+ **Missing Pieces That Would Complete the Picture**:
97
+ - Time series of these metrics to track improvement/decline
98
+ - The actual correlation coefficients used for weighting
99
+ - Breakdown of which specific ESG factors have highest financial correlation
100
+ - Market reaction data to validate the correlation-weighted approach
101
+
102
+ ---
103
+
104
+ ## Feature Concepts by Question Type
105
+
106
+ ### Q1: "What is stable?" (Invariance Features)
107
+
108
+ **Concept**: ESG Ranking Consistency Score
109
+ - **Sample Fields Used**: sector_percentile, industry_percentile, subsector_percentile
110
+ - **Definition**: Measures how consistent a company's ESG ranking is across different peer group levels
111
+ - **Why This Feature**: Companies with consistent rankings across sector/industry/subsector have more reliable ESG positioning
112
+ - **Logical Meaning**: High values indicate ESG performance is robust regardless of peer group definition
113
+ - **Directionality**: Higher = more consistent ESG positioning across peer groups
114
+ - **Boundary Conditions**: 100 = perfect consistency, 0 = completely inconsistent rankings
115
+ - **Implementation Example**: `abs({sector_percentile} - {industry_percentile}) + abs({industry_percentile} - {subsector_percentile})`
116
+
117
+ **Concept**: ESG Financial Materiality Stability
118
+ - **Sample Fields Used**: corr_weighted_score, positive_corr_score
119
+ - **Definition**: Difference between general correlation-weighted score and positive-correlation-only score
120
+ - **Why This Feature**: Measures stability of financial materiality signal - whether financially relevant ESG factors are consistently positive
121
+ - **Logical Meaning**: Small difference suggests ESG factors that correlate with returns do so consistently positively
122
+ - **Directionality**: Lower = more stable financial materiality signal
123
+ - **Boundary Conditions**: 0 = all correlated factors are positively correlated, large values = mixed correlation directions
124
+ - **Implementation Example**: `abs({corr_weighted_score} - {positive_corr_score})`
125
+
126
+ ---
127
+
128
+ ### Q2: "What is changing?" (Dynamics Features)
129
+
130
+ **Concept**: ESG Peer Group Ranking Divergence
131
+ - **Sample Fields Used**: sector_rank, industry_rank, subsector_rank
132
+ - **Definition**: Standard deviation of rankings across different peer group levels
133
+ - **Why This Feature**: Identifies companies whose ESG performance assessment depends heavily on peer group definition
134
+ - **Logical Meaning**: High divergence suggests ESG performance is context-dependent or peer group sensitive
135
+ - **Directionality**: Higher = more peer group dependent ESG assessment
136
+ - **Boundary Conditions**: 0 = identical ranking across all peer groups
137
+ - **Implementation Example**: `ts_std_dev({sector_rank}, 4) - ts_std_dev({industry_rank}, 4)`
138
+
139
+ **Concept**: Financial Materiality Signal Strength Trend
140
+ - **Sample Fields Used**: corr_weighted_percentile, positive_corr_percentile
141
+ - **Definition**: Rate of change in the gap between correlation-weighted and positive-correlation rankings
142
+ - **Why This Feature**: Tracks whether a company's ESG strengths are becoming more aligned with positively correlated factors
143
+ - **Logical Meaning**: Negative trend = improving alignment with positively correlated ESG factors
144
+ - **Directionality**: Downward trend = improving financial materiality alignment
145
+ - **Boundary Conditions**: Steep negative = rapid improvement in financially material ESG
146
+ - **Implementation Example**: `ts_delta({corr_weighted_percentile} - {positive_corr_percentile}, 90)`
147
+
148
+ ---
149
+
150
+ ### Q3: "What is anomalous?" (Deviation Features)
151
+
152
+ **Concept**: ESG Factor Alignment Gap
153
+ - **Sample Fields Used**: sector_percentile, corr_weighted_sector_percentile
154
+ - **Definition**: Difference between raw ESG percentile and correlation-weighted percentile
155
+ - **Why This Feature**: Identifies companies that are good at ESG generally but not at the ESG factors that matter financially
156
+ - **Logical Meaning**: Large positive gap = excels at ESG factors that don't correlate with returns
157
+ - **Directionality**: Higher = greater misalignment between ESG performance and financial materiality
158
+ - **Boundary Conditions**: 0 = perfect alignment, >50 = major misalignment
159
+ - **Implementation Example**: `{sector_percentile} - {corr_weighted_sector_percentile}`
160
+
161
+ **Concept**: Peer Group Ranking Anomaly
162
+ - **Sample Fields Used**: sector_rank, industry_rank
163
+ - **Definition**: Absolute difference between sector rank and industry rank, normalized by peer group size
164
+ - **Why This Feature**: Flags companies whose ESG assessment changes dramatically between sector and industry peer groups
165
+ - **Logical Meaning**: High values suggest either data issues or genuinely context-dependent ESG performance
166
+ - **Directionality**: Higher = more anomalous peer group ranking difference
167
+ - **Boundary Conditions**: >30% difference = significant anomaly worth investigating
168
+ - **Implementation Example**: `abs({sector_rank} - {industry_rank}) / max({sector_rank}, {industry_rank})`
169
+
170
+ ---
171
+
172
+ ### Q4: "What is combined?" (Interaction Features)
173
+
174
+ **Concept**: ESG Financial Relevance Score
175
+ - **Sample Fields Used**: corr_weighted_score, positive_corr_score, composite_score
176
+ - **Definition**: Weighted average emphasizing correlation-weighted scores over raw scores
177
+ - **Why This Feature**: Creates a single metric prioritizing financially material ESG factors
178
+ - **Logical Meaning**: Higher values indicate strong ESG performance on factors that matter for returns
179
+ - **Directionality**: Higher = better financially material ESG performance
180
+ - **Boundary Conditions**: 100 = perfect on financially material factors, 0 = poor on all dimensions
181
+ - **Implementation Example**: `0.4 * {corr_weighted_score} + 0.4 * {positive_corr_score} + 0.2 * {composite_score}`
182
+
183
+ **Concept**: ESG Consensus Strength
184
+ - **Sample Fields Used**: sector_percentile, industry_percentile, subsector_percentile
185
+ - **Definition**: Inverse of ranking dispersion across peer group levels
186
+ - **Why This Feature**: Identifies companies with consistent ESG assessment regardless of peer group definition
187
+ - **Logical Meaning**: High consensus suggests robust, unambiguous ESG positioning
188
+ - **Directionality**: Higher = more consistent ESG assessment across peer groups
189
+ - **Boundary Conditions**: 100 = perfect consensus, 0 = completely inconsistent
190
+ - **Implementation Example**: `100 - (abs({sector_percentile} - {industry_percentile}) + abs({industry_percentile} - {subsector_percentile}))`
191
+
192
+ ---
193
+
194
+ ### Q5: "What is structural?" (Composition Features)
195
+
196
+ **Concept**: ESG Pillar Balance Ratio
197
+ - **Sample Fields Used**: environmental_score, social_score, governance_score
198
+ - **Definition**: Ratio of strongest pillar to weakest pillar performance
199
+ - **Why This Feature**: Measures balance vs. specialization in ESG performance across pillars
200
+ - **Logical Meaning**: Lower ratio = more balanced ESG performance; higher ratio = specialized strength
201
+ - **Directionality**: Closer to 1 = more balanced; higher = more specialized
202
+ - **Boundary Conditions**: 1 = perfectly balanced, >3 = highly specialized
203
+ - **Implementation Example**: `max({environmental_score}, {social_score}, {governance_score}) / min({environmental_score}, {social_score}, {governance_score})`
204
+
205
+ **Concept**: Financial Materiality Concentration
206
+ - **Sample Fields Used**: corr_weighted_percentile, positive_corr_percentile
207
+ - **Definition**: Proportion of correlation-weighted performance captured by positive-correlation factors
208
+ - **Why This Feature**: Measures whether a company's financially material ESG strengths are in positively correlated areas
209
+ - **Logical Meaning**: Higher = ESG strengths concentrated in factors with positive financial correlation
210
+ - **Directionality**: Higher = better concentration in positively correlated factors
211
+ - **Boundary Conditions**: 1 = all correlated factors are positive, 0.5 = mixed, 0 = all negative correlation
212
+ - **Implementation Example**: `{positive_corr_percentile} / {corr_weighted_percentile}`
213
+
214
+ ---
215
+
216
+ ### Q6: "What is cumulative?" (Accumulation Features)
217
+
218
+ **Concept**: ESG Improvement Momentum
219
+ - **Sample Fields Used**: sector_percentile, industry_percentile
220
+ - **Definition**: Weighted moving average of percentile improvements across time
221
+ - **Why This Feature**: Captures sustained improvement trajectory in ESG rankings
222
+ - **Logical Meaning**: Positive = improving ESG standing over time
223
+ - **Directionality**: Higher = stronger improvement momentum
224
+ - **Boundary Conditions**: >0 = improving, <0 = deteriorating
225
+ - **Implementation Example**: `ts_sum(ts_delta({sector_percentile}, 30), 180)`
226
+
227
+ **Concept**: Financial Materiality Alignment Trend
228
+ - **Sample Fields Used**: corr_weighted_score, composite_score
229
+ - **Definition**: Cumulative improvement in alignment between overall ESG and financially material ESG
230
+ - **Why This Feature**: Tracks whether company is shifting ESG focus toward financially relevant factors
231
+ - **Logical Meaning**: Positive = improving alignment with financially material ESG factors
232
+ - **Directionality**: Higher = faster alignment improvement
233
+ - **Boundary Conditions**: Steep positive = rapid strategic shift toward material ESG
234
+ - **Implementation Example**: `ts_sum({corr_weighted_score} - {composite_score}, 360)`
235
+
236
+ ---
237
+
238
+ ### Q7: "What is relative?" (Comparison Features)
239
+
240
+ **Concept**: ESG Relative Advantage Score
241
+ - **Sample Fields Used**: sector_percentile, industry_percentile
242
+ - **Definition**: Difference between sector and industry percentile rankings
243
+ - **Why This Feature**: Measures whether a company performs better relative to broader or narrower peer groups
244
+ - **Logical Meaning**: Positive = stronger relative to sector than industry; suggests competitive advantage erodes in closer peer comparison
245
+ - **Directionality**: Positive = better in broader peer group; Negative = better in closer peers
246
+ - **Boundary Conditions**: Large positive = "big fish in big pond"; Large negative = "specialist in niche"
247
+ - **Implementation Example**: `{sector_percentile} - {industry_percentile}`
248
+
249
+ **Concept**: Financial Materiality Premium
250
+ - **Sample Fields Used**: corr_weighted_percentile, sector_percentile
251
+ - **Definition**: Percentage improvement in ranking when considering only financially material factors
252
+ - **Why This Feature**: Quantifies how much a company's ESG standing improves when focusing on what matters financially
253
+ - **Logical Meaning**: Positive = company is better at financially material ESG than ESG overall
254
+ - **Directionality**: Higher = greater financial materiality advantage
255
+ - **Boundary Conditions**: >0 = stronger on material factors; <0 = weaker on material factors
256
+ - **Implementation Example**: `({corr_weighted_percentile} - {sector_percentile}) / {sector_percentile}`
257
+
258
+ ---
259
+
260
+ ### Q8: "What is essential?" (Essence Features)
261
+
262
+ **Concept**: Core ESG Financial Alignment
263
+ - **Sample Fields Used**: positive_corr_score, composite_score
264
+ - **Definition**: Ratio of positive-correlation-weighted score to overall composite score
265
+ - **Why This Feature**: Distills ESG performance to its financially essential core - what actually matters for returns
266
+ - **Logical Meaning**: Measures proportion of ESG value that is financially material and positively correlated
267
+ - **Directionality**: Higher = greater proportion of ESG value is financially essential
268
+ - **Boundary Conditions**: 1 = all ESG value is financially essential; 0 = none is financially essential
269
+ - **Implementation Example**: `{positive_corr_score} / {composite_score}`
270
+
271
+ **Concept**: Peer Group Invariant ESG Strength
272
+ - **Sample Fields Used**: sector_percentile, industry_percentile, subsector_percentile
273
+ - **Definition**: Minimum percentile across all peer group levels
274
+ - **Why This Feature**: Conservative measure of ESG strength that holds regardless of peer group definition
275
+ - **Logical Meaning**: Worst-case ESG ranking across all relevant peer comparisons
276
+ - **Directionality**: Higher = stronger minimum guaranteed ESG standing
277
+ - **Boundary Conditions**: 100 = top performer in all peer groups; 0 = bottom in at least one group
278
+ - **Implementation Example**: `min({sector_percentile}, {industry_percentile}, {subsector_percentile})`
279
+
280
+ ---
281
+
282
+ ## Implementation Considerations
283
+
284
+ ### Data Quality Notes
285
+ - **Coverage**: ~85% coverage for ASI