cnhkmcp 2.1.2__py3-none-any.whl → 2.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cnhkmcp/__init__.py +126 -125
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/config.json +1 -1
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/ace_lib.py +4 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_10_Steps_to_Start_on_BRAIN_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Intermediate_Pack_-_Improve_your_Alpha_2_2_documentation.json +174 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Intermediate_Pack_-_Understand_Results_1_2_documentation.json +167 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Introduction_to_Alphas_documentation.json +145 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Introduction_to_BRAIN_Expression_Language_documentation.json +107 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_WorldQuant_Challenge_documentation.json +56 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001__Read_this_First_-_Starter_Pack_documentation.json +404 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002_How_to_choose_the_Simulation_Settings_documentation.json +268 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002_Simulate_your_first_Alpha_documentation.json +88 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Beginners_documentation.json +254 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Bronze_Users_documentation.json +114 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Silver_Users_documentation.json +79 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__How_BRAIN_works_documentation.json +184 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/003_Clear_these_tests_before_submitting_an_Alpha_documentation.json +388 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/003_Parameters_in_the_Simulation_results_documentation.json +243 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Group_Data_Fields_documentation.json +69 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_How_to_use_the_Data_Explorer_documentation.json +142 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Model77_dataset_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Sentiment1_dataset_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Understanding_Data_in_BRAIN_Key_Concepts_and_Tips_documentation.json +182 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Vector_Data_Fields_documentation.json +30 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Crowding_Risk-Neutralized_Alphas_documentation.json +64 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_D0_documentation.json +66 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Double_Neutralization_documentation.json +53 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Fast_D1_Documentation_documentation.json +304 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Investability_Constrained_Metrics_documentation.json +129 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Must-read_posts_How_to_improve_your_Alphas_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Neutralization_documentation.json +29 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_RAM_Risk-Neutralized_Alphas_documentation.json +64 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Risk_Neutralization_Default_setting_documentation.json +75 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Risk_Neutralized_Alphas_documentation.json +171 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Statistical_Risk-Neutralized_Alphas_documentation.json +51 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_EUR_TOP2500_Universe_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_GLB_TOPDIV3000_Universe_documentation.json +48 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_Started_China_Research_for_Consultants_Gold_documentation.json +142 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_started_on_Illiquid_Universes_Gold_documentation.json +46 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_started_with_USA_TOPSP500_universe_Gold_documentation.json +62 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Global_Alphas_Gold_documentation.json +66 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_India_Alphas_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Dos_and_Don_ts_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Features_documentation.json +239 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Simulation_Features_documentation.json +149 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Submission_Tests_documentation.json +363 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Finding_Consultant_Alphas_documentation.json +333 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Power_Pool_Alphas_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Research_Advisory_Program_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Starting_Guide_for_Research_Consultants_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Visualization_Tool_documentation.json +99 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Your_Advisor_-_Kunqi_Jiang_documentation.json +53 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007__Brain_Genius_documentation.json +288 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007__Single_Dataset_Alphas_documentation.json +41 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Advisory_Theme_Calendar_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Multiplier_Rules_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Overview_of_Themes_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Theme_Calendar_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Combo_Expression_documentation.json +272 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Global_SuperAlphas_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Helpful_Tips_documentation.json +58 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Selection_Expression_documentation.json +1546 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_SuperAlpha_Operators_documentation.json +890 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_SuperAlpha_Results_documentation.json +83 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_What_is_a_SuperAlpha_documentation.json +261 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010_BRAIN_API_documentation.json +515 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010_Documentation_for_ACE_API_Library_Gold_documentation.json +27 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010__Understanding_simulation_limits_documentation.json +210 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/arithmetic_operators.json +209 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/cross_sectional_operators.json +98 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/group_operators.json +121 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/logical_operators.json +145 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/reduce_operators.json +156 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/special_operators.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/time_series_operators.json +386 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/transformational_operators.json +61 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/vector_operators.json +38 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/_manifest.json +302 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/_meta.json +1 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/chroma.sqlite3 +0 -0
- cnhkmcp/untracked/APP/Tranformer/Transformer.py +5 -1
- cnhkmcp/untracked/APP/Tranformer/ace_lib.py +4 -0
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates.json +6008 -1242
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_error.json +1 -1034
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_success.json +47310 -442
- cnhkmcp/untracked/APP/ace_lib.py +4 -0
- cnhkmcp/untracked/APP/give_me_idea/ace_lib.py +4 -0
- cnhkmcp/untracked/APP/hkSimulator/ace_lib.py +4 -0
- cnhkmcp/untracked/APP/simulator/wqb20260107015647.log +57 -0
- cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/ace_lib.py +4 -0
- cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/brain_alpha_inspector.py +2 -2
- cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +4 -0
- cnhkmcp/untracked/__init__.py +0 -0
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/platform_functions.py +352 -166
- {cnhkmcp-2.1.2.dist-info → cnhkmcp-2.1.4.dist-info}/METADATA +1 -1
- cnhkmcp-2.1.4.dist-info/RECORD +190 -0
- cnhkmcp-2.1.2.dist-info/RECORD +0 -111
- {cnhkmcp-2.1.2.dist-info → cnhkmcp-2.1.4.dist-info}/WHEEL +0 -0
- {cnhkmcp-2.1.2.dist-info → cnhkmcp-2.1.4.dist-info}/entry_points.txt +0 -0
- {cnhkmcp-2.1.2.dist-info → cnhkmcp-2.1.4.dist-info}/licenses/LICENSE +0 -0
- {cnhkmcp-2.1.2.dist-info → cnhkmcp-2.1.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,386 @@
|
|
|
1
|
+
[
|
|
2
|
+
{
|
|
3
|
+
"name": "days_from_last_change",
|
|
4
|
+
"category": "Time Series",
|
|
5
|
+
"definition": "days_from_last_change(x)",
|
|
6
|
+
"description": "Amount of days since last change of x\r\n\r\nInput: Value of 1 instrument in past 7 days where first element is the latest: (2, 2, 2, 7, 5, 16, 1)\r\nOutput: 3",
|
|
7
|
+
"documentation": null,
|
|
8
|
+
"level": "ALL",
|
|
9
|
+
"scopes": [
|
|
10
|
+
"COMBO",
|
|
11
|
+
"REGULAR"
|
|
12
|
+
]
|
|
13
|
+
},
|
|
14
|
+
{
|
|
15
|
+
"name": "hump",
|
|
16
|
+
"category": "Time Series",
|
|
17
|
+
"definition": "hump(x, hump = 0.01)",
|
|
18
|
+
"description": "Limits amount and magnitude of changes in input (thus reducing turnover)",
|
|
19
|
+
"documentation": "/operators/hump",
|
|
20
|
+
"level": "ALL",
|
|
21
|
+
"scopes": [
|
|
22
|
+
"COMBO",
|
|
23
|
+
"REGULAR"
|
|
24
|
+
]
|
|
25
|
+
},
|
|
26
|
+
{
|
|
27
|
+
"name": "hump_decay",
|
|
28
|
+
"category": "Time Series",
|
|
29
|
+
"definition": "hump_decay(x, p=0)",
|
|
30
|
+
"description": "This operator helps to ignore the values that changed too little corresponding to previous ones",
|
|
31
|
+
"documentation": "/operators/hump_decay",
|
|
32
|
+
"level": null,
|
|
33
|
+
"scopes": [
|
|
34
|
+
"COMBO",
|
|
35
|
+
"REGULAR"
|
|
36
|
+
]
|
|
37
|
+
},
|
|
38
|
+
{
|
|
39
|
+
"name": "inst_tvr",
|
|
40
|
+
"category": "Time Series",
|
|
41
|
+
"definition": "inst_tvr(x, d)",
|
|
42
|
+
"description": "Total trading value / Total holding value in the past d days\r\n\r\nInput: Value of 1 instrument in past 5 days where first element is the latest: (105, 102, 99, 101,100)\r\nOutput: 0.022 from (1+2+3+3)/(105+102+99+101)",
|
|
43
|
+
"documentation": null,
|
|
44
|
+
"level": null,
|
|
45
|
+
"scopes": [
|
|
46
|
+
"COMBO",
|
|
47
|
+
"REGULAR"
|
|
48
|
+
]
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"name": "kth_element",
|
|
52
|
+
"category": "Time Series",
|
|
53
|
+
"definition": "kth_element(x, d, k)",
|
|
54
|
+
"description": "Returns K-th valid value of input by looking through lookback days. This operator can be used to backfill missing data if k=1",
|
|
55
|
+
"documentation": "/operators/kth_element",
|
|
56
|
+
"level": "ALL",
|
|
57
|
+
"scopes": [
|
|
58
|
+
"COMBO",
|
|
59
|
+
"REGULAR"
|
|
60
|
+
]
|
|
61
|
+
},
|
|
62
|
+
{
|
|
63
|
+
"name": "last_diff_value",
|
|
64
|
+
"category": "Time Series",
|
|
65
|
+
"definition": "last_diff_value(x, d)",
|
|
66
|
+
"description": "Returns last x value not equal to current x value from last d days",
|
|
67
|
+
"documentation": null,
|
|
68
|
+
"level": "ALL",
|
|
69
|
+
"scopes": [
|
|
70
|
+
"COMBO",
|
|
71
|
+
"REGULAR"
|
|
72
|
+
]
|
|
73
|
+
},
|
|
74
|
+
{
|
|
75
|
+
"name": "ts_arg_max",
|
|
76
|
+
"category": "Time Series",
|
|
77
|
+
"definition": "ts_arg_max(x, d)",
|
|
78
|
+
"description": "Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1",
|
|
79
|
+
"documentation": "/operators/ts_arg_max",
|
|
80
|
+
"level": "ALL",
|
|
81
|
+
"scopes": [
|
|
82
|
+
"COMBO",
|
|
83
|
+
"REGULAR"
|
|
84
|
+
]
|
|
85
|
+
},
|
|
86
|
+
{
|
|
87
|
+
"name": "ts_arg_min",
|
|
88
|
+
"category": "Time Series",
|
|
89
|
+
"definition": "ts_arg_min(x, d)",
|
|
90
|
+
"description": "Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1.",
|
|
91
|
+
"documentation": "/operators/ts_arg_min",
|
|
92
|
+
"level": "ALL",
|
|
93
|
+
"scopes": [
|
|
94
|
+
"COMBO",
|
|
95
|
+
"REGULAR"
|
|
96
|
+
]
|
|
97
|
+
},
|
|
98
|
+
{
|
|
99
|
+
"name": "ts_av_diff",
|
|
100
|
+
"category": "Time Series",
|
|
101
|
+
"definition": "ts_av_diff(x, d)",
|
|
102
|
+
"description": "Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation",
|
|
103
|
+
"documentation": "/operators/ts_av_diff",
|
|
104
|
+
"level": "ALL",
|
|
105
|
+
"scopes": [
|
|
106
|
+
"COMBO",
|
|
107
|
+
"REGULAR"
|
|
108
|
+
]
|
|
109
|
+
},
|
|
110
|
+
{
|
|
111
|
+
"name": "ts_backfill",
|
|
112
|
+
"category": "Time Series",
|
|
113
|
+
"definition": "ts_backfill(x, d)",
|
|
114
|
+
"description": "Returns the first valid value of the input x by looking through lookback days (d). This operator can be used to backfill missing data.",
|
|
115
|
+
"documentation": "/operators/ts_backfill",
|
|
116
|
+
"level": "ALL",
|
|
117
|
+
"scopes": [
|
|
118
|
+
"COMBO",
|
|
119
|
+
"REGULAR"
|
|
120
|
+
]
|
|
121
|
+
},
|
|
122
|
+
{
|
|
123
|
+
"name": "ts_corr",
|
|
124
|
+
"category": "Time Series",
|
|
125
|
+
"definition": "ts_corr(x, y, d)",
|
|
126
|
+
"description": "Returns correlation of x and y for the past d days",
|
|
127
|
+
"documentation": "/operators/ts_corr",
|
|
128
|
+
"level": "ALL",
|
|
129
|
+
"scopes": [
|
|
130
|
+
"COMBO",
|
|
131
|
+
"REGULAR"
|
|
132
|
+
]
|
|
133
|
+
},
|
|
134
|
+
{
|
|
135
|
+
"name": "ts_count_nans",
|
|
136
|
+
"category": "Time Series",
|
|
137
|
+
"definition": "ts_count_nans(x ,d)",
|
|
138
|
+
"description": "Returns the number of NaN values in x for the past d days\r\n\r\nInput: Value of 1 instrument in past 4 days where first element is the latest: (100, NaN, NaN, 200), d: 4\r\nOutput: Number of NaN in 4 days = 2",
|
|
139
|
+
"documentation": null,
|
|
140
|
+
"level": "ALL",
|
|
141
|
+
"scopes": [
|
|
142
|
+
"COMBO",
|
|
143
|
+
"REGULAR"
|
|
144
|
+
]
|
|
145
|
+
},
|
|
146
|
+
{
|
|
147
|
+
"name": "ts_covariance",
|
|
148
|
+
"category": "Time Series",
|
|
149
|
+
"definition": "ts_covariance(y, x, d)",
|
|
150
|
+
"description": "Returns covariance of y and x for the past d days",
|
|
151
|
+
"documentation": null,
|
|
152
|
+
"level": "ALL",
|
|
153
|
+
"scopes": [
|
|
154
|
+
"COMBO",
|
|
155
|
+
"REGULAR"
|
|
156
|
+
]
|
|
157
|
+
},
|
|
158
|
+
{
|
|
159
|
+
"name": "ts_decay_exp_window",
|
|
160
|
+
"category": "Time Series",
|
|
161
|
+
"definition": "ts_decay_exp_window(x, d, factor = f)",
|
|
162
|
+
"description": "Returns exponential decay of x with smoothing factor for the past d days",
|
|
163
|
+
"documentation": "/operators/ts_decay_exp_window",
|
|
164
|
+
"level": null,
|
|
165
|
+
"scopes": [
|
|
166
|
+
"COMBO",
|
|
167
|
+
"REGULAR"
|
|
168
|
+
]
|
|
169
|
+
},
|
|
170
|
+
{
|
|
171
|
+
"name": "ts_decay_linear",
|
|
172
|
+
"category": "Time Series",
|
|
173
|
+
"definition": "ts_decay_linear(x, d, dense = false)",
|
|
174
|
+
"description": "Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not.",
|
|
175
|
+
"documentation": "/operators/ts_decay_linear",
|
|
176
|
+
"level": "ALL",
|
|
177
|
+
"scopes": [
|
|
178
|
+
"COMBO",
|
|
179
|
+
"REGULAR"
|
|
180
|
+
]
|
|
181
|
+
},
|
|
182
|
+
{
|
|
183
|
+
"name": "ts_delay",
|
|
184
|
+
"category": "Time Series",
|
|
185
|
+
"definition": "ts_delay(x, d)",
|
|
186
|
+
"description": "Returns x value d days ago\r\n\r\nInput: Value of 1 instrument in past 7 days where first element is the latest: (2, 3, 5, 6, 3, 8, 10), d: 6\r\nOutput: Value 6 days ago = 10",
|
|
187
|
+
"documentation": null,
|
|
188
|
+
"level": "ALL",
|
|
189
|
+
"scopes": [
|
|
190
|
+
"COMBO",
|
|
191
|
+
"REGULAR"
|
|
192
|
+
]
|
|
193
|
+
},
|
|
194
|
+
{
|
|
195
|
+
"name": "ts_delta",
|
|
196
|
+
"category": "Time Series",
|
|
197
|
+
"definition": "ts_delta(x, d)",
|
|
198
|
+
"description": "Returns x - ts_delay(x, d)\r\n\r\nInput: Value of 1 instrument in past 7 days where first element is the latest: (2, 3, 5, 6, 3, 8, 10), d: 6\r\nOutput: Value today – value 6 days ago = 2 - 10 = -8",
|
|
199
|
+
"documentation": null,
|
|
200
|
+
"level": "ALL",
|
|
201
|
+
"scopes": [
|
|
202
|
+
"COMBO",
|
|
203
|
+
"REGULAR"
|
|
204
|
+
]
|
|
205
|
+
},
|
|
206
|
+
{
|
|
207
|
+
"name": "ts_delta_limit",
|
|
208
|
+
"category": "Time Series",
|
|
209
|
+
"definition": "ts_delta_limit(x, y, limit_volume=0.1)",
|
|
210
|
+
"description": "Limit the change in the Alpha position x between dates to a specified fraction of y. The \"limit_volume\" can be in the range of 0 to 1. Also, please be aware of the scaling for x and y. Besides setting y as adv20 or volume related data, you can also set y as a constant.",
|
|
211
|
+
"documentation": null,
|
|
212
|
+
"level": null,
|
|
213
|
+
"scopes": [
|
|
214
|
+
"COMBO",
|
|
215
|
+
"REGULAR"
|
|
216
|
+
]
|
|
217
|
+
},
|
|
218
|
+
{
|
|
219
|
+
"name": "ts_mean",
|
|
220
|
+
"category": "Time Series",
|
|
221
|
+
"definition": "ts_mean(x, d)",
|
|
222
|
+
"description": "Returns average value of x for the past d days.",
|
|
223
|
+
"documentation": null,
|
|
224
|
+
"level": "ALL",
|
|
225
|
+
"scopes": [
|
|
226
|
+
"COMBO",
|
|
227
|
+
"REGULAR"
|
|
228
|
+
]
|
|
229
|
+
},
|
|
230
|
+
{
|
|
231
|
+
"name": "ts_median",
|
|
232
|
+
"category": "Time Series",
|
|
233
|
+
"definition": "ts_median(x, d)",
|
|
234
|
+
"description": "Returns median value of x for the past d days",
|
|
235
|
+
"documentation": null,
|
|
236
|
+
"level": null,
|
|
237
|
+
"scopes": [
|
|
238
|
+
"COMBO",
|
|
239
|
+
"REGULAR"
|
|
240
|
+
]
|
|
241
|
+
},
|
|
242
|
+
{
|
|
243
|
+
"name": "ts_product",
|
|
244
|
+
"category": "Time Series",
|
|
245
|
+
"definition": "ts_product(x, d)",
|
|
246
|
+
"description": "Returns product of x for the past d days",
|
|
247
|
+
"documentation": "/operators/ts_product",
|
|
248
|
+
"level": "ALL",
|
|
249
|
+
"scopes": [
|
|
250
|
+
"COMBO",
|
|
251
|
+
"REGULAR"
|
|
252
|
+
]
|
|
253
|
+
},
|
|
254
|
+
{
|
|
255
|
+
"name": "ts_quantile",
|
|
256
|
+
"category": "Time Series",
|
|
257
|
+
"definition": "ts_quantile(x,d, driver=\"gaussian\" )",
|
|
258
|
+
"description": "It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are \"gaussian\", \"uniform\", \"cauchy\" distribution where \"gaussian\" is the default.\r\n\r\nInput: Value of 1 instrument in past 7 days where first element is the latest: (8, 10, 4, 6, 5, 3, 2), d: 7, driver: ’gaussian’\r\nOutput: quantile = 0.82 from SD = 2.82, mean = 5.43, zscore = 0.911",
|
|
259
|
+
"documentation": null,
|
|
260
|
+
"level": "ALL",
|
|
261
|
+
"scopes": [
|
|
262
|
+
"COMBO",
|
|
263
|
+
"REGULAR"
|
|
264
|
+
]
|
|
265
|
+
},
|
|
266
|
+
{
|
|
267
|
+
"name": "ts_rank",
|
|
268
|
+
"category": "Time Series",
|
|
269
|
+
"definition": "ts_rank(x, d, constant = 0)",
|
|
270
|
+
"description": "Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0.\r\n\r\nInput: Value of 1 instrument in past 3 days where first element is the latest: (100, 0, 200), d: 3\r\nOutput: 0.5",
|
|
271
|
+
"documentation": null,
|
|
272
|
+
"level": "ALL",
|
|
273
|
+
"scopes": [
|
|
274
|
+
"COMBO",
|
|
275
|
+
"REGULAR"
|
|
276
|
+
]
|
|
277
|
+
},
|
|
278
|
+
{
|
|
279
|
+
"name": "ts_regression",
|
|
280
|
+
"category": "Time Series",
|
|
281
|
+
"definition": "ts_regression(y, x, d, lag = 0, rettype = 0)",
|
|
282
|
+
"description": "Returns various parameters related to regression function",
|
|
283
|
+
"documentation": "/operators/ts_regression",
|
|
284
|
+
"level": "ALL",
|
|
285
|
+
"scopes": [
|
|
286
|
+
"COMBO",
|
|
287
|
+
"REGULAR"
|
|
288
|
+
]
|
|
289
|
+
},
|
|
290
|
+
{
|
|
291
|
+
"name": "ts_scale",
|
|
292
|
+
"category": "Time Series",
|
|
293
|
+
"definition": "ts_scale(x, d, constant = 0)",
|
|
294
|
+
"description": "Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space",
|
|
295
|
+
"documentation": "/operators/ts_scale",
|
|
296
|
+
"level": "ALL",
|
|
297
|
+
"scopes": [
|
|
298
|
+
"COMBO",
|
|
299
|
+
"REGULAR"
|
|
300
|
+
]
|
|
301
|
+
},
|
|
302
|
+
{
|
|
303
|
+
"name": "ts_std_dev",
|
|
304
|
+
"category": "Time Series",
|
|
305
|
+
"definition": "ts_std_dev(x, d)",
|
|
306
|
+
"description": "Returns standard deviation of x for the past d days",
|
|
307
|
+
"documentation": null,
|
|
308
|
+
"level": "ALL",
|
|
309
|
+
"scopes": [
|
|
310
|
+
"COMBO",
|
|
311
|
+
"REGULAR"
|
|
312
|
+
]
|
|
313
|
+
},
|
|
314
|
+
{
|
|
315
|
+
"name": "ts_step",
|
|
316
|
+
"category": "Time Series",
|
|
317
|
+
"definition": "ts_step(1)",
|
|
318
|
+
"description": "Returns days' counter",
|
|
319
|
+
"documentation": null,
|
|
320
|
+
"level": "ALL",
|
|
321
|
+
"scopes": [
|
|
322
|
+
"COMBO",
|
|
323
|
+
"REGULAR"
|
|
324
|
+
]
|
|
325
|
+
},
|
|
326
|
+
{
|
|
327
|
+
"name": "ts_sum",
|
|
328
|
+
"category": "Time Series",
|
|
329
|
+
"definition": "ts_sum(x, d)",
|
|
330
|
+
"description": "Sum values of x for the past d days.",
|
|
331
|
+
"documentation": null,
|
|
332
|
+
"level": "ALL",
|
|
333
|
+
"scopes": [
|
|
334
|
+
"COMBO",
|
|
335
|
+
"REGULAR"
|
|
336
|
+
]
|
|
337
|
+
},
|
|
338
|
+
{
|
|
339
|
+
"name": "ts_target_tvr_decay",
|
|
340
|
+
"category": "Time Series",
|
|
341
|
+
"definition": "ts_target_tvr_decay(x, lambda_min=0, lambda_max=1, target_tvr=0.1)",
|
|
342
|
+
"description": "Tune \"ts_decay\" to have a turnover equal to a certain target, with optimization weight range between lambda_min, lambda_max",
|
|
343
|
+
"documentation": null,
|
|
344
|
+
"level": null,
|
|
345
|
+
"scopes": [
|
|
346
|
+
"COMBO",
|
|
347
|
+
"REGULAR"
|
|
348
|
+
]
|
|
349
|
+
},
|
|
350
|
+
{
|
|
351
|
+
"name": "ts_target_tvr_delta_limit",
|
|
352
|
+
"category": "Time Series",
|
|
353
|
+
"definition": "ts_target_tvr_delta_limit(x, y, lambda_min=0, lambda_max=1, target_tvr=0.1)",
|
|
354
|
+
"description": "Tune \"ts_delta_limit\" to have a turnover equal to a certain target with optimization weight range between lambda_min, lambda_max. Also, please be aware of the scaling for x and y. Besides setting y as adv20 or volume related data, you can also set y as a constant.",
|
|
355
|
+
"documentation": null,
|
|
356
|
+
"level": null,
|
|
357
|
+
"scopes": [
|
|
358
|
+
"COMBO",
|
|
359
|
+
"REGULAR"
|
|
360
|
+
]
|
|
361
|
+
},
|
|
362
|
+
{
|
|
363
|
+
"name": "ts_target_tvr_hump",
|
|
364
|
+
"category": "Time Series",
|
|
365
|
+
"definition": "ts_target_tvr_hump(x, lambda_min=0, lambda_max=1, target_tvr=0.1)",
|
|
366
|
+
"description": "Tune \"hump\" to have a turnover equal to a certain target with optimization weight range between lambda_min, lambda_max.",
|
|
367
|
+
"documentation": null,
|
|
368
|
+
"level": null,
|
|
369
|
+
"scopes": [
|
|
370
|
+
"COMBO",
|
|
371
|
+
"REGULAR"
|
|
372
|
+
]
|
|
373
|
+
},
|
|
374
|
+
{
|
|
375
|
+
"name": "ts_zscore",
|
|
376
|
+
"category": "Time Series",
|
|
377
|
+
"definition": "ts_zscore(x, d)",
|
|
378
|
+
"description": "Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown.\r\n\r\nInput: Value of 1 instrument in past 5 days where first element is the latest: (100, 0, 50, 60, 25), d: 5\r\nOutput: (100-47)/33.7 = 1.57 from SD: 33.7, mean = 47",
|
|
379
|
+
"documentation": null,
|
|
380
|
+
"level": "ALL",
|
|
381
|
+
"scopes": [
|
|
382
|
+
"COMBO",
|
|
383
|
+
"REGULAR"
|
|
384
|
+
]
|
|
385
|
+
}
|
|
386
|
+
]
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
[
|
|
2
|
+
{
|
|
3
|
+
"name": "bucket",
|
|
4
|
+
"category": "Transformational",
|
|
5
|
+
"definition": "bucket(rank(x), range=\"0, 1, 0.1\" or buckets = \"2,5,6,7,10\")",
|
|
6
|
+
"description": "Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input",
|
|
7
|
+
"documentation": "/operators/bucket",
|
|
8
|
+
"level": "ALL",
|
|
9
|
+
"scopes": [
|
|
10
|
+
"COMBO",
|
|
11
|
+
"REGULAR"
|
|
12
|
+
]
|
|
13
|
+
},
|
|
14
|
+
{
|
|
15
|
+
"name": "generate_stats",
|
|
16
|
+
"category": "Transformational",
|
|
17
|
+
"definition": "generate_stats(alpha)",
|
|
18
|
+
"description": "The generate_stats() operator calculates Alpha statistics for each day in the IS period. It takes an input of selected Alphas with shape = (A x D x I). It outputs daily statistics for each Alpha with shape = (S x D x A), where S is the number of statistics calculated.",
|
|
19
|
+
"documentation": null,
|
|
20
|
+
"level": "ALL",
|
|
21
|
+
"scopes": [
|
|
22
|
+
"COMBO"
|
|
23
|
+
]
|
|
24
|
+
},
|
|
25
|
+
{
|
|
26
|
+
"name": "left_tail",
|
|
27
|
+
"category": "Transformational",
|
|
28
|
+
"definition": "left_tail(x, maximum = 0)",
|
|
29
|
+
"description": "NaN everything greater than maximum, maximum should be constant",
|
|
30
|
+
"documentation": "/operators/left_tail",
|
|
31
|
+
"level": null,
|
|
32
|
+
"scopes": [
|
|
33
|
+
"COMBO",
|
|
34
|
+
"REGULAR"
|
|
35
|
+
]
|
|
36
|
+
},
|
|
37
|
+
{
|
|
38
|
+
"name": "right_tail",
|
|
39
|
+
"category": "Transformational",
|
|
40
|
+
"definition": "right_tail(x, minimum = 0)",
|
|
41
|
+
"description": "NaN everything less than minimum, minimum should be constant",
|
|
42
|
+
"documentation": "/operators/right_tail",
|
|
43
|
+
"level": null,
|
|
44
|
+
"scopes": [
|
|
45
|
+
"COMBO",
|
|
46
|
+
"REGULAR"
|
|
47
|
+
]
|
|
48
|
+
},
|
|
49
|
+
{
|
|
50
|
+
"name": "trade_when",
|
|
51
|
+
"category": "Transformational",
|
|
52
|
+
"definition": "trade_when(x, y, z)",
|
|
53
|
+
"description": "Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition",
|
|
54
|
+
"documentation": "/operators/trade_when",
|
|
55
|
+
"level": "ALL",
|
|
56
|
+
"scopes": [
|
|
57
|
+
"COMBO",
|
|
58
|
+
"REGULAR"
|
|
59
|
+
]
|
|
60
|
+
}
|
|
61
|
+
]
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
[
|
|
2
|
+
{
|
|
3
|
+
"name": "vec_avg",
|
|
4
|
+
"category": "Vector",
|
|
5
|
+
"definition": "vec_avg(x)",
|
|
6
|
+
"description": "Taking mean of the vector field x\r\n\r\nInput: Vector of value of 1 instrument in a day: (2, 3, 5, 6, 3, 8, 10)\r\nOutput: 37 / 7 = 5.29",
|
|
7
|
+
"documentation": null,
|
|
8
|
+
"level": "ALL",
|
|
9
|
+
"scopes": [
|
|
10
|
+
"COMBO",
|
|
11
|
+
"REGULAR"
|
|
12
|
+
]
|
|
13
|
+
},
|
|
14
|
+
{
|
|
15
|
+
"name": "vec_count",
|
|
16
|
+
"category": "Vector",
|
|
17
|
+
"definition": "vec_count(x)",
|
|
18
|
+
"description": "Number of elements in vector field x",
|
|
19
|
+
"documentation": null,
|
|
20
|
+
"level": null,
|
|
21
|
+
"scopes": [
|
|
22
|
+
"COMBO",
|
|
23
|
+
"REGULAR"
|
|
24
|
+
]
|
|
25
|
+
},
|
|
26
|
+
{
|
|
27
|
+
"name": "vec_sum",
|
|
28
|
+
"category": "Vector",
|
|
29
|
+
"definition": "vec_sum(x)",
|
|
30
|
+
"description": "Sum of vector field x\r\n\r\nInput: Vector of value of 1 instrument in a day: (2, 3, 5, 6, 3, 8, 10)\r\nOutput: 2 + 3 + 5 + 6 + 3 + 8 + 10 = 37",
|
|
31
|
+
"documentation": null,
|
|
32
|
+
"level": "ALL",
|
|
33
|
+
"scopes": [
|
|
34
|
+
"COMBO",
|
|
35
|
+
"REGULAR"
|
|
36
|
+
]
|
|
37
|
+
}
|
|
38
|
+
]
|