cnhkmcp 2.0.2__py3-none-any.whl → 2.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cnhkmcp/untracked/APP/Tranformer/ace_lib.py +30 -9
- cnhkmcp/untracked/APP/ace_lib.py +30 -9
- cnhkmcp/untracked/APP/give_me_idea/ace_lib.py +30 -9
- cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py +5 -1
- cnhkmcp/untracked/APP/hkSimulator/ace_lib.py +30 -9
- cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/ace_lib.py +30 -9
- cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +2 -1
- {cnhkmcp-2.0.2.dist-info → cnhkmcp-2.0.3.dist-info}/METADATA +1 -1
- {cnhkmcp-2.0.2.dist-info → cnhkmcp-2.0.3.dist-info}/RECORD +13 -13
- {cnhkmcp-2.0.2.dist-info → cnhkmcp-2.0.3.dist-info}/WHEEL +0 -0
- {cnhkmcp-2.0.2.dist-info → cnhkmcp-2.0.3.dist-info}/entry_points.txt +0 -0
- {cnhkmcp-2.0.2.dist-info → cnhkmcp-2.0.3.dist-info}/licenses/LICENSE +0 -0
- {cnhkmcp-2.0.2.dist-info → cnhkmcp-2.0.3.dist-info}/top_level.txt +0 -0
|
@@ -1134,7 +1134,7 @@ def get_datasets(
|
|
|
1134
1134
|
region: str = "USA",
|
|
1135
1135
|
delay: int = 1,
|
|
1136
1136
|
universe: str = "TOP3000",
|
|
1137
|
-
theme: str = "
|
|
1137
|
+
theme: str = "ALL",
|
|
1138
1138
|
) -> pd.DataFrame:
|
|
1139
1139
|
"""
|
|
1140
1140
|
Retrieve available datasets based on specified parameters.
|
|
@@ -1145,18 +1145,39 @@ def get_datasets(
|
|
|
1145
1145
|
region (str, optional): The region. Defaults to "USA".
|
|
1146
1146
|
delay (int, optional): The delay. Defaults to 1.
|
|
1147
1147
|
universe (str, optional): The universe. Defaults to "TOP3000".
|
|
1148
|
-
theme (str, optional): The theme. Defaults to "
|
|
1148
|
+
theme (str, optional): The theme. Defaults to "ALL".
|
|
1149
1149
|
|
|
1150
1150
|
Returns:
|
|
1151
1151
|
pandas.DataFrame: A DataFrame containing information about available datasets.
|
|
1152
1152
|
"""
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
1153
|
+
if theme == "ALL":
|
|
1154
|
+
# Fetch both theme=false and theme=true
|
|
1155
|
+
url_false = (
|
|
1156
|
+
brain_api_url
|
|
1157
|
+
+ "/data-sets?"
|
|
1158
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=false"
|
|
1159
|
+
)
|
|
1160
|
+
result_false = s.get(url_false)
|
|
1161
|
+
df_false = pd.DataFrame(result_false.json()["results"])
|
|
1162
|
+
|
|
1163
|
+
url_true = (
|
|
1164
|
+
brain_api_url
|
|
1165
|
+
+ "/data-sets?"
|
|
1166
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=true"
|
|
1167
|
+
)
|
|
1168
|
+
result_true = s.get(url_true)
|
|
1169
|
+
df_true = pd.DataFrame(result_true.json()["results"])
|
|
1170
|
+
|
|
1171
|
+
datasets_df = pd.concat([df_false, df_true], ignore_index=True)
|
|
1172
|
+
else:
|
|
1173
|
+
url = (
|
|
1174
|
+
brain_api_url
|
|
1175
|
+
+ "/data-sets?"
|
|
1176
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme={theme}"
|
|
1177
|
+
)
|
|
1178
|
+
result = s.get(url)
|
|
1179
|
+
datasets_df = pd.DataFrame(result.json()["results"])
|
|
1180
|
+
|
|
1160
1181
|
datasets_df = expand_dict_columns(datasets_df)
|
|
1161
1182
|
return datasets_df
|
|
1162
1183
|
|
cnhkmcp/untracked/APP/ace_lib.py
CHANGED
|
@@ -1134,7 +1134,7 @@ def get_datasets(
|
|
|
1134
1134
|
region: str = "USA",
|
|
1135
1135
|
delay: int = 1,
|
|
1136
1136
|
universe: str = "TOP3000",
|
|
1137
|
-
theme: str = "
|
|
1137
|
+
theme: str = "ALL",
|
|
1138
1138
|
) -> pd.DataFrame:
|
|
1139
1139
|
"""
|
|
1140
1140
|
Retrieve available datasets based on specified parameters.
|
|
@@ -1145,18 +1145,39 @@ def get_datasets(
|
|
|
1145
1145
|
region (str, optional): The region. Defaults to "USA".
|
|
1146
1146
|
delay (int, optional): The delay. Defaults to 1.
|
|
1147
1147
|
universe (str, optional): The universe. Defaults to "TOP3000".
|
|
1148
|
-
theme (str, optional): The theme. Defaults to "
|
|
1148
|
+
theme (str, optional): The theme. Defaults to "ALL".
|
|
1149
1149
|
|
|
1150
1150
|
Returns:
|
|
1151
1151
|
pandas.DataFrame: A DataFrame containing information about available datasets.
|
|
1152
1152
|
"""
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
1153
|
+
if theme == "ALL":
|
|
1154
|
+
# Fetch both theme=false and theme=true
|
|
1155
|
+
url_false = (
|
|
1156
|
+
brain_api_url
|
|
1157
|
+
+ "/data-sets?"
|
|
1158
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=false"
|
|
1159
|
+
)
|
|
1160
|
+
result_false = s.get(url_false)
|
|
1161
|
+
df_false = pd.DataFrame(result_false.json()["results"])
|
|
1162
|
+
|
|
1163
|
+
url_true = (
|
|
1164
|
+
brain_api_url
|
|
1165
|
+
+ "/data-sets?"
|
|
1166
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=true"
|
|
1167
|
+
)
|
|
1168
|
+
result_true = s.get(url_true)
|
|
1169
|
+
df_true = pd.DataFrame(result_true.json()["results"])
|
|
1170
|
+
|
|
1171
|
+
datasets_df = pd.concat([df_false, df_true], ignore_index=True)
|
|
1172
|
+
else:
|
|
1173
|
+
url = (
|
|
1174
|
+
brain_api_url
|
|
1175
|
+
+ "/data-sets?"
|
|
1176
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme={theme}"
|
|
1177
|
+
)
|
|
1178
|
+
result = s.get(url)
|
|
1179
|
+
datasets_df = pd.DataFrame(result.json()["results"])
|
|
1180
|
+
|
|
1160
1181
|
datasets_df = expand_dict_columns(datasets_df)
|
|
1161
1182
|
return datasets_df
|
|
1162
1183
|
|
|
@@ -1134,7 +1134,7 @@ def get_datasets(
|
|
|
1134
1134
|
region: str = "USA",
|
|
1135
1135
|
delay: int = 1,
|
|
1136
1136
|
universe: str = "TOP3000",
|
|
1137
|
-
theme: str = "
|
|
1137
|
+
theme: str = "ALL",
|
|
1138
1138
|
) -> pd.DataFrame:
|
|
1139
1139
|
"""
|
|
1140
1140
|
Retrieve available datasets based on specified parameters.
|
|
@@ -1145,18 +1145,39 @@ def get_datasets(
|
|
|
1145
1145
|
region (str, optional): The region. Defaults to "USA".
|
|
1146
1146
|
delay (int, optional): The delay. Defaults to 1.
|
|
1147
1147
|
universe (str, optional): The universe. Defaults to "TOP3000".
|
|
1148
|
-
theme (str, optional): The theme. Defaults to "
|
|
1148
|
+
theme (str, optional): The theme. Defaults to "ALL".
|
|
1149
1149
|
|
|
1150
1150
|
Returns:
|
|
1151
1151
|
pandas.DataFrame: A DataFrame containing information about available datasets.
|
|
1152
1152
|
"""
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
1153
|
+
if theme == "ALL":
|
|
1154
|
+
# Fetch both theme=false and theme=true
|
|
1155
|
+
url_false = (
|
|
1156
|
+
brain_api_url
|
|
1157
|
+
+ "/data-sets?"
|
|
1158
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=false"
|
|
1159
|
+
)
|
|
1160
|
+
result_false = s.get(url_false)
|
|
1161
|
+
df_false = pd.DataFrame(result_false.json()["results"])
|
|
1162
|
+
|
|
1163
|
+
url_true = (
|
|
1164
|
+
brain_api_url
|
|
1165
|
+
+ "/data-sets?"
|
|
1166
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=true"
|
|
1167
|
+
)
|
|
1168
|
+
result_true = s.get(url_true)
|
|
1169
|
+
df_true = pd.DataFrame(result_true.json()["results"])
|
|
1170
|
+
|
|
1171
|
+
datasets_df = pd.concat([df_false, df_true], ignore_index=True)
|
|
1172
|
+
else:
|
|
1173
|
+
url = (
|
|
1174
|
+
brain_api_url
|
|
1175
|
+
+ "/data-sets?"
|
|
1176
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme={theme}"
|
|
1177
|
+
)
|
|
1178
|
+
result = s.get(url)
|
|
1179
|
+
datasets_df = pd.DataFrame(result.json()["results"])
|
|
1180
|
+
|
|
1160
1181
|
datasets_df = expand_dict_columns(datasets_df)
|
|
1161
1182
|
return datasets_df
|
|
1162
1183
|
|
|
@@ -189,7 +189,11 @@ def main():
|
|
|
189
189
|
universe=universe
|
|
190
190
|
)
|
|
191
191
|
print(f"Retrieved {len(datasets_df)} datasets.")
|
|
192
|
-
print(datasets_df[['id', 'name', 'category', 'subcategory']].head(10))
|
|
192
|
+
# print(datasets_df[['id', 'name', 'category', 'subcategory']].head(10))
|
|
193
|
+
|
|
194
|
+
# Print all datasets for user selection
|
|
195
|
+
pd.set_option('display.max_rows', None)
|
|
196
|
+
print(datasets_df[['id', 'name', 'category', 'subcategory']])
|
|
193
197
|
except Exception as e:
|
|
194
198
|
print(f"Failed to get datasets: {e}")
|
|
195
199
|
return
|
|
@@ -1143,7 +1143,7 @@ def get_datasets(
|
|
|
1143
1143
|
region: str = "USA",
|
|
1144
1144
|
delay: int = 1,
|
|
1145
1145
|
universe: str = "TOP3000",
|
|
1146
|
-
theme: str = "
|
|
1146
|
+
theme: str = "ALL",
|
|
1147
1147
|
) -> pd.DataFrame:
|
|
1148
1148
|
"""
|
|
1149
1149
|
Retrieve available datasets based on specified parameters.
|
|
@@ -1154,18 +1154,39 @@ def get_datasets(
|
|
|
1154
1154
|
region (str, optional): The region. Defaults to "USA".
|
|
1155
1155
|
delay (int, optional): The delay. Defaults to 1.
|
|
1156
1156
|
universe (str, optional): The universe. Defaults to "TOP3000".
|
|
1157
|
-
theme (str, optional): The theme. Defaults to "
|
|
1157
|
+
theme (str, optional): The theme. Defaults to "ALL".
|
|
1158
1158
|
|
|
1159
1159
|
Returns:
|
|
1160
1160
|
pandas.DataFrame: A DataFrame containing information about available datasets.
|
|
1161
1161
|
"""
|
|
1162
|
-
|
|
1163
|
-
|
|
1164
|
-
|
|
1165
|
-
|
|
1166
|
-
|
|
1167
|
-
|
|
1168
|
-
|
|
1162
|
+
if theme == "ALL":
|
|
1163
|
+
# Fetch both theme=false and theme=true
|
|
1164
|
+
url_false = (
|
|
1165
|
+
brain_api_url
|
|
1166
|
+
+ "/data-sets?"
|
|
1167
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=false"
|
|
1168
|
+
)
|
|
1169
|
+
result_false = s.get(url_false)
|
|
1170
|
+
df_false = pd.DataFrame(result_false.json()["results"])
|
|
1171
|
+
|
|
1172
|
+
url_true = (
|
|
1173
|
+
brain_api_url
|
|
1174
|
+
+ "/data-sets?"
|
|
1175
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=true"
|
|
1176
|
+
)
|
|
1177
|
+
result_true = s.get(url_true)
|
|
1178
|
+
df_true = pd.DataFrame(result_true.json()["results"])
|
|
1179
|
+
|
|
1180
|
+
datasets_df = pd.concat([df_false, df_true], ignore_index=True)
|
|
1181
|
+
else:
|
|
1182
|
+
url = (
|
|
1183
|
+
brain_api_url
|
|
1184
|
+
+ "/data-sets?"
|
|
1185
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme={theme}"
|
|
1186
|
+
)
|
|
1187
|
+
result = s.get(url)
|
|
1188
|
+
datasets_df = pd.DataFrame(result.json()["results"])
|
|
1189
|
+
|
|
1169
1190
|
datasets_df = expand_dict_columns(datasets_df)
|
|
1170
1191
|
return datasets_df
|
|
1171
1192
|
|
|
@@ -1134,7 +1134,7 @@ def get_datasets(
|
|
|
1134
1134
|
region: str = "USA",
|
|
1135
1135
|
delay: int = 1,
|
|
1136
1136
|
universe: str = "TOP3000",
|
|
1137
|
-
theme: str = "
|
|
1137
|
+
theme: str = "ALL",
|
|
1138
1138
|
) -> pd.DataFrame:
|
|
1139
1139
|
"""
|
|
1140
1140
|
Retrieve available datasets based on specified parameters.
|
|
@@ -1145,18 +1145,39 @@ def get_datasets(
|
|
|
1145
1145
|
region (str, optional): The region. Defaults to "USA".
|
|
1146
1146
|
delay (int, optional): The delay. Defaults to 1.
|
|
1147
1147
|
universe (str, optional): The universe. Defaults to "TOP3000".
|
|
1148
|
-
theme (str, optional): The theme. Defaults to "
|
|
1148
|
+
theme (str, optional): The theme. Defaults to "ALL".
|
|
1149
1149
|
|
|
1150
1150
|
Returns:
|
|
1151
1151
|
pandas.DataFrame: A DataFrame containing information about available datasets.
|
|
1152
1152
|
"""
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
1153
|
+
if theme == "ALL":
|
|
1154
|
+
# Fetch both theme=false and theme=true
|
|
1155
|
+
url_false = (
|
|
1156
|
+
brain_api_url
|
|
1157
|
+
+ "/data-sets?"
|
|
1158
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=false"
|
|
1159
|
+
)
|
|
1160
|
+
result_false = s.get(url_false)
|
|
1161
|
+
df_false = pd.DataFrame(result_false.json()["results"])
|
|
1162
|
+
|
|
1163
|
+
url_true = (
|
|
1164
|
+
brain_api_url
|
|
1165
|
+
+ "/data-sets?"
|
|
1166
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme=true"
|
|
1167
|
+
)
|
|
1168
|
+
result_true = s.get(url_true)
|
|
1169
|
+
df_true = pd.DataFrame(result_true.json()["results"])
|
|
1170
|
+
|
|
1171
|
+
datasets_df = pd.concat([df_false, df_true], ignore_index=True)
|
|
1172
|
+
else:
|
|
1173
|
+
url = (
|
|
1174
|
+
brain_api_url
|
|
1175
|
+
+ "/data-sets?"
|
|
1176
|
+
+ f"instrumentType={instrument_type}®ion={region}&delay={str(delay)}&universe={universe}&theme={theme}"
|
|
1177
|
+
)
|
|
1178
|
+
result = s.get(url)
|
|
1179
|
+
datasets_df = pd.DataFrame(result.json()["results"])
|
|
1180
|
+
|
|
1160
1181
|
datasets_df = expand_dict_columns(datasets_df)
|
|
1161
1182
|
return datasets_df
|
|
1162
1183
|
|
|
@@ -2253,7 +2253,8 @@ def inspiration_datasets():
|
|
|
2253
2253
|
)
|
|
2254
2254
|
df = df[mask]
|
|
2255
2255
|
|
|
2256
|
-
results
|
|
2256
|
+
# Return all results instead of limiting to 50
|
|
2257
|
+
results = df.to_dict(orient='records')
|
|
2257
2258
|
return jsonify(results)
|
|
2258
2259
|
except Exception as e:
|
|
2259
2260
|
return jsonify({'error': str(e)}), 500
|
|
@@ -16,7 +16,7 @@ cnhkmcp/untracked/APP/.gitignore,sha256=oPCoVTNo82bhkN0c671LdjCpOTVpVhZI5NR75ztc
|
|
|
16
16
|
cnhkmcp/untracked/APP/MODULAR_STRUCTURE.md,sha256=b5xV74-_RtXq2K1EsYDwMukO6lxjJ4-lnOAEnTHpFS0,4706
|
|
17
17
|
cnhkmcp/untracked/APP/README.md,sha256=vb7hmQX0sH5aFNBmDCN5szMSDHm1_h2VKY4UKCt0aMk,11676
|
|
18
18
|
cnhkmcp/untracked/APP/ace.log,sha256=QGcTvXCEEfgl0hbnnbtDYB-pJbJwVREAXFnKD4OeSao,11029
|
|
19
|
-
cnhkmcp/untracked/APP/ace_lib.py,sha256=
|
|
19
|
+
cnhkmcp/untracked/APP/ace_lib.py,sha256=z-6PCt3z3gJ_2pO9-17dtKkiSfrXPLv-WE-Ff85fqiw,53749
|
|
20
20
|
cnhkmcp/untracked/APP/helpful_functions.py,sha256=VS-rh4T2CMWLFK4clI7-DYsnqwO5dx5L-rgL8U8BmT8,6622
|
|
21
21
|
cnhkmcp/untracked/APP/mirror_config.txt,sha256=RL1jFYwcvDPkLd6tc_lqVcwjTLORWt5Qu0Ym_BTPaao,504
|
|
22
22
|
cnhkmcp/untracked/APP/operaters.csv,sha256=g8m6z-u0x-CoqGFSp_g3UMyLJkdFLE5UwsNkueMH1yw,13610
|
|
@@ -27,10 +27,10 @@ cnhkmcp/untracked/APP/setup_tsinghua.bat,sha256=9dLWCaQTULf3d2LqiAlvQrA4wuM1dysG
|
|
|
27
27
|
cnhkmcp/untracked/APP/setup_tsinghua.sh,sha256=mMDXTqCRIXtSHa_1pU0jCnNF-xajqfZDlUA72XpcAOk,1195
|
|
28
28
|
cnhkmcp/untracked/APP/ssrn-3332513.pdf,sha256=GEwf1Srtk-fTvF03dhTEjXJstHBARIUg31k7s5kxS98,2082078
|
|
29
29
|
cnhkmcp/untracked/APP/usage.md,sha256=lPpA6qqAMvVsm41ikbRR1ZWFcuPSgqhMXOUig52eZCI,16164
|
|
30
|
-
cnhkmcp/untracked/APP/运行打开我.py,sha256=
|
|
30
|
+
cnhkmcp/untracked/APP/运行打开我.py,sha256=Xwfg20RaN3l_Ezp_xwHZaPDIMJD57x7ZMb4bC58QZ8Y,97215
|
|
31
31
|
cnhkmcp/untracked/APP/Tranformer/Transformer.py,sha256=nvkDLv_untR-M_lAsvhpyvoyrkb8732JblB8MGeGjIA,111571
|
|
32
32
|
cnhkmcp/untracked/APP/Tranformer/ace.log,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
33
|
-
cnhkmcp/untracked/APP/Tranformer/ace_lib.py,sha256=
|
|
33
|
+
cnhkmcp/untracked/APP/Tranformer/ace_lib.py,sha256=z-6PCt3z3gJ_2pO9-17dtKkiSfrXPLv-WE-Ff85fqiw,53749
|
|
34
34
|
cnhkmcp/untracked/APP/Tranformer/helpful_functions.py,sha256=VS-rh4T2CMWLFK4clI7-DYsnqwO5dx5L-rgL8U8BmT8,6622
|
|
35
35
|
cnhkmcp/untracked/APP/Tranformer/parsetab.py,sha256=29clH5xFEmKpqzRvrLN89QE8JFJNYFhH-gEFR4y7448,7650
|
|
36
36
|
cnhkmcp/untracked/APP/Tranformer/template_summary.txt,sha256=vNuvOWGxLu_JCsR_MkasOQaxuamuOenRKKiiYcfS50s,32616
|
|
@@ -48,12 +48,12 @@ cnhkmcp/untracked/APP/blueprints/inspiration_house.py,sha256=JsSoKyCfvxh8n0wpRqW
|
|
|
48
48
|
cnhkmcp/untracked/APP/blueprints/paper_analysis.py,sha256=YVtQ22uiY8ZO-B2x4ckoyZ4olDtcxqsJrV0gPDX56A8,22247
|
|
49
49
|
cnhkmcp/untracked/APP/custom_templates/templates.json,sha256=ARrpRsxGcUpC2iepS6j6A_0tdu_xUJTIyvLDb8uzL_E,48776
|
|
50
50
|
cnhkmcp/untracked/APP/give_me_idea/BRAIN_Alpha_Template_Expert_SystemPrompt.md,sha256=y95Lr8AZ-CQ-axJBDJHixsqR2Ig6nWJhHItKJJU1ZCA,16376
|
|
51
|
-
cnhkmcp/untracked/APP/give_me_idea/ace_lib.py,sha256=
|
|
52
|
-
cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py,sha256=
|
|
51
|
+
cnhkmcp/untracked/APP/give_me_idea/ace_lib.py,sha256=z-6PCt3z3gJ_2pO9-17dtKkiSfrXPLv-WE-Ff85fqiw,53749
|
|
52
|
+
cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py,sha256=3RXg5vcwl-YpuMwRuv4TLr2DCOmxxA0Z3n2DgRAlf9s,9006
|
|
53
53
|
cnhkmcp/untracked/APP/give_me_idea/helpful_functions.py,sha256=VS-rh4T2CMWLFK4clI7-DYsnqwO5dx5L-rgL8U8BmT8,6622
|
|
54
54
|
cnhkmcp/untracked/APP/give_me_idea/what_is_Alpha_template.md,sha256=QjwX0_b0DhhiNlo3ZwkIfXXSsJnk_FyjkZftyVwnCZ8,2317
|
|
55
55
|
cnhkmcp/untracked/APP/hkSimulator/ace.log,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
56
|
-
cnhkmcp/untracked/APP/hkSimulator/ace_lib.py,sha256=
|
|
56
|
+
cnhkmcp/untracked/APP/hkSimulator/ace_lib.py,sha256=2AM67BKth4foMWkCdsz1CkOrSophtEFs7iatWqP8CVo,53481
|
|
57
57
|
cnhkmcp/untracked/APP/hkSimulator/autosim_20251205_145240.log,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
58
58
|
cnhkmcp/untracked/APP/hkSimulator/autosim_20251215_030103.log,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
59
59
|
cnhkmcp/untracked/APP/hkSimulator/autosimulator.py,sha256=JmhmboakiDDQetWmn8t0-k6dgbbm0T3i-W6imVwuuGA,18641
|
|
@@ -79,7 +79,7 @@ cnhkmcp/untracked/APP/templates/inspiration_house.html,sha256=oWTEjmR0FEniFvr5Na
|
|
|
79
79
|
cnhkmcp/untracked/APP/templates/paper_analysis.html,sha256=vbDw4MAfmpFoXbef4roX6NKdto_a58RMIRi7Amr2P4M,4220
|
|
80
80
|
cnhkmcp/untracked/APP/templates/simulator.html,sha256=dPAY-fT7oEDCW945ZLLPSUPoawF-TACnVKiqrGiaWkI,12589
|
|
81
81
|
cnhkmcp/untracked/APP/templates/transformer_web.html,sha256=de5fNhtbdsMMyW5cygvvvW9vSJL81O2A_QPqTmr0usc,27513
|
|
82
|
-
cnhkmcp/untracked/APP/缘分一道桥/ace_lib.py,sha256=
|
|
82
|
+
cnhkmcp/untracked/APP/缘分一道桥/ace_lib.py,sha256=z-6PCt3z3gJ_2pO9-17dtKkiSfrXPLv-WE-Ff85fqiw,53749
|
|
83
83
|
cnhkmcp/untracked/APP/缘分一道桥/brain_alpha_inspector.py,sha256=KjU6PNyD1Xfqqa0IGKM-VFH_p_4RKBzhmGQczM14KiM,24703
|
|
84
84
|
cnhkmcp/untracked/APP/缘分一道桥/helpful_functions.py,sha256=VS-rh4T2CMWLFK4clI7-DYsnqwO5dx5L-rgL8U8BmT8,6622
|
|
85
85
|
cnhkmcp/untracked/mcp文件论坛版2_如果原版启动不了浏览器就试这个/forum_functions.py,sha256=VuyUaguA0OjJbVRN5Vy8UEFXSAviS3jhDSRWyyPOtfo,18975
|
|
@@ -87,9 +87,9 @@ cnhkmcp/untracked/mcp文件论坛版2_如果原版启动不了浏览器就试这
|
|
|
87
87
|
cnhkmcp/untracked/mcp文件论坛版2_如果原版启动不了浏览器就试这个/user_config.json,sha256=_INn1X1qIsITrmEno-BRlQOAGm9wnNCw-6B333DEvnk,695
|
|
88
88
|
cnhkmcp/untracked/mcp文件论坛版2_如果原版启动不了浏览器就试这个/让AI读这个文档来学会下载浏览器.md,sha256=v5QPSMjRDh52ZjgC4h8QjImnaqlVRLjTHGxmGjTo36g,3396
|
|
89
89
|
cnhkmcp/untracked/mcp文件论坛版2_如果原版启动不了浏览器就试这个/配置前运行我_安装必要依赖包.py,sha256=BnUyL5g6PaC62yEuS-8vcDSJ0oKu3k6jqQxi2jginuQ,6612
|
|
90
|
-
cnhkmcp-2.0.
|
|
91
|
-
cnhkmcp-2.0.
|
|
92
|
-
cnhkmcp-2.0.
|
|
93
|
-
cnhkmcp-2.0.
|
|
94
|
-
cnhkmcp-2.0.
|
|
95
|
-
cnhkmcp-2.0.
|
|
90
|
+
cnhkmcp-2.0.3.dist-info/licenses/LICENSE,sha256=QLxO2eNMnJQEdI_R1UV2AOD-IvuA8zVrkHWA4D9gtoc,1081
|
|
91
|
+
cnhkmcp-2.0.3.dist-info/METADATA,sha256=fO40Fg394VyS32rY3j8qd7tLR9Eg5RU2on7rKO2Bc2c,5171
|
|
92
|
+
cnhkmcp-2.0.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
93
|
+
cnhkmcp-2.0.3.dist-info/entry_points.txt,sha256=lTQieVyIvjhSMK4fT-XwnccY-JBC1H4vVQ3V9dDM-Pc,70
|
|
94
|
+
cnhkmcp-2.0.3.dist-info/top_level.txt,sha256=x--ibUcSgOS9Z_RWK2Qc-vfs7DaXQN-WMaaxEETJ1Bw,8
|
|
95
|
+
cnhkmcp-2.0.3.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|