cloudnetpy 1.85.0__py3-none-any.whl → 1.85.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cloudnetpy/instruments/mira.py +24 -3
- cloudnetpy/instruments/rpg.py +9 -7
- cloudnetpy/products/epsilon.py +3 -3
- cloudnetpy/utils.py +0 -11
- cloudnetpy/version.py +1 -1
- {cloudnetpy-1.85.0.dist-info → cloudnetpy-1.85.2.dist-info}/METADATA +1 -1
- {cloudnetpy-1.85.0.dist-info → cloudnetpy-1.85.2.dist-info}/RECORD +11 -11
- {cloudnetpy-1.85.0.dist-info → cloudnetpy-1.85.2.dist-info}/WHEEL +0 -0
- {cloudnetpy-1.85.0.dist-info → cloudnetpy-1.85.2.dist-info}/entry_points.txt +0 -0
- {cloudnetpy-1.85.0.dist-info → cloudnetpy-1.85.2.dist-info}/licenses/LICENSE +0 -0
- {cloudnetpy-1.85.0.dist-info → cloudnetpy-1.85.2.dist-info}/top_level.txt +0 -0
cloudnetpy/instruments/mira.py
CHANGED
@@ -9,6 +9,7 @@ from os import PathLike
|
|
9
9
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
10
10
|
from uuid import UUID
|
11
11
|
|
12
|
+
import numpy as np
|
12
13
|
from numpy import ma
|
13
14
|
|
14
15
|
from cloudnetpy import concat_lib, output, utils
|
@@ -74,9 +75,7 @@ def mira2nc(
|
|
74
75
|
mira.sort_timestamps()
|
75
76
|
mira.remove_duplicate_timestamps()
|
76
77
|
mira.linear_to_db(("Zh", "ldr", "SNR"))
|
77
|
-
|
78
|
-
valid_ind = utils.remove_masked_blocks(mira.data["Zh"][:], limit=n_profiles)
|
79
|
-
mira.screen_time_indices(valid_ind)
|
78
|
+
mira.screen_low_power()
|
80
79
|
|
81
80
|
if "snr_limit" in site_meta and site_meta["snr_limit"] is not None:
|
82
81
|
snr_limit = site_meta["snr_limit"]
|
@@ -151,6 +150,24 @@ class Mira(NcRadar):
|
|
151
150
|
time_stamps = self.getvar("time")
|
152
151
|
return utils.seconds2date(float(time_stamps[0]), self.epoch).date()
|
153
152
|
|
153
|
+
def screen_low_power(self) -> None:
|
154
|
+
"""Screen times with average transmit power close to zero."""
|
155
|
+
if "tpow" not in self.data:
|
156
|
+
logging.warning("Variable tpow is missing")
|
157
|
+
return
|
158
|
+
tpow = self.data["tpow"][:]
|
159
|
+
# Threshold for abnormally low power e.g. Limassol 2024-10-20. Average
|
160
|
+
# power should 30 to 60 W according to MIRA-35 data sheet. Based on a
|
161
|
+
# random sample, typical range is 15 to 25 W. In Lampedusa, the power is
|
162
|
+
# constantly as low as 1.9 W.
|
163
|
+
is_low = tpow < 1
|
164
|
+
n_removed = np.count_nonzero(is_low)
|
165
|
+
if n_removed > 0:
|
166
|
+
logging.warning(
|
167
|
+
"Filtering %s profiles due to low average transmit power", n_removed
|
168
|
+
)
|
169
|
+
self.screen_time_indices(~is_low)
|
170
|
+
|
154
171
|
def screen_invalid_ldr(self) -> None:
|
155
172
|
"""Masks LDR in MIRA STSR mode data.
|
156
173
|
Is there a better way to identify this mode?
|
@@ -284,6 +301,7 @@ def _get_keymap(filetype: str) -> dict[str, str]:
|
|
284
301
|
("prf", "prf"),
|
285
302
|
("rg0", "rg0"),
|
286
303
|
("NyquistVelocity", "NyquistVelocity"), # variable in some mmclx files
|
304
|
+
("tpow", "tpow"),
|
287
305
|
]
|
288
306
|
),
|
289
307
|
}
|
@@ -311,6 +329,9 @@ ATTRIBUTES = {
|
|
311
329
|
"prf": MetaData(
|
312
330
|
long_name="Pulse Repetition Frequency", units="Hz", dimensions=("time",)
|
313
331
|
),
|
332
|
+
"tpow": MetaData(
|
333
|
+
long_name="Average Transmit Power", units="W", dimensions=("time",)
|
334
|
+
),
|
314
335
|
"zenith_offset": MetaData(
|
315
336
|
long_name="Zenith offset of the instrument",
|
316
337
|
units="degrees",
|
cloudnetpy/instruments/rpg.py
CHANGED
@@ -83,6 +83,10 @@ def rpg2nc(
|
|
83
83
|
valid_ind = fmcw.add_zenith_angle()
|
84
84
|
fmcw.screen_time_indices(valid_ind)
|
85
85
|
fmcw.add_height()
|
86
|
+
if len(np.unique(fmcw.data["time"][:].astype("f4"))) != len(fmcw.data["time"][:]):
|
87
|
+
msg = "Convert time to f8 to keep values unique in netCDF"
|
88
|
+
logging.info(msg)
|
89
|
+
fmcw.data["time"].data_type = "f8"
|
86
90
|
attributes = output.add_time_attribute(RPG_ATTRIBUTES, fmcw.date)
|
87
91
|
output.update_attributes(fmcw.data, attributes)
|
88
92
|
output.save_level1b(fmcw, output_file, uuid)
|
@@ -137,19 +141,17 @@ def _reduce_header(header: dict) -> dict:
|
|
137
141
|
"""Removes duplicate header data. Otherwise, we would need n_files dimension."""
|
138
142
|
reduced_header = {}
|
139
143
|
for key, data in header.items():
|
144
|
+
# Handle outliers in latitude and longitude (e.g. Galati 2024-02-11):
|
145
|
+
if key in ("latitude", "longitude"):
|
146
|
+
reduced_header[key] = ma.median(data)
|
147
|
+
continue
|
140
148
|
first_profile_value = data[0]
|
141
149
|
is_identical_value = bool(
|
142
150
|
np.isclose(data, first_profile_value, rtol=1e-2).all(),
|
143
151
|
)
|
144
152
|
if is_identical_value is False:
|
145
153
|
msg = f"Inconsistent header: {key}: {data}"
|
146
|
-
if key in (
|
147
|
-
"latitude",
|
148
|
-
"longitude",
|
149
|
-
"sample_duration",
|
150
|
-
"calibration_interval",
|
151
|
-
"noise_threshold",
|
152
|
-
):
|
154
|
+
if key in ("sample_duration", "calibration_interval", "noise_threshold"):
|
153
155
|
logging.warning(msg)
|
154
156
|
else:
|
155
157
|
raise InconsistentDataError(msg)
|
cloudnetpy/products/epsilon.py
CHANGED
@@ -138,12 +138,12 @@ def _horizontal_wind_from_doppler_lidar_file(
|
|
138
138
|
t = np.broadcast_to(time[:, None], mask.shape)[~mask]
|
139
139
|
h = np.broadcast_to(height[None, :], mask.shape)[~mask]
|
140
140
|
|
141
|
-
if len(np.unique(t)) <
|
141
|
+
if len(np.unique(t)) < 3 or len(np.unique(h)) < 3:
|
142
142
|
msg = "Not enough unique values for interpolation"
|
143
143
|
raise ValidTimeStampError(msg)
|
144
144
|
|
145
|
-
interp_linear = LinearNDInterpolator(list(zip(t, h, strict=
|
146
|
-
interp_nearest = NearestNDInterpolator(list(zip(t, h, strict=
|
145
|
+
interp_linear = LinearNDInterpolator(list(zip(t, h, strict=True)), V[~mask])
|
146
|
+
interp_nearest = NearestNDInterpolator(list(zip(t, h, strict=True)), V[~mask])
|
147
147
|
T, H = np.meshgrid(time, height, indexing="ij")
|
148
148
|
V_linear = interp_linear(T, H)
|
149
149
|
V_nearest = interp_nearest(T, H)
|
cloudnetpy/utils.py
CHANGED
@@ -1035,17 +1035,6 @@ def path_lengths_from_ground(height: npt.NDArray) -> npt.NDArray:
|
|
1035
1035
|
return np.diff(height, prepend=0)
|
1036
1036
|
|
1037
1037
|
|
1038
|
-
def remove_masked_blocks(array: ma.MaskedArray, limit: int = 50) -> npt.NDArray:
|
1039
|
-
"""Filters out large blocks of completely masked profiles."""
|
1040
|
-
if array.ndim == 1:
|
1041
|
-
return np.array(not ma.all(array.mask))
|
1042
|
-
masked_profiles = ma.all(array.mask, axis=1)
|
1043
|
-
labeled_array, _ = ndimage.label(masked_profiles)
|
1044
|
-
mask = np.bincount(labeled_array) < limit
|
1045
|
-
mask[0] = True
|
1046
|
-
return mask[labeled_array]
|
1047
|
-
|
1048
|
-
|
1049
1038
|
def sha256sum(filename: str | PathLike) -> str:
|
1050
1039
|
"""Calculates hash of file using sha-256."""
|
1051
1040
|
return _calc_hash_sum(filename, "sha256", is_base64=False)
|
cloudnetpy/version.py
CHANGED
@@ -8,8 +8,8 @@ cloudnetpy/exceptions.py,sha256=ZB3aUwjVRznR0CcZ5sZHrB0yz13URDf52Ksv7G7C7EA,1817
|
|
8
8
|
cloudnetpy/metadata.py,sha256=CFpXmdEkVPzvLPv2xHIR-aMMQ-TR26KfESYw-98j7sk,7213
|
9
9
|
cloudnetpy/output.py,sha256=0bybnILsgKHWIuw2GYkqTz2iMCJDZLUN25IQ9o_v3Cg,14968
|
10
10
|
cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
|
-
cloudnetpy/utils.py,sha256=
|
12
|
-
cloudnetpy/version.py,sha256=
|
11
|
+
cloudnetpy/utils.py,sha256=x3hukn7wuOyF3ctG8EOhvLbSUHOVKLW9ez2LzTjeolU,33110
|
12
|
+
cloudnetpy/version.py,sha256=n8Y4NlhyE8jS82m6d9Bxhu9NW4bStS8hn1r3KqZrqfA,72
|
13
13
|
cloudnetpy/categorize/__init__.py,sha256=gtvzWr0IDRn2oA6yHBvinEhTGTuub-JkrOv93lBsgrE,61
|
14
14
|
cloudnetpy/categorize/atmos_utils.py,sha256=uWc9TABVYPI0sn4H5Az9Jf6NVRaWyEKIi17f0pAJQxE,10679
|
15
15
|
cloudnetpy/categorize/attenuation.py,sha256=Y_-fzmQTltWTqIZTulJhovC7a6ifpMcaAazDJcnMIOc,990
|
@@ -46,14 +46,14 @@ cloudnetpy/instruments/galileo.py,sha256=f_-GkRxhNaQPbI8HpOwSmoKfGqyjmD16A0ZFgwL
|
|
46
46
|
cloudnetpy/instruments/hatpro.py,sha256=TGOqwW0TfoPEYk13MFvFzwgJGzm6MVE5AsPavcIoj3I,10248
|
47
47
|
cloudnetpy/instruments/instruments.py,sha256=WZgH7HjzM9Ane1CSnYCSLidbST8hunUeSt2lPntq9As,4999
|
48
48
|
cloudnetpy/instruments/lufft.py,sha256=G6KeJOeltLUlGCHHEk8ns2K7WJ9ImAr25rSB2JltawE,4286
|
49
|
-
cloudnetpy/instruments/mira.py,sha256=
|
49
|
+
cloudnetpy/instruments/mira.py,sha256=jJ17xJmXwqfvZ7hgJaongRrRxoQpivMEQYssgSQFYbA,12638
|
50
50
|
cloudnetpy/instruments/mrr.py,sha256=z50VYLOBW2o7enU7FHZYNFQRW2goEQpeGe7-iCBRQtg,6020
|
51
51
|
cloudnetpy/instruments/nc_lidar.py,sha256=PtZauDdI3bX3bv4gIVvV6N53e2Co-ehBL_tByHM9hj8,1713
|
52
52
|
cloudnetpy/instruments/nc_radar.py,sha256=XFKxPLKivnhHTgjE5HFrxjWZ0oCifhDUAog051vkMiY,7533
|
53
53
|
cloudnetpy/instruments/pollyxt.py,sha256=IFq_RJrhgJ79OVyuo48PwYQK_zZ6VZFB_S5bEirRyzs,10566
|
54
54
|
cloudnetpy/instruments/radiometrics.py,sha256=QKfnrZlQ0sFcFjmv1ShnCMTJQv64w4akjK-JAIY4gCg,16116
|
55
55
|
cloudnetpy/instruments/rain_e_h3.py,sha256=fjv3SgeUNx9GisYqLrBnX9AjnO17VtouyoPh12VE9uo,5465
|
56
|
-
cloudnetpy/instruments/rpg.py,sha256=
|
56
|
+
cloudnetpy/instruments/rpg.py,sha256=d7qlfez1Pe326d4xkQrTk2xRxvs3g68LEGehErdoBoc,19122
|
57
57
|
cloudnetpy/instruments/rpg_reader.py,sha256=NaOtTxXx20PozNTj1xNvmbsEsAxuplFXRzBiM1_-Zg4,11651
|
58
58
|
cloudnetpy/instruments/toa5.py,sha256=CfmmBMv5iMGaWHIGBK01Rw24cuXC1R1RMNTXkmsm340,1760
|
59
59
|
cloudnetpy/instruments/vaisala.py,sha256=tu7aljkMKep0uCWz-Sd-GuBXF_Yy421a4nHy0ffpMoc,4725
|
@@ -111,17 +111,17 @@ cloudnetpy/products/der.py,sha256=UXdAxmmwChVVWSI4QSGAXphfMnbymGRTtGdKWEvh-J4,13
|
|
111
111
|
cloudnetpy/products/drizzle.py,sha256=0h1N_WVjC2GgIkAN-4ydOwl7WJn3psxeqmPHfX8WHhQ,11935
|
112
112
|
cloudnetpy/products/drizzle_error.py,sha256=QN98Io9UsBoEYxKBqfwoS88OGBiK5U5RYnVQjyTWHCI,6220
|
113
113
|
cloudnetpy/products/drizzle_tools.py,sha256=xYMB8Qxp-_wKzMv_XC6u6iMfRnEhEtmDpCHSQAbDToo,11201
|
114
|
-
cloudnetpy/products/epsilon.py,sha256=
|
114
|
+
cloudnetpy/products/epsilon.py,sha256=EHrpfAbykQv4PYdi2yk7cQxOrg-kL-FhzGPVnPm98C0,7928
|
115
115
|
cloudnetpy/products/ier.py,sha256=Eb5AK-6l5mN_7vWP1cxcXQzj886zAwDDsHXueUju0N0,6262
|
116
116
|
cloudnetpy/products/iwc.py,sha256=pXl0xOFDD6AzGaAp_GzD2yapjOc7hXKTno9Q5G6HCOo,9826
|
117
117
|
cloudnetpy/products/lwc.py,sha256=xsNiiG6dGKIkWaFk0xWTabc1bZ4ULf6SqcqHs7itAUk,19339
|
118
118
|
cloudnetpy/products/mie_lu_tables.nc,sha256=It4fYpqJXlqOgL8jeZ-PxGzP08PMrELIDVe55y9ob58,16637951
|
119
119
|
cloudnetpy/products/mwr_tools.py,sha256=MMWnp68U7bv157-CPB2VeTQvaR6zl7sexbBT_kJ_pn8,6734
|
120
120
|
cloudnetpy/products/product_tools.py,sha256=eyqIw_0KhlpmmYQE69RpGdRIAOW7JVPlEgkTBp2kdps,11302
|
121
|
-
cloudnetpy-1.85.
|
121
|
+
cloudnetpy-1.85.2.dist-info/licenses/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
|
122
122
|
docs/source/conf.py,sha256=IKiFWw6xhUd8NrCg0q7l596Ck1d61XWeVjIFHVSG9Og,1490
|
123
|
-
cloudnetpy-1.85.
|
124
|
-
cloudnetpy-1.85.
|
125
|
-
cloudnetpy-1.85.
|
126
|
-
cloudnetpy-1.85.
|
127
|
-
cloudnetpy-1.85.
|
123
|
+
cloudnetpy-1.85.2.dist-info/METADATA,sha256=0Hi0m1LJX0OWv2eGf1x4wQY4qiiqb2UxmBiA5BYStLQ,5836
|
124
|
+
cloudnetpy-1.85.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
125
|
+
cloudnetpy-1.85.2.dist-info/entry_points.txt,sha256=HhY7LwCFk4qFgDlXx_Fy983ZTd831WlhtdPIzV-Y3dY,51
|
126
|
+
cloudnetpy-1.85.2.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
|
127
|
+
cloudnetpy-1.85.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|