cloudnetpy 1.66.4__py3-none-any.whl → 1.66.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cloudnetpy/instruments/ceilometer.py +3 -0
- cloudnetpy/plotting/plotting.py +25 -24
- cloudnetpy/version.py +1 -1
- {cloudnetpy-1.66.4.dist-info → cloudnetpy-1.66.5.dist-info}/METADATA +1 -1
- {cloudnetpy-1.66.4.dist-info → cloudnetpy-1.66.5.dist-info}/RECORD +8 -8
- {cloudnetpy-1.66.4.dist-info → cloudnetpy-1.66.5.dist-info}/LICENSE +0 -0
- {cloudnetpy-1.66.4.dist-info → cloudnetpy-1.66.5.dist-info}/WHEEL +0 -0
- {cloudnetpy-1.66.4.dist-info → cloudnetpy-1.66.5.dist-info}/top_level.txt +0 -0
@@ -98,6 +98,9 @@ class Ceilometer:
|
|
98
98
|
self.data[key] = float(self.site_meta[key])
|
99
99
|
|
100
100
|
def get_date_and_time(self, epoch: Epoch) -> None:
|
101
|
+
if "time" not in self.data:
|
102
|
+
msg = "Time array missing from data"
|
103
|
+
raise ValidTimeStampError(msg)
|
101
104
|
if self.expected_date is not None:
|
102
105
|
self.data = utils.screen_by_time(self.data, epoch, self.expected_date)
|
103
106
|
self.date = utils.seconds2date(self.data["time"][0], epoch=epoch)[:3]
|
cloudnetpy/plotting/plotting.py
CHANGED
@@ -21,7 +21,7 @@ from mpl_toolkits.axes_grid1 import make_axes_locatable
|
|
21
21
|
from numpy import ma, ndarray
|
22
22
|
from scipy.ndimage import uniform_filter
|
23
23
|
|
24
|
-
from cloudnetpy.
|
24
|
+
from cloudnetpy.constants import T0
|
25
25
|
from cloudnetpy.exceptions import PlottingError
|
26
26
|
from cloudnetpy.instruments.ceilometer import calc_sigma_units
|
27
27
|
from cloudnetpy.plotting.plot_meta import ATTRIBUTES, PlotMeta
|
@@ -428,22 +428,6 @@ class Plot2D(Plot):
|
|
428
428
|
if figure_data.is_mwrpy_product():
|
429
429
|
self._fill_flagged_data(figure_data)
|
430
430
|
|
431
|
-
if self.sub_plot.variable.name == "Tw":
|
432
|
-
tw = figure_data.file["Tw"][:]
|
433
|
-
height = figure_data.height
|
434
|
-
if height is None:
|
435
|
-
msg = "No height information in the file."
|
436
|
-
raise ValueError(msg)
|
437
|
-
t0_alt = find_t0_alt(tw, height)
|
438
|
-
t0_alt = ma.masked_where(t0_alt <= height[0], t0_alt)
|
439
|
-
self._ax.plot(
|
440
|
-
figure_data.time,
|
441
|
-
t0_alt,
|
442
|
-
color="gray",
|
443
|
-
linestyle="dashed",
|
444
|
-
zorder=_get_zorder("t0"),
|
445
|
-
)
|
446
|
-
|
447
431
|
def _fill_flagged_data(self, figure_data: FigureData) -> None:
|
448
432
|
flags = self._read_flagged_data(figure_data)
|
449
433
|
batches = find_batches_of_ones(flags)
|
@@ -543,19 +527,36 @@ class Plot2D(Plot):
|
|
543
527
|
cbar.ax.set_yticklabels(tick_labels)
|
544
528
|
|
545
529
|
if self._plot_meta.contour:
|
546
|
-
|
547
|
-
|
548
|
-
ind_time = np.arange(0, time_length, step)
|
549
|
-
self._ax.contour(
|
550
|
-
figure_data.time_including_gaps[ind_time],
|
530
|
+
self._plot_contour(
|
531
|
+
figure_data,
|
551
532
|
alt,
|
552
|
-
self._data[ind_time, :].T,
|
553
533
|
levels=np.linspace(vmin, vmax, num=10),
|
554
534
|
colors="black",
|
555
535
|
linewidths=0.5,
|
556
|
-
zorder=_get_zorder("contour"),
|
557
536
|
)
|
558
537
|
|
538
|
+
if self.sub_plot.variable.name == "Tw":
|
539
|
+
self._plot_contour(
|
540
|
+
figure_data,
|
541
|
+
alt,
|
542
|
+
levels=np.array([T0]),
|
543
|
+
colors="gray",
|
544
|
+
linewidths=1.25,
|
545
|
+
linestyles="dashed",
|
546
|
+
)
|
547
|
+
|
548
|
+
def _plot_contour(self, figure_data: FigureData, alt: np.ndarray, **options):
|
549
|
+
time_length = len(figure_data.time_including_gaps)
|
550
|
+
step = max(1, time_length // 200)
|
551
|
+
ind_time = np.arange(0, time_length, step)
|
552
|
+
self._ax.contour(
|
553
|
+
figure_data.time_including_gaps[ind_time],
|
554
|
+
alt,
|
555
|
+
self._data[ind_time, :].T,
|
556
|
+
**options,
|
557
|
+
zorder=_get_zorder("contour"),
|
558
|
+
)
|
559
|
+
|
559
560
|
def _screen_data_by_max_y(self, figure_data: FigureData) -> ndarray:
|
560
561
|
if figure_data.height is None:
|
561
562
|
msg = "No height information in the file."
|
cloudnetpy/version.py
CHANGED
@@ -8,7 +8,7 @@ cloudnetpy/metadata.py,sha256=v_VDo2vbdTxB0zIsfP69IcrwSKiRlLpsGdq6JPI4CoA,5306
|
|
8
8
|
cloudnetpy/output.py,sha256=YrWRBEZg0QNZRVnd9ziAziH-eJSh7O5JuWiH4ZxM0_s,15584
|
9
9
|
cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
cloudnetpy/utils.py,sha256=RIqxZoB62JmMOOfYH6_fqpaudH8wqS9WDbpnR2HCcTM,29040
|
11
|
-
cloudnetpy/version.py,sha256=
|
11
|
+
cloudnetpy/version.py,sha256=RRwzP1UIktb7j48KlcmVNqYg-tOvF82DH-sZMh_TCHI,72
|
12
12
|
cloudnetpy/categorize/__init__.py,sha256=s-SJaysvVpVVo5kidiruWQO6p3gv2TXwY1wEHYO5D6I,44
|
13
13
|
cloudnetpy/categorize/atmos_utils.py,sha256=9-ymI6i1xASf-XAFyO87FaTfvq6bF89N1i_27OkUp-M,10104
|
14
14
|
cloudnetpy/categorize/attenuation.py,sha256=Y_-fzmQTltWTqIZTulJhovC7a6ifpMcaAazDJcnMIOc,990
|
@@ -35,7 +35,7 @@ cloudnetpy/instruments/__init__.py,sha256=_jejVwi_viSZehmAOkEqTNI-0-exGgAJ_bHW1I
|
|
35
35
|
cloudnetpy/instruments/basta.py,sha256=_OTnySd36ktvxk_swWBzbv_H4AVGlkF_Ce3KtPGD1rE,3758
|
36
36
|
cloudnetpy/instruments/campbell_scientific.py,sha256=2WHfBKQjtRSl0AqvtPeX7G8Hdi3Dn0WbvoAppFOMbA8,5270
|
37
37
|
cloudnetpy/instruments/ceilo.py,sha256=xrI7iYNftKvGZf-3C_ESUNsu-QhXV43iWkDuKp3biZU,9552
|
38
|
-
cloudnetpy/instruments/ceilometer.py,sha256=
|
38
|
+
cloudnetpy/instruments/ceilometer.py,sha256=pdmLVljsuciyKpaGxWxJ_f1IrJK-UrkBC0lSeuirLlU,12095
|
39
39
|
cloudnetpy/instruments/cl61d.py,sha256=g6DNBFju3wYhLFl32DKmC8pUup7y-EupXoUU0fuoGGA,1990
|
40
40
|
cloudnetpy/instruments/cloudnet_instrument.py,sha256=RG5HJxGM6p0F-IGyr85fvOizcMmgx48OeD_XeIsrgSU,3367
|
41
41
|
cloudnetpy/instruments/copernicus.py,sha256=nmgqGOjVQFngj7BNbpcuCwA-W3yksvBbqn__iq7MyDk,6469
|
@@ -100,7 +100,7 @@ cloudnetpy/model_evaluation/tests/unit/test_statistical_methods.py,sha256=Ra3r4V
|
|
100
100
|
cloudnetpy/model_evaluation/tests/unit/test_tools.py,sha256=Ia_VrLdV2NstX5gbx_3AZTOAlrgLAy_xFZ8fHYVX0xI,3817
|
101
101
|
cloudnetpy/plotting/__init__.py,sha256=lg9Smn4BI0dVBgnDLC3JVJ4GmwoSnO-qoSd4ApvwV6Y,107
|
102
102
|
cloudnetpy/plotting/plot_meta.py,sha256=ZvaKU3eXy1KFxQomnsEu3mCYpwwBYKAYk7oAwOzAGSg,16143
|
103
|
-
cloudnetpy/plotting/plotting.py,sha256=
|
103
|
+
cloudnetpy/plotting/plotting.py,sha256=5mLDRZKcpgO0V9fUdk_Xf1E8BVQGrVihiBdfifdWWPk,35208
|
104
104
|
cloudnetpy/products/__init__.py,sha256=2hRb5HG9hNrxH1if5laJkLeFeaZCd5W1q3hh4ewsX0E,273
|
105
105
|
cloudnetpy/products/classification.py,sha256=AKb9GCatvhS5KR0c9LfN96nUvzi02175ZCQlvMH1Dws,8077
|
106
106
|
cloudnetpy/products/der.py,sha256=soypE7uSEP4uHUCCQVEhyXsKY6e9mzV9B_2S5GUizqk,12729
|
@@ -114,8 +114,8 @@ cloudnetpy/products/mie_lu_tables.nc,sha256=It4fYpqJXlqOgL8jeZ-PxGzP08PMrELIDVe5
|
|
114
114
|
cloudnetpy/products/mwr_tools.py,sha256=rd7UC67O4fsIE5SaHVZ4qWvUJTj41ZGwgQWPwZzOM14,5377
|
115
115
|
cloudnetpy/products/product_tools.py,sha256=01Zc6xV8CSuYcIcLpchFf5POL3_c629-YMNDZJ51udA,10853
|
116
116
|
docs/source/conf.py,sha256=IKiFWw6xhUd8NrCg0q7l596Ck1d61XWeVjIFHVSG9Og,1490
|
117
|
-
cloudnetpy-1.66.
|
118
|
-
cloudnetpy-1.66.
|
119
|
-
cloudnetpy-1.66.
|
120
|
-
cloudnetpy-1.66.
|
121
|
-
cloudnetpy-1.66.
|
117
|
+
cloudnetpy-1.66.5.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
|
118
|
+
cloudnetpy-1.66.5.dist-info/METADATA,sha256=Fn9VQMj4YeMVPSsIKg2zuBzgrU4E_YDzXh3pcW6R4k0,5784
|
119
|
+
cloudnetpy-1.66.5.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
120
|
+
cloudnetpy-1.66.5.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
|
121
|
+
cloudnetpy-1.66.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|