cloudnetpy 1.65.6__py3-none-any.whl → 1.65.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -114,7 +114,7 @@ def find_liquid(
114
114
  peak_width = height[top] - height[base]
115
115
  peak_alt = height[peak] - height[0]
116
116
  top_der = (lprof[peak] - lprof[top]) / (height[top] - height[peak])
117
- is_positive_lwp = lwp_int[n] > min_lwp
117
+ is_positive_lwp = lwp_int[n] >= min_lwp
118
118
  if _is_proper_peak():
119
119
  is_liquid[n, base : top + 1] = True
120
120
 
@@ -689,7 +689,8 @@ class Plot1D(Plot):
689
689
 
690
690
  is_wind_direction = self.sub_plot.variable.name == "wind_direction"
691
691
  if is_wind_direction:
692
- data = np.stack([figure_data.file["wind_speed"], data])
692
+ wind_speed = figure_data.file["wind_speed"]
693
+ data = np.stack([wind_speed, data], axis=1)
693
694
 
694
695
  block_ind = np.where(np.diff(is_invalid))[0] + 1
695
696
  valid_time_blocks = np.split(time, block_ind)[is_invalid[0] :: 2]
@@ -698,7 +699,7 @@ class Plot1D(Plot):
698
699
  for time1, data1 in zip(valid_time_blocks, valid_data_blocks, strict=False):
699
700
  if is_wind_direction:
700
701
  sma = self._calculate_average_wind_direction(
701
- data1[0], data1[1], time1, window=15
702
+ data1[:, 0], data1[:, 1], time1, window=15
702
703
  )
703
704
  else:
704
705
  sma = self._calculate_moving_average(data1, time1, window=5)
cloudnetpy/version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  MAJOR = 1
2
2
  MINOR = 65
3
- PATCH = 6
3
+ PATCH = 8
4
4
  __version__ = f"{MAJOR}.{MINOR}.{PATCH}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cloudnetpy
3
- Version: 1.65.6
3
+ Version: 1.65.8
4
4
  Summary: Python package for Cloudnet processing
5
5
  Author: Simo Tukiainen
6
6
  License: MIT License
@@ -8,7 +8,7 @@ cloudnetpy/metadata.py,sha256=v_VDo2vbdTxB0zIsfP69IcrwSKiRlLpsGdq6JPI4CoA,5306
8
8
  cloudnetpy/output.py,sha256=YkCaxVkG_Mt2hng_IVnhygHteV4UMKzKALkeFZwFJL8,14822
9
9
  cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  cloudnetpy/utils.py,sha256=JV0Fawnme1HoZgoiidV3eIzsn6vx0AEjBNmI1CcrBsA,28517
11
- cloudnetpy/version.py,sha256=D0-EyiXBu9MXvLB8CBjoUmC5Mf_4q4qDE5OXEFZZe_4,72
11
+ cloudnetpy/version.py,sha256=p7oh_Dpqy3XScriFbSPuGB4chYTY4COs55LyW6-0rhE,72
12
12
  cloudnetpy/categorize/__init__.py,sha256=gP5q3Vis1y9u9OWgA_idlbjfWXYN_S0IBSWdwBhL_uU,69
13
13
  cloudnetpy/categorize/atmos.py,sha256=vavMC_WQQyGH14eL4vAzKLKDDZt8tBrMYimztYHOjH8,12639
14
14
  cloudnetpy/categorize/atmos_utils.py,sha256=ns5ydiEN34Ng6mJiOBpxKBVDU2NXj6W3Q5IUynmNRYI,3586
@@ -16,7 +16,7 @@ cloudnetpy/categorize/categorize.py,sha256=VcxSs22icYDG3R5x9jTX7uuSjPU8tyc5bIz0Z
16
16
  cloudnetpy/categorize/classify.py,sha256=a-0bVCtynGfORnDGTsPuzqkuDeOOR_OMz5ai9NsMuic,9870
17
17
  cloudnetpy/categorize/containers.py,sha256=g3SQHoqlY1uJ8b-MG-BbW3oWz5IyacA8kJBeIPy_4EA,4859
18
18
  cloudnetpy/categorize/disdrometer.py,sha256=keU3pFvKtk840A0oLwAyNDuqOCswBPJEKf2bV0YWyA8,2004
19
- cloudnetpy/categorize/droplet.py,sha256=894VHdL9ScaB8f1oxXwM2la4ShXd-uWywQDINoaoiD8,8687
19
+ cloudnetpy/categorize/droplet.py,sha256=s-q1nCZ40rw5-fabfj61mH2lmdcNRT-TASvwWGZeptY,8688
20
20
  cloudnetpy/categorize/falling.py,sha256=Wz49mbw0pubnbhoekYTqGT0S9UNaE88jWOjSPEsCIaI,4386
21
21
  cloudnetpy/categorize/freezing.py,sha256=c4k5AIgfBpvw64EaVVVYPi2Fx4SpHk1cyfceE1ydD28,3755
22
22
  cloudnetpy/categorize/insects.py,sha256=9J5agmktit8Or66GGNue-bThiaG9rB2SuPNZBXI7FCE,5243
@@ -94,7 +94,7 @@ cloudnetpy/model_evaluation/tests/unit/test_statistical_methods.py,sha256=Ra3r4V
94
94
  cloudnetpy/model_evaluation/tests/unit/test_tools.py,sha256=Ia_VrLdV2NstX5gbx_3AZTOAlrgLAy_xFZ8fHYVX0xI,3817
95
95
  cloudnetpy/plotting/__init__.py,sha256=lg9Smn4BI0dVBgnDLC3JVJ4GmwoSnO-qoSd4ApvwV6Y,107
96
96
  cloudnetpy/plotting/plot_meta.py,sha256=JHrr-4A9fhqdi_tQFe6mR4Fdry3hkI-lmmVu5Ny2vco,15979
97
- cloudnetpy/plotting/plotting.py,sha256=JIgia-Hujsa2ot4JMoBLzEdH7YWzmlGuKSLvvQ9tl0U,34253
97
+ cloudnetpy/plotting/plotting.py,sha256=_MxAxzl36n-WgDKG3sHhHRTCcnYczm1WJBDK2H0Dm70,34303
98
98
  cloudnetpy/products/__init__.py,sha256=2hRb5HG9hNrxH1if5laJkLeFeaZCd5W1q3hh4ewsX0E,273
99
99
  cloudnetpy/products/classification.py,sha256=bNG8W1CMgGoUBpXopQjYAW3F-uEJGyojXb4A5jmErHo,7921
100
100
  cloudnetpy/products/der.py,sha256=1LDBbnbUg8feMUTGWJq3bObBhEcZ_Ee17MB1x0GwRdo,12669
@@ -108,8 +108,8 @@ cloudnetpy/products/mie_lu_tables.nc,sha256=It4fYpqJXlqOgL8jeZ-PxGzP08PMrELIDVe5
108
108
  cloudnetpy/products/mwr_tools.py,sha256=tN_sPDS3BdpFJfa5a2mnc3eCMoi7syjVJMaTt962hmo,5004
109
109
  cloudnetpy/products/product_tools.py,sha256=VNw2diJj30POz68-3qNVkJP7r9AUspT_d1Fp0BbeIx8,10414
110
110
  docs/source/conf.py,sha256=IKiFWw6xhUd8NrCg0q7l596Ck1d61XWeVjIFHVSG9Og,1490
111
- cloudnetpy-1.65.6.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
112
- cloudnetpy-1.65.6.dist-info/METADATA,sha256=igbDKmd8AkrBWmqc5ftMQLgu6UFQtzeTr6lPZUVBw1c,5784
113
- cloudnetpy-1.65.6.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
114
- cloudnetpy-1.65.6.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
115
- cloudnetpy-1.65.6.dist-info/RECORD,,
111
+ cloudnetpy-1.65.8.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
112
+ cloudnetpy-1.65.8.dist-info/METADATA,sha256=OPAWWYgyi838VGsZkHRu8bBTM6tUb0t6Du96DjcqhiQ,5784
113
+ cloudnetpy-1.65.8.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
114
+ cloudnetpy-1.65.8.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
115
+ cloudnetpy-1.65.8.dist-info/RECORD,,