cloudnetpy 1.61.11__py3-none-any.whl → 1.61.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,7 +8,7 @@ from numpy import ma
8
8
  from cloudnetpy import output
9
9
  from cloudnetpy.categorize import atmos_utils
10
10
  from cloudnetpy.cloudnetarray import CloudnetArray
11
- from cloudnetpy.constants import SEC_IN_HOUR
11
+ from cloudnetpy.constants import MM_H_TO_M_S, SEC_IN_HOUR
12
12
  from cloudnetpy.exceptions import ValidTimeStampError, WeatherStationDataError
13
13
  from cloudnetpy.instruments import instruments
14
14
  from cloudnetpy.instruments.cloudnet_instrument import CloudnetInstrument
@@ -353,10 +353,9 @@ class KenttarovaWS(WS):
353
353
  self.data["air_temperature"].data = temperature_kelvins
354
354
  self.data["relative_humidity"].data = self.data["relative_humidity"][:] / 100
355
355
  self.data["air_pressure"].data = self.data["air_pressure"][:] * 100 # hPa -> Pa
356
+ # Rainfall rate is 10-minute averaged in mm h-1
356
357
  rainfall_rate = self.data["rainfall_rate"][:]
357
- self.data["rainfall_rate"].data = (
358
- rainfall_rate / 3600 / 10 / 1000
359
- ) # not sure about units
358
+ self.data["rainfall_rate"].data = rainfall_rate * MM_H_TO_M_S / 10
360
359
 
361
360
 
362
361
  ATTRIBUTES = {
@@ -4,6 +4,7 @@ import re
4
4
  import textwrap
5
5
  from dataclasses import dataclass
6
6
  from datetime import date
7
+ from typing import Any
7
8
 
8
9
  import matplotlib.pyplot as plt
9
10
  import netCDF4
@@ -491,15 +492,28 @@ class Plot2D(Plot):
491
492
  smoothed_data = uniform_filter(self._data[valid_time_ind, :], sigma_units)
492
493
  self._data[valid_time_ind, :] = smoothed_data
493
494
 
494
- image = self._ax.pcolorfast(
495
- figure_data.time_including_gaps,
496
- alt,
497
- self._data.T[:-1, :-1],
498
- cmap=plt.get_cmap(str(self._plot_meta.cmap)),
499
- vmin=vmin,
500
- vmax=vmax,
501
- zorder=_get_zorder("data"),
502
- )
495
+ pcolor_kwargs = {
496
+ "cmap": plt.get_cmap(str(self._plot_meta.cmap)),
497
+ "vmin": vmin,
498
+ "vmax": vmax,
499
+ "zorder": _get_zorder("data"),
500
+ }
501
+ image: Any
502
+ if figure_data.file.cloudnet_file_type == "model":
503
+ image = self._ax.pcolor(
504
+ figure_data.time_including_gaps,
505
+ alt,
506
+ self._data.T,
507
+ **pcolor_kwargs,
508
+ shading="nearest",
509
+ )
510
+ else:
511
+ image = self._ax.pcolorfast(
512
+ figure_data.time_including_gaps,
513
+ alt,
514
+ self._data.T[:-1, :-1],
515
+ **pcolor_kwargs,
516
+ )
503
517
  cbar = self._init_colorbar(image)
504
518
  cbar.set_label(str(self._plot_meta.clabel), fontsize=13)
505
519
 
cloudnetpy/version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  MAJOR = 1
2
2
  MINOR = 61
3
- PATCH = 11
3
+ PATCH = 12
4
4
  __version__ = f"{MAJOR}.{MINOR}.{PATCH}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cloudnetpy
3
- Version: 1.61.11
3
+ Version: 1.61.12
4
4
  Summary: Python package for Cloudnet processing
5
5
  Author: Simo Tukiainen
6
6
  License: MIT License
@@ -8,7 +8,7 @@ cloudnetpy/metadata.py,sha256=v_VDo2vbdTxB0zIsfP69IcrwSKiRlLpsGdq6JPI4CoA,5306
8
8
  cloudnetpy/output.py,sha256=UzF0w51c6-QEBj-NfCJg5zTIKVzcmq1HyQb-3_qWTgk,14767
9
9
  cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  cloudnetpy/utils.py,sha256=-8x7LQ6WDHxf2lDZfhG50WYe2iSVLQObnVXZG46JzKI,28468
11
- cloudnetpy/version.py,sha256=B3laILu3O0Nl0QccRB9qv-lhpfU5LAfqtgMUzrcUIHg,73
11
+ cloudnetpy/version.py,sha256=TCoRUUzxjMCaerRhyUc-pmYLkL6lRFwWebWDoR3GJZw,73
12
12
  cloudnetpy/categorize/__init__.py,sha256=gP5q3Vis1y9u9OWgA_idlbjfWXYN_S0IBSWdwBhL_uU,69
13
13
  cloudnetpy/categorize/atmos.py,sha256=fWW8ye_8HZASRAiYwURFKWzcGOYIA2RKeVxCq0lVOuM,12389
14
14
  cloudnetpy/categorize/atmos_utils.py,sha256=wndpwJxc2-QnNTkV8tc8I11Vs_WkNz9sVMX1fuGgUC4,3777
@@ -47,7 +47,7 @@ cloudnetpy/instruments/rpg.py,sha256=yQpcKcgzRvVvkl6NhKvo4PUkv9nZ69_hzzPpS2Ei-Is
47
47
  cloudnetpy/instruments/rpg_reader.py,sha256=LAdXL3TmD5QzQbqtPOcemZji_qkXwmw6a6F8NmF6Zg8,11355
48
48
  cloudnetpy/instruments/toa5.py,sha256=1JnuYViD8c_tHJZ9lf4OU44iepEkXHsXOzDfVf_b0qc,1759
49
49
  cloudnetpy/instruments/vaisala.py,sha256=ektdXoID2X_V9H5Zp1fgHTUBapFMSyPVEWW_aoR6DEY,14655
50
- cloudnetpy/instruments/weather_station.py,sha256=R2b-VfCRkVluEbGd9NGuzf46k18X1BfZwJHhwWn_sVM,13801
50
+ cloudnetpy/instruments/weather_station.py,sha256=3_urUMWE6YYPm-bLD6Q30kSz6X0Oh1JA8VuLnHCKH3Q,13822
51
51
  cloudnetpy/instruments/disdrometer/__init__.py,sha256=lyjwttWvFvuwYxEkusoAvgRcbBmglmOp5HJOpXUqLWo,93
52
52
  cloudnetpy/instruments/disdrometer/common.py,sha256=g52iK2aNp3Z88kovUmGVpC54NZomPa9D871gzO0AmQ4,9267
53
53
  cloudnetpy/instruments/disdrometer/parsivel.py,sha256=WiL-vCjw9Gmb5irvW3AXddsyprp8MGOfqcVAlfy0zpc,25521
@@ -94,7 +94,7 @@ cloudnetpy/model_evaluation/tests/unit/test_statistical_methods.py,sha256=Ra3r4V
94
94
  cloudnetpy/model_evaluation/tests/unit/test_tools.py,sha256=Ia_VrLdV2NstX5gbx_3AZTOAlrgLAy_xFZ8fHYVX0xI,3817
95
95
  cloudnetpy/plotting/__init__.py,sha256=lg9Smn4BI0dVBgnDLC3JVJ4GmwoSnO-qoSd4ApvwV6Y,107
96
96
  cloudnetpy/plotting/plot_meta.py,sha256=cLdCZrhbP-gaobS_zjcf8d2xVALzl7zh2qpttxCHyrg,15983
97
- cloudnetpy/plotting/plotting.py,sha256=bve91iM9RcWmKaZOFWxVh2y3DPmupI1944MMYDdv17I,32459
97
+ cloudnetpy/plotting/plotting.py,sha256=SrfAvILAFsqGQi-ELN1qd-6-EqfD3duV3kK_fsI4TaQ,32894
98
98
  cloudnetpy/products/__init__.py,sha256=2hRb5HG9hNrxH1if5laJkLeFeaZCd5W1q3hh4ewsX0E,273
99
99
  cloudnetpy/products/classification.py,sha256=pzFQtgOKS7g_3LqiAY84EFUUste-VES7CJNgoq2Bs34,7914
100
100
  cloudnetpy/products/der.py,sha256=XZMbqDQUq0E9iBU3Axr-NfUJfRAhjsaGlyxJ4tKyGcw,12444
@@ -108,8 +108,8 @@ cloudnetpy/products/mie_lu_tables.nc,sha256=It4fYpqJXlqOgL8jeZ-PxGzP08PMrELIDVe5
108
108
  cloudnetpy/products/mwr_tools.py,sha256=RuzokxxqXlTGk7XAOrif_FDPUJdf0j_wJgNq-7a_nK8,4684
109
109
  cloudnetpy/products/product_tools.py,sha256=rhx_Ru9FLlQqCNM-awoiHx18-Aq1eBwL9LiUaQoJs6k,10412
110
110
  docs/source/conf.py,sha256=IKiFWw6xhUd8NrCg0q7l596Ck1d61XWeVjIFHVSG9Og,1490
111
- cloudnetpy-1.61.11.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
112
- cloudnetpy-1.61.11.dist-info/METADATA,sha256=MjuSUe-bVQa8CzRqFWeJBhqcbkcv5OkXSkM0srtkDpo,5785
113
- cloudnetpy-1.61.11.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
114
- cloudnetpy-1.61.11.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
115
- cloudnetpy-1.61.11.dist-info/RECORD,,
111
+ cloudnetpy-1.61.12.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
112
+ cloudnetpy-1.61.12.dist-info/METADATA,sha256=nqWjqeDzGmg9WTD827eamk9ODfjSOOnWeqRKsKB5gZA,5785
113
+ cloudnetpy-1.61.12.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
114
+ cloudnetpy-1.61.12.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
115
+ cloudnetpy-1.61.12.dist-info/RECORD,,