cloudnetpy 1.58.2__py3-none-any.whl → 1.58.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cloudnetpy/categorize/classify.py +8 -1
- cloudnetpy/plotting/plot_meta.py +3 -0
- cloudnetpy/plotting/plotting.py +12 -10
- cloudnetpy/version.py +1 -1
- {cloudnetpy-1.58.2.dist-info → cloudnetpy-1.58.4.dist-info}/METADATA +2 -2
- {cloudnetpy-1.58.2.dist-info → cloudnetpy-1.58.4.dist-info}/RECORD +9 -9
- {cloudnetpy-1.58.2.dist-info → cloudnetpy-1.58.4.dist-info}/LICENSE +0 -0
- {cloudnetpy-1.58.2.dist-info → cloudnetpy-1.58.4.dist-info}/WHEEL +0 -0
- {cloudnetpy-1.58.2.dist-info → cloudnetpy-1.58.4.dist-info}/top_level.txt +0 -0
@@ -42,10 +42,17 @@ def classify_measurements(data: dict) -> ClassificationResult:
|
|
42
42
|
bits[2] = freezing.find_freezing_region(obs, bits[3])
|
43
43
|
liquid_from_lidar = droplet.find_liquid(obs)
|
44
44
|
if obs.lv0_files is not None and len(obs.lv0_files) > 0:
|
45
|
+
if "rpg-fmcw-94" not in obs.radar_type.lower():
|
46
|
+
msg = "VoodooNet is only implemented for RPG-FMCW-94 radar."
|
47
|
+
raise NotImplementedError(msg)
|
45
48
|
import voodoonet
|
49
|
+
from voodoonet.utils import VoodooOptions
|
46
50
|
|
51
|
+
options = VoodooOptions(progress_bar=False)
|
47
52
|
target_time = voodoonet.utils.decimal_hour2unix(obs.date, obs.time)
|
48
|
-
liquid_prob = voodoonet.infer(
|
53
|
+
liquid_prob = voodoonet.infer(
|
54
|
+
obs.lv0_files, target_time=target_time, options=options
|
55
|
+
)
|
49
56
|
liquid_from_radar = liquid_prob > 0.55
|
50
57
|
liquid_from_radar = _remove_false_radar_liquid(
|
51
58
|
liquid_from_radar,
|
cloudnetpy/plotting/plot_meta.py
CHANGED
cloudnetpy/plotting/plotting.py
CHANGED
@@ -145,9 +145,10 @@ class FigureData:
|
|
145
145
|
valid_variables = []
|
146
146
|
variable_indices = []
|
147
147
|
for variable_name in requested_variables:
|
148
|
-
if variable_name.startswith("tb_"):
|
149
|
-
|
150
|
-
|
148
|
+
if variable_name.startswith(("tb_", "irt_")):
|
149
|
+
parts = variable_name.split("_")
|
150
|
+
extracted_name = parts[0]
|
151
|
+
extracted_ind = int(parts[1])
|
151
152
|
else:
|
152
153
|
extracted_name = variable_name
|
153
154
|
extracted_ind = None
|
@@ -554,13 +555,14 @@ class Plot1D(Plot):
|
|
554
555
|
is_bad_zenith = self._get_bad_zenith_profiles(figure_data)
|
555
556
|
self._data[is_bad_zenith] = ma.masked
|
556
557
|
self._data_orig[is_bad_zenith] = ma.masked
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
558
|
+
if self.sub_plot.variable == "tb":
|
559
|
+
flags = self._read_flagged_data(figure_data)[:, freq_ind]
|
560
|
+
flags[is_bad_zenith] = False
|
561
|
+
if np.any(flags):
|
562
|
+
self._plot_flag_data(figure_data.time[flags], self._data_orig[flags])
|
563
|
+
self._add_legend()
|
564
|
+
self._show_frequency(figure_data, freq_ind)
|
562
565
|
self.plot(figure_data)
|
563
|
-
self._show_frequency(figure_data, freq_ind)
|
564
566
|
|
565
567
|
def _show_frequency(self, figure_data: FigureData, freq_ind: int) -> None:
|
566
568
|
frequency = figure_data.file.variables["frequency"][freq_ind]
|
@@ -737,7 +739,7 @@ def generate_figure(
|
|
737
739
|
file_type = getattr(file, "cloudnet_file_type", None)
|
738
740
|
subplot = SubPlot(ax, variable, options, file_type)
|
739
741
|
|
740
|
-
if variable.name
|
742
|
+
if variable.name in ("tb", "irt") and ind is not None:
|
741
743
|
Plot1D(subplot).plot_tb(figure_data, ind)
|
742
744
|
elif variable.ndim == 1:
|
743
745
|
Plot1D(subplot).plot(figure_data)
|
cloudnetpy/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: cloudnetpy
|
3
|
-
Version: 1.58.
|
3
|
+
Version: 1.58.4
|
4
4
|
Summary: Python package for Cloudnet processing
|
5
5
|
Author: Simo Tukiainen
|
6
6
|
License: MIT License
|
@@ -51,7 +51,7 @@ Provides-Extra: dev
|
|
51
51
|
Requires-Dist: pre-commit ; extra == 'dev'
|
52
52
|
Requires-Dist: release-version ; extra == 'dev'
|
53
53
|
Provides-Extra: extras
|
54
|
-
Requires-Dist: voodoonet >=0.1.
|
54
|
+
Requires-Dist: voodoonet >=0.1.7 ; extra == 'extras'
|
55
55
|
Provides-Extra: test
|
56
56
|
Requires-Dist: mypy ; extra == 'test'
|
57
57
|
Requires-Dist: pytest ; extra == 'test'
|
@@ -8,12 +8,12 @@ cloudnetpy/metadata.py,sha256=v_VDo2vbdTxB0zIsfP69IcrwSKiRlLpsGdq6JPI4CoA,5306
|
|
8
8
|
cloudnetpy/output.py,sha256=WoVTNuxni0DUr163vZ-_mDr1brXhY15XSlGMrq9Aoqw,14700
|
9
9
|
cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
cloudnetpy/utils.py,sha256=0TlHm71YtSrKXBsRKctitnhQrvZPE-ulEVeAQW-oK58,27398
|
11
|
-
cloudnetpy/version.py,sha256=
|
11
|
+
cloudnetpy/version.py,sha256=Ad5okgp6ACQmXN92GegEWxjqqVmfT8qSO9m364S8NCE,72
|
12
12
|
cloudnetpy/categorize/__init__.py,sha256=gP5q3Vis1y9u9OWgA_idlbjfWXYN_S0IBSWdwBhL_uU,69
|
13
13
|
cloudnetpy/categorize/atmos.py,sha256=fWW8ye_8HZASRAiYwURFKWzcGOYIA2RKeVxCq0lVOuM,12389
|
14
14
|
cloudnetpy/categorize/atmos_utils.py,sha256=wndpwJxc2-QnNTkV8tc8I11Vs_WkNz9sVMX1fuGgUC4,3777
|
15
15
|
cloudnetpy/categorize/categorize.py,sha256=_chLFT0l9ll78y3oaxFwOTBbv2raxxjghCz-_KGdImQ,17476
|
16
|
-
cloudnetpy/categorize/classify.py,sha256=
|
16
|
+
cloudnetpy/categorize/classify.py,sha256=x7aqPfhw4xuER22sqOb9ES9nijwk1E8b7HF7uaFJD7k,9218
|
17
17
|
cloudnetpy/categorize/containers.py,sha256=j6oSKPeZcq9vFthYaocAw1m6yReRNNPYUQF5UTDq4YM,4232
|
18
18
|
cloudnetpy/categorize/disdrometer.py,sha256=0Z0nvUtoZKDxiUfBZzoYZxUFOVjq-thmYfaCkskeECs,1799
|
19
19
|
cloudnetpy/categorize/droplet.py,sha256=pUmB-gN0t9sVgsGLof6X9N0nuEb4EBtEUswwpoQapTY,8687
|
@@ -92,8 +92,8 @@ cloudnetpy/model_evaluation/tests/unit/test_plotting.py,sha256=h9V8JKmrO4v9bOvv-
|
|
92
92
|
cloudnetpy/model_evaluation/tests/unit/test_statistical_methods.py,sha256=Ra3r4V0qbqkpDuaTYvEIbaasl0nZ5gmTLR4eGC0glBQ,9724
|
93
93
|
cloudnetpy/model_evaluation/tests/unit/test_tools.py,sha256=Ia_VrLdV2NstX5gbx_3AZTOAlrgLAy_xFZ8fHYVX0xI,3817
|
94
94
|
cloudnetpy/plotting/__init__.py,sha256=lg9Smn4BI0dVBgnDLC3JVJ4GmwoSnO-qoSd4ApvwV6Y,107
|
95
|
-
cloudnetpy/plotting/plot_meta.py,sha256=
|
96
|
-
cloudnetpy/plotting/plotting.py,sha256=
|
95
|
+
cloudnetpy/plotting/plot_meta.py,sha256=e0X6ZCuBE0eRIbGKdT7S0RzhL_ncfo7Pi0uRhXpttnQ,14868
|
96
|
+
cloudnetpy/plotting/plotting.py,sha256=EA40DLIwHAUtBd07zRE6ITUfutv5A_mqsySOiyv-_Gg,31014
|
97
97
|
cloudnetpy/products/__init__.py,sha256=2hRb5HG9hNrxH1if5laJkLeFeaZCd5W1q3hh4ewsX0E,273
|
98
98
|
cloudnetpy/products/classification.py,sha256=0E9OUGR3uLCsS1nORwQu0SqW0_8uX7n6LlRcVhtzKw4,7845
|
99
99
|
cloudnetpy/products/der.py,sha256=mam6jWV7A2h8V5WC3DIeFp6ou7UD1JOw9r7h2B0su-s,12403
|
@@ -107,8 +107,8 @@ cloudnetpy/products/mie_lu_tables.nc,sha256=It4fYpqJXlqOgL8jeZ-PxGzP08PMrELIDVe5
|
|
107
107
|
cloudnetpy/products/mwr_tools.py,sha256=PRm5aCULccUehU-Byk55wYhhEHseMjoAjGBu5TSyHao,4621
|
108
108
|
cloudnetpy/products/product_tools.py,sha256=rhx_Ru9FLlQqCNM-awoiHx18-Aq1eBwL9LiUaQoJs6k,10412
|
109
109
|
docs/source/conf.py,sha256=IKiFWw6xhUd8NrCg0q7l596Ck1d61XWeVjIFHVSG9Og,1490
|
110
|
-
cloudnetpy-1.58.
|
111
|
-
cloudnetpy-1.58.
|
112
|
-
cloudnetpy-1.58.
|
113
|
-
cloudnetpy-1.58.
|
114
|
-
cloudnetpy-1.58.
|
110
|
+
cloudnetpy-1.58.4.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
|
111
|
+
cloudnetpy-1.58.4.dist-info/METADATA,sha256=39_FtwhSwvqQIYO-s7t30ieR7JV2xaDLAH7zDvoLdfw,5733
|
112
|
+
cloudnetpy-1.58.4.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
113
|
+
cloudnetpy-1.58.4.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
|
114
|
+
cloudnetpy-1.58.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|