cloudnetpy 1.56.1__py3-none-any.whl → 1.56.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. cloudnetpy/categorize/atmos.py +0 -27
  2. cloudnetpy/categorize/atmos_utils.py +0 -10
  3. cloudnetpy/categorize/categorize.py +1 -6
  4. cloudnetpy/categorize/classify.py +0 -12
  5. cloudnetpy/categorize/containers.py +0 -6
  6. cloudnetpy/categorize/droplet.py +0 -17
  7. cloudnetpy/categorize/falling.py +0 -3
  8. cloudnetpy/categorize/freezing.py +0 -5
  9. cloudnetpy/categorize/insects.py +0 -3
  10. cloudnetpy/categorize/lidar.py +0 -1
  11. cloudnetpy/categorize/melting.py +0 -3
  12. cloudnetpy/categorize/model.py +0 -5
  13. cloudnetpy/categorize/mwr.py +0 -2
  14. cloudnetpy/categorize/radar.py +0 -8
  15. cloudnetpy/cloudnetarray.py +0 -6
  16. cloudnetpy/concat_lib.py +0 -5
  17. cloudnetpy/datasource.py +0 -12
  18. cloudnetpy/instruments/basta.py +0 -5
  19. cloudnetpy/instruments/ceilo.py +0 -4
  20. cloudnetpy/instruments/ceilometer.py +0 -2
  21. cloudnetpy/instruments/copernicus.py +0 -6
  22. cloudnetpy/instruments/disdrometer/parsivel.py +0 -5
  23. cloudnetpy/instruments/disdrometer/thies.py +0 -4
  24. cloudnetpy/instruments/galileo.py +0 -5
  25. cloudnetpy/instruments/hatpro.py +0 -6
  26. cloudnetpy/instruments/mira.py +0 -5
  27. cloudnetpy/instruments/mrr.py +0 -5
  28. cloudnetpy/instruments/nc_radar.py +0 -2
  29. cloudnetpy/instruments/pollyxt.py +0 -3
  30. cloudnetpy/instruments/radiometrics.py +0 -4
  31. cloudnetpy/instruments/rpg.py +0 -5
  32. cloudnetpy/instruments/rpg_reader.py +0 -1
  33. cloudnetpy/instruments/vaisala.py +0 -4
  34. cloudnetpy/instruments/weather_station.py +0 -3
  35. cloudnetpy/model_evaluation/file_handler.py +0 -4
  36. cloudnetpy/model_evaluation/plotting/plotting.py +0 -6
  37. cloudnetpy/model_evaluation/products/advance_methods.py +0 -1
  38. cloudnetpy/model_evaluation/products/grid_methods.py +0 -2
  39. cloudnetpy/model_evaluation/products/model_products.py +0 -2
  40. cloudnetpy/model_evaluation/products/observation_products.py +0 -2
  41. cloudnetpy/model_evaluation/products/product_resampling.py +0 -4
  42. cloudnetpy/model_evaluation/products/tools.py +0 -2
  43. cloudnetpy/model_evaluation/statistics/statistical_methods.py +0 -4
  44. cloudnetpy/output.py +0 -9
  45. cloudnetpy/products/classification.py +0 -3
  46. cloudnetpy/products/der.py +0 -4
  47. cloudnetpy/products/drizzle.py +0 -8
  48. cloudnetpy/products/drizzle_error.py +0 -2
  49. cloudnetpy/products/drizzle_tools.py +0 -12
  50. cloudnetpy/products/ier.py +0 -4
  51. cloudnetpy/products/iwc.py +0 -4
  52. cloudnetpy/products/lwc.py +0 -14
  53. cloudnetpy/products/product_tools.py +0 -9
  54. cloudnetpy/utils.py +0 -81
  55. cloudnetpy/version.py +1 -1
  56. {cloudnetpy-1.56.1.dist-info → cloudnetpy-1.56.3.dist-info}/METADATA +4 -5
  57. {cloudnetpy-1.56.1.dist-info → cloudnetpy-1.56.3.dist-info}/RECORD +60 -60
  58. {cloudnetpy-1.56.1.dist-info → cloudnetpy-1.56.3.dist-info}/LICENSE +0 -0
  59. {cloudnetpy-1.56.1.dist-info → cloudnetpy-1.56.3.dist-info}/WHEEL +0 -0
  60. {cloudnetpy-1.56.1.dist-info → cloudnetpy-1.56.3.dist-info}/top_level.txt +0 -0
@@ -44,7 +44,6 @@ def generate_L3_day_plots(
44
44
  in same fig.
45
45
 
46
46
  Args:
47
- ----
48
47
  nc_file (str): Path to source file
49
48
  product (str): Name of product wanted to plot
50
49
  model (str): Name of model which downsampling was done with
@@ -71,7 +70,6 @@ def generate_L3_day_plots(
71
70
  figure.
72
71
 
73
72
  Examples:
74
- --------
75
73
  >>> from cloudnetpy.model_evaluation.plotting.plotting
76
74
  import generate_L3_day_plots
77
75
  >>> l3_day_file = 'cf_ecmwf.nc'
@@ -166,7 +164,6 @@ def get_group_plots(
166
164
  timegrids. All model cycles if any will be generated to their own figures.
167
165
 
168
166
  Args:
169
- ----
170
167
  product (str): Name of the product
171
168
  names (list): List of variables to be visualized to same fig
172
169
  nc_file (str): Path to a source file
@@ -227,7 +224,6 @@ def get_pair_plots(
227
224
  in a given nc-file in loop.
228
225
 
229
226
  Args:
230
- ----
231
227
  product (str): Name of the product
232
228
  names (list): List of variables to be visualized to same fig
233
229
  nc_file (str): Path to a source file
@@ -286,7 +282,6 @@ def get_single_plots(
286
282
  """Generates figures of each product variable from given file in loop.
287
283
 
288
284
  Args:
289
- ----
290
285
  product (str): Name of the product
291
286
  names (list): List of variables to be visualized to same fig
292
287
  nc_file (str): Path to a source file
@@ -362,7 +357,6 @@ def get_statistic_plots(
362
357
  as well as different cycle runs.
363
358
 
364
359
  Args:
365
- ----
366
360
  product (str): Name of the product
367
361
  names (list): List of variables to be visualized to same fig
368
362
  nc_file (str): Path to a source file
@@ -17,7 +17,6 @@ class AdvanceProductMethods(DataSource):
17
17
  assumptions of model or observation data.
18
18
 
19
19
  Args:
20
- ----
21
20
  model_obj (object): The :class:'ModelManager' object.
22
21
  obs_obj (object): The :class:'ObservationManager' object.
23
22
  """
@@ -11,12 +11,10 @@ class ProductGrid:
11
11
  """Class to generate downsampling of observation product to model grid.
12
12
 
13
13
  Args:
14
- ----
15
14
  model_obj (object): The :class:'ModelManager' object.
16
15
  obs_obj (object): The :class:'ObservationManager' object.
17
16
 
18
17
  Notes:
19
- -----
20
18
  Downsampled observation products data is added to a ModelManager
21
19
  object which is used for nc-file creation and writing
22
20
  """
@@ -14,14 +14,12 @@ class ModelManager(DataSource):
14
14
  """Class to collect and manage model data.
15
15
 
16
16
  Args:
17
- ----
18
17
  model_file (str): Path to source model file.
19
18
  model (str): Name of model
20
19
  output_file (str): name of output file name and path to save data
21
20
  product (str): name of product to generate
22
21
 
23
22
  Notes:
24
- -----
25
23
  For this class to work, needed information of model in use should be found in
26
24
  model_metadata.py
27
25
 
@@ -13,12 +13,10 @@ class ObservationManager(DataSource):
13
13
  """Class to collect and manage observations for downsampling.
14
14
 
15
15
  Args:
16
- ----
17
16
  obs (str): Name of observation product
18
17
  obs_file (str): Path to source observation file
19
18
 
20
19
  Notes:
21
- -----
22
20
  Output is ObservationManager object where all product data and
23
21
  information is included.
24
22
 
@@ -31,7 +31,6 @@ def process_L3_day_product(
31
31
  and other variables of each cycles.
32
32
 
33
33
  Args:
34
- ----
35
34
  model (str): Name of model
36
35
  obs (str): Name of product to generate
37
36
  model_files (list): List of model + cycles file path(s) to be generated
@@ -44,19 +43,16 @@ def process_L3_day_product(
44
43
  default False
45
44
 
46
45
  Raises:
47
- ------
48
46
  RuntimeError: Failed to create the L3 product file.
49
47
  ValueError (Warning): No ice clouds in model data
50
48
 
51
49
  Notes:
52
- -----
53
50
  Model file(s) are given as a list to make all different cycles to be at same
54
51
  nc-file. If list includes more than one model file, nc-file is created within
55
52
  the first round. With rest of rounds, downsample observation and model data
56
53
  is added to same L3 day nc-file.
57
54
 
58
55
  Examples:
59
- --------
60
56
  >>> from cloudnetpy.model_evaluation.products.product_resampling import \
61
57
  process_L3_day_product
62
58
  >>> product = 'cf'
@@ -38,7 +38,6 @@ def calculate_advection_time(
38
38
  """Calculates time which variable takes to go through the time window
39
39
 
40
40
  Notes
41
- -----
42
41
  Wind speed is stronger in upper levels, so advection time is more
43
42
  there then lower levels. Effect is small in a mid-latitudes,
44
43
  but visible in a tropics.
@@ -46,7 +45,6 @@ def calculate_advection_time(
46
45
  sampling = 1 -> hour, sampling 1/6 -> 10min
47
46
 
48
47
  References
49
- ----------
50
48
  """
51
49
  t_adv = resolution * 1000 / wind / 60**2
52
50
  t_adv[t_adv.mask] = 0
@@ -15,7 +15,6 @@ class DayStatistics:
15
15
  and observation data of wanted product.
16
16
 
17
17
  Args:
18
- ----
19
18
  method (str): Name on statistical method to be calculated
20
19
  product_info (list): List of information of statistical analysis is
21
20
  done with. A list includes observed product name (str), model variable (str)
@@ -25,15 +24,12 @@ class DayStatistics:
25
24
  observation (np.ndarray): Ndrray of Downsampled observation of product
26
25
 
27
26
  Raises:
28
- ------
29
27
  RuntimeError: A function of given method not found
30
28
 
31
29
  Returns:
32
- -------
33
30
  day_statistic (object): The :class:'DayStatistic' object.
34
31
 
35
32
  Examples:
36
- --------
37
33
  >>> from cloudnetpy.model_evaluation.products.product_resampling import \
38
34
  process_L3_day_product
39
35
  >>> method = 'error'
cloudnetpy/output.py CHANGED
@@ -76,7 +76,6 @@ def save_product_file(
76
76
  """Saves a standard Cloudnet product file.
77
77
 
78
78
  Args:
79
- ----
80
79
  short_id: Short file identifier, e.g. 'lwc', 'iwc', 'drizzle', 'classification'.
81
80
  obj: Instance containing product specific attributes: `time`, `dataset`, `data`.
82
81
  file_name: Name of the output file to be generated.
@@ -143,7 +142,6 @@ def get_references(identifier: str | None = None, extra: list | None = None) ->
143
142
  """ "Returns references.
144
143
 
145
144
  Args:
146
- ----
147
145
  identifier: Cloudnet file type, e.g., 'iwc'.
148
146
 
149
147
  """
@@ -175,11 +173,9 @@ def get_source_uuids(*sources) -> str:
175
173
  """Returns file_uuid attributes of objects.
176
174
 
177
175
  Args:
178
- ----
179
176
  *sources: Objects whose file_uuid attributes are read (if exist).
180
177
 
181
178
  Returns:
182
- -------
183
179
  str: UUIDs separated by comma.
184
180
 
185
181
  """
@@ -196,7 +192,6 @@ def merge_history(nc: netCDF4.Dataset, file_type: str, data: dict) -> None:
196
192
  """Merges history fields from one or several files and creates a new record.
197
193
 
198
194
  Args:
199
- ----
200
195
  nc: The netCDF Dataset instance.
201
196
  file_type: Long description of the file.
202
197
  data: Dictionary of objects with history attribute.
@@ -235,7 +230,6 @@ def init_file(
235
230
  """Initializes a Cloudnet file for writing.
236
231
 
237
232
  Args:
238
- ----
239
233
  file_name: File name to be generated.
240
234
  dimensions: Dictionary containing dimension for this file.
241
235
  cloudnet_arrays: Dictionary containing :class:`CloudnetArray` instances.
@@ -258,7 +252,6 @@ def copy_variables(
258
252
  """Copies variables (and their attributes) from one file to another.
259
253
 
260
254
  Args:
261
- ----
262
255
  source: Source object.
263
256
  target: Target object.
264
257
  keys: Variable names to be copied.
@@ -292,7 +285,6 @@ def copy_global(
292
285
  """Copies global attributes from one file to another.
293
286
 
294
287
  Args:
295
- ----
296
288
  source: Source object.
297
289
  target: Target object.
298
290
  attributes: List of attributes to be copied.
@@ -360,7 +352,6 @@ def update_attributes(cloudnet_variables: dict, attributes: dict) -> None:
360
352
  New attributes are added.
361
353
 
362
354
  Args:
363
- ----
364
355
  cloudnet_variables: CloudnetArray instances.
365
356
  attributes: Product-specific attributes.
366
357
 
@@ -22,17 +22,14 @@ def generate_classification(
22
22
  netCDF file.
23
23
 
24
24
  Args:
25
- ----
26
25
  categorize_file: Categorize file name.
27
26
  output_file: Output file name.
28
27
  uuid: Set specific UUID for the file.
29
28
 
30
29
  Returns:
31
- -------
32
30
  str: UUID of the generated file.
33
31
 
34
32
  Examples:
35
- --------
36
33
  >>> from cloudnetpy.products import generate_classification
37
34
  >>> generate_classification('categorize.nc', 'classification.nc')
38
35
 
@@ -41,7 +41,6 @@ def generate_der(
41
41
  liquid water path. The results are written in a netCDF file.
42
42
 
43
43
  Args:
44
- ----
45
44
  categorize_file: Categorize file name.
46
45
  output_file: Output file name.
47
46
  uuid: Set specific UUID for the file.
@@ -50,11 +49,9 @@ def generate_der(
50
49
  used in Frisch approach.
51
50
 
52
51
  Returns:
53
- -------
54
52
  UUID of the generated file.
55
53
 
56
54
  Examples:
57
- --------
58
55
  >>> from cloudnetpy.products import generate_der
59
56
  >>> generate_der('categorize.nc', 'der.nc')
60
57
  >>>
@@ -63,7 +60,6 @@ def generate_der(
63
60
  >>> generate_der('categorize.nc', 'der.nc', parameters=params)
64
61
 
65
62
  References:
66
- ----------
67
63
  Frisch, S., Shupe, M., Djalalova, I., Feingold, G., & Poellot, M. (2002).
68
64
  The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars,
69
65
  Journal of Atmospheric and Oceanic Technology, 19(6), 835-842.
@@ -26,22 +26,18 @@ def generate_drizzle(
26
26
  cloud radar and lidar measurements. The results are written in a netCDF file.
27
27
 
28
28
  Args:
29
- ----
30
29
  categorize_file: Categorize file name.
31
30
  output_file: Output file name.
32
31
  uuid: Set specific UUID for the file.
33
32
 
34
33
  Returns:
35
- -------
36
34
  str: UUID of the generated file.
37
35
 
38
36
  Examples:
39
- --------
40
37
  >>> from cloudnetpy.products import generate_drizzle
41
38
  >>> generate_drizzle('categorize.nc', 'drizzle.nc')
42
39
 
43
40
  References:
44
- ----------
45
41
  O’Connor, E.J., R.J. Hogan, and A.J. Illingworth, 2005:
46
42
  Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar.
47
43
  J. Appl. Meteor., 44, 14–27, https://doi.org/10.1175/JAM-2181.1
@@ -72,12 +68,10 @@ class DrizzleProducts:
72
68
  """Calculates additional quantities from the drizzle properties.
73
69
 
74
70
  Args:
75
- ----
76
71
  drizzle_source: The :class:`DrizzleSource` instance.
77
72
  drizzle_solver: The :class:`DrizzleSolver` instance.
78
73
 
79
74
  Attributes:
80
- ----------
81
75
  derived_products (dict): Dictionary containing derived drizzle products:
82
76
  'drizzle_N', 'drizzle_lwc', 'drizzle_lwf', 'v_drizzle', 'v_air'.
83
77
 
@@ -154,11 +148,9 @@ class RetrievalStatus:
154
148
  """Estimates the status of drizzle retrievals.
155
149
 
156
150
  Args:
157
- ----
158
151
  drizzle_class: The :class:`DrizzleClassification` instance.
159
152
 
160
153
  Attributes:
161
- ----------
162
154
  drizzle_class: The :class:`DrizzleClassification` instance.
163
155
  retrieval_status (ndarray): 2D array containing drizzle retrieval
164
156
  status information.
@@ -15,12 +15,10 @@ def get_drizzle_error(
15
15
  """Estimates error and bias for drizzle classification.
16
16
 
17
17
  Args:
18
- ----
19
18
  categorize: The :class:`DrizzleSource` instance.
20
19
  drizzle_parameters: The :class:`DrizzleSolver` instance.
21
20
 
22
21
  Returns:
23
- -------
24
22
  dict: Dictionary containing information of estimated error and bias for drizzle
25
23
 
26
24
  """
@@ -16,11 +16,9 @@ class DrizzleSource(DataSource):
16
16
  """Class holding the input data for drizzle calculations.
17
17
 
18
18
  Args:
19
- ----
20
19
  categorize_file: Categorize file name.
21
20
 
22
21
  Attributes:
23
- ----------
24
22
  mie (dict): Mie look-up table data.
25
23
  dheight (float): Median difference of height array.
26
24
  z (ndarray): 2D radar echo (linear units).
@@ -82,11 +80,9 @@ class DrizzleClassification(ProductClassification):
82
80
  child of :class:`ProductClassification`.
83
81
 
84
82
  Args:
85
- ----
86
83
  categorize_file: Categorize file name.
87
84
 
88
85
  Attributes:
89
- ----------
90
86
  is_v_sigma (ndarray): 2D array denoting finite v_sigma.
91
87
  warm_liquid (ndarray): 2D array denoting warm liquid.
92
88
  drizzle (ndarray): 2D array denoting drizzle presence.
@@ -150,11 +146,9 @@ class SpectralWidth:
150
146
  spectral broadening of the Doppler velocity.
151
147
 
152
148
  Args:
153
- ----
154
149
  categorize_file: Categorize file name.
155
150
 
156
151
  Attributes:
157
- ----------
158
152
  categorize_file (str): Categorize file name.
159
153
  width_ht (ndarray): Spectral width containing the correction for turbulence
160
154
  broadening.
@@ -191,7 +185,6 @@ class SpectralWidth:
191
185
  """Calculates magnitude of horizontal wind.
192
186
 
193
187
  Returns
194
- -------
195
188
  ndarray: Horizontal wind (m s-1).
196
189
 
197
190
  """
@@ -205,13 +198,11 @@ class DrizzleSolver:
205
198
  """Estimates drizzle parameters.
206
199
 
207
200
  Args:
208
- ----
209
201
  drizzle_source: The :class:`DrizzleSource` instance.
210
202
  drizzle_class: The :class:`DrizzleClassification` instance.
211
203
  spectral_width: The :class:`SpectralWidth` instance.
212
204
 
213
205
  Attributes:
214
- ----------
215
206
  params (dict): Dictionary of retrieved drizzle parameters 'Do', 'mu', 'S',
216
207
  'beta_corr'.
217
208
 
@@ -296,18 +287,15 @@ class DrizzleSolver:
296
287
  """Drizzle diameter calculation.
297
288
 
298
289
  Args:
299
- ----
300
290
  beta_z_ratio: Beta to z ratio, multiplied by (2 / pi).
301
291
  mu: Shape parameter for gamma calculations. Default is 0.
302
292
  ray: Mie to Rayleigh ratio for z. Default is 1.
303
293
  k: Alpha to beta ratio . Default is 1.
304
294
 
305
295
  Returns:
306
- -------
307
296
  ndarray: Drizzle diameter.
308
297
 
309
298
  References:
310
- ----------
311
299
  https://journals.ametsoc.org/doi/pdf/10.1175/JAM-2181.1
312
300
 
313
301
  """
@@ -21,22 +21,18 @@ def generate_ier(
21
21
  and model temperature. The results are written in a netCDF file.
22
22
 
23
23
  Args:
24
- ----
25
24
  categorize_file: Categorize file name.
26
25
  output_file: Output file name.
27
26
  uuid: Set specific UUID for the file.
28
27
 
29
28
  Returns:
30
- -------
31
29
  UUID of the generated file.
32
30
 
33
31
  Examples:
34
- --------
35
32
  >>> from cloudnetpy.products import generate_ier
36
33
  >>> generate_ier('categorize.nc', 'ier.nc')
37
34
 
38
35
  References:
39
- ----------
40
36
  Hogan, R. J., Mittermaier, M. P., & Illingworth, A. J. (2006). The Retrieval
41
37
  of Ice Water Content from Radar Reflectivity Factor and Temperature and Its
42
38
  Use in Evaluating a Mesoscale Model, Journal of Applied Meteorology and
@@ -21,22 +21,18 @@ def generate_iwc(
21
21
  netCDF file.
22
22
 
23
23
  Args:
24
- ----
25
24
  categorize_file: Categorize file name.
26
25
  output_file: Output file name.
27
26
  uuid: Set specific UUID for the file.
28
27
 
29
28
  Returns:
30
- -------
31
29
  UUID of the generated file.
32
30
 
33
31
  Examples:
34
- --------
35
32
  >>> from cloudnetpy.products import generate_iwc
36
33
  >>> generate_iwc('categorize.nc', 'iwc.nc')
37
34
 
38
35
  References:
39
- ----------
40
36
  Hogan, R.J., M.P. Mittermaier, and A.J. Illingworth, 2006:
41
37
  The Retrieval of Ice Water Content from Radar Reflectivity Factor and
42
38
  Temperature and Its Use in Evaluating a Mesoscale Model.
@@ -25,22 +25,18 @@ def generate_lwc(
25
25
  content of observed liquid clouds. The results are written in a netCDF file.
26
26
 
27
27
  Args:
28
- ----
29
28
  categorize_file: Categorize file name.
30
29
  output_file: Output file name.
31
30
  uuid: Set specific UUID for the file.
32
31
 
33
32
  Returns:
34
- -------
35
33
  str: UUID of the generated file.
36
34
 
37
35
  Examples:
38
- --------
39
36
  >>> from cloudnetpy.products import generate_lwc
40
37
  >>> generate_lwc('categorize.nc', 'lwc.nc')
41
38
 
42
39
  References:
43
- ----------
44
40
  Illingworth, A.J., R.J. Hogan, E. O'Connor, D. Bouniol, M.E. Brooks,
45
41
  J. Delanoé, D.P. Donovan, J.D. Eastment, N. Gaussiat, J.W. Goddard,
46
42
  M. Haeffelin, H.K. Baltink, O.A. Krasnov, J. Pelon, J. Piriou, A. Protat,
@@ -76,11 +72,9 @@ class LwcSource(DataSource):
76
72
  structures and methods for holding the results.
77
73
 
78
74
  Args:
79
- ----
80
75
  categorize_file: Categorize file name.
81
76
 
82
77
  Attributes:
83
- ----------
84
78
  lwp (ndarray): 1D liquid water path.
85
79
  lwp_error (ndarray): 1D error of liquid water path.
86
80
  is_rain (ndarray): 1D array denoting presence of rain.
@@ -122,11 +116,9 @@ class Lwc:
122
116
  """Class handling the actual LWC calculations.
123
117
 
124
118
  Args:
125
- ----
126
119
  lwc_source: The :class:`LwcSource` instance.
127
120
 
128
121
  Attributes:
129
- ----------
130
122
  lwc_source (LwcSource): The :class:`LwcSource` instance.
131
123
  dheight (float): Median difference in height vector.
132
124
  is_liquid (ndarray): 2D array denoting liquid.
@@ -175,12 +167,10 @@ class CloudAdjustor:
175
167
  """Adjusts clouds (where possible) so that theoretical and measured LWP agree.
176
168
 
177
169
  Args:
178
- ----
179
170
  lwc_source: The :class:`LwcSource` instance.
180
171
  lwc: The :class:`Lwc` instance.
181
172
 
182
173
  Attributes:
183
- ----------
184
174
  lwc_source (LwcSource): The :class:`LwcSource` instance.
185
175
  lwc (ndarray): Liquid water content data.
186
176
  is_liquid (ndarray): 2D array denoting liquid.
@@ -272,11 +262,9 @@ class CloudAdjustor:
272
262
  """Finds top clouds that contain only lidar-detected pixels.
273
263
 
274
264
  Args:
275
- ----
276
265
  detection: Array of integers where 1=lidar, 2=radar, 3=both.
277
266
 
278
267
  Returns:
279
- -------
280
268
  Boolean array containing top-clouds that are detected only by lidar.
281
269
 
282
270
  """
@@ -313,12 +301,10 @@ class LwcError:
313
301
  """Calculates liquid water content error.
314
302
 
315
303
  Args:
316
- ----
317
304
  lwc_source: The :class:`LwcSource` instance.
318
305
  lwc: The :class:`Lwc` instance.
319
306
 
320
307
  Attributes:
321
- ----------
322
308
  lwc_source (LwcSource): The :class:`LwcSource` instance.
323
309
  lwc (ndarray): Liquid water content data.
324
310
  error (ndarray): 2D array storing lwc_error.
@@ -26,11 +26,9 @@ class CategorizeBits:
26
26
  """Class holding information about category and quality bits.
27
27
 
28
28
  Args:
29
- ----
30
29
  categorize_file (str): Categorize file name.
31
30
 
32
31
  Attributes:
33
- ----------
34
32
  category_bits (dict): Dictionary containing boolean fields for `droplet`,
35
33
  `falling`, `cold`, `melting`, `aerosol`, `insect`.
36
34
 
@@ -78,11 +76,9 @@ class ProductClassification(CategorizeBits):
78
76
  of various Cloudnet products. Child of CategorizeBits class.
79
77
 
80
78
  Args:
81
- ----
82
79
  categorize_file (str): Categorize file name.
83
80
 
84
81
  Attributes:
85
- ----------
86
82
  is_rain (ndarray): 1D array denoting rainy profiles.
87
83
 
88
84
  """
@@ -190,7 +186,6 @@ class IceSource(DataSource):
190
186
  """Returns coefficients for ice effective radius retrieval.
191
187
 
192
188
  References
193
- ----------
194
189
  Hogan et.al. 2006, https://doi.org/10.1175/JAM2340.1
195
190
  """
196
191
  if self.product == "ier":
@@ -251,12 +246,10 @@ def read_nc_fields(nc_file: str, names: str | list) -> ma.MaskedArray | list:
251
246
  """Reads selected variables from a netCDF file.
252
247
 
253
248
  Args:
254
- ----
255
249
  nc_file: netCDF file name.
256
250
  names: Variables to be read, e.g. 'temperature' or ['ldr', 'lwp'].
257
251
 
258
252
  Returns:
259
- -------
260
253
  ndarray/list: Array in case of one variable passed as a string.
261
254
  List of arrays otherwise.
262
255
 
@@ -271,13 +264,11 @@ def interpolate_model(cat_file: str, names: str | list) -> dict[str, np.ndarray]
271
264
  """Interpolates 2D model field into dense Cloudnet grid.
272
265
 
273
266
  Args:
274
- ----
275
267
  cat_file: Categorize file name.
276
268
  names: Model variable to be interpolated, e.g. 'temperature' or ['temperature',
277
269
  'pressure'].
278
270
 
279
271
  Returns:
280
- -------
281
272
  dict: Interpolated variables.
282
273
 
283
274
  """