cloudnetpy 1.51.0__py3-none-any.whl → 1.52.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,11 +1,12 @@
1
- import logging
1
+ import binascii
2
2
  import re
3
3
  from datetime import datetime
4
+ from typing import NamedTuple
4
5
 
5
6
  import numpy as np
6
7
 
7
8
  from cloudnetpy import utils
8
- from cloudnetpy.exceptions import ValidTimeStampError
9
+ from cloudnetpy.exceptions import InconsistentDataError, ValidTimeStampError
9
10
  from cloudnetpy.instruments import instruments
10
11
  from cloudnetpy.instruments.ceilometer import Ceilometer
11
12
 
@@ -23,39 +24,40 @@ class Cs135(Ceilometer):
23
24
  self.instrument = instruments.CS135
24
25
 
25
26
  def read_ceilometer_file(self, calibration_factor: float | None = None) -> None:
26
- with open(self.full_path, mode="r", encoding="utf-8") as f:
27
- lines = f.readlines()
28
- timestamps, profiles, scales, tilt_angles = [], [], [], []
29
- range_resolution, n_gates = 0, 0
30
- for i, line in enumerate(lines):
31
- line_splat = line.strip().split(",")
32
- if is_timestamp(line_splat[0]):
33
- timestamp = datetime.strptime(line_splat[0], "%Y-%m-%dT%H:%M:%S.%f")
34
- try:
35
- self._check_timestamp(timestamp)
36
- except ValidTimeStampError:
37
- continue
38
- timestamps.append(timestamp)
39
- _line1 = line_splat[1]
40
- if len(_line1) != 11:
41
- raise NotImplementedError("Unknown message number")
42
- if (msg_no := _line1[-4:-1]) != "002":
43
- raise NotImplementedError(
44
- f"Message number {msg_no} not implemented"
45
- )
46
- _line3 = lines[i + 2].strip().split(" ")
47
- scale, range_resolution, n_gates, tilt_angle = [
48
- int(_line3[ind]) for ind in [0, 1, 2, 5]
49
- ]
50
- scales.append(scale)
51
- tilt_angles.append(tilt_angle)
52
- _line4 = lines[i + 3].strip()
53
- profiles.append(_hex2backscatter(_line4, n_gates))
27
+ with open(self.full_path, mode="rb") as f:
28
+ content = f.read()
29
+ timestamps = []
30
+ profiles = []
31
+ tilt_angles = []
32
+ range_resolutions = []
33
+
34
+ parts = re.split(rb"(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{6}),", content)
35
+ for i in range(1, len(parts), 2):
36
+ timestamp = datetime.strptime(parts[i].decode(), "%Y-%m-%dT%H:%M:%S.%f")
37
+ try:
38
+ self._check_timestamp(timestamp)
39
+ except ValidTimeStampError:
40
+ continue
41
+ try:
42
+ message = _read_message(parts[i + 1])
43
+ except InvalidMessageError:
44
+ continue
45
+ profile = (message.data[:-2] * 1e-8) * (message.scale / 100)
46
+ timestamps.append(timestamp)
47
+ profiles.append(profile)
48
+ tilt_angles.append(message.tilt_angle)
49
+ range_resolutions.append(message.range_resolution)
54
50
 
55
51
  if len(timestamps) == 0:
56
52
  raise ValidTimeStampError("No valid timestamps found in the file")
57
- array = self._handle_large_values(np.array(profiles))
58
- self.data["beta_raw"] = _scale_backscatter(array, scales)
53
+ range_resolution = range_resolutions[0]
54
+ n_gates = len(profiles[0])
55
+ if any(res != range_resolution for res in range_resolutions):
56
+ raise InconsistentDataError("Inconsistent range resolution")
57
+ if any(len(profile) != n_gates for profile in profiles):
58
+ raise InconsistentDataError("Inconsistent number of gates")
59
+
60
+ self.data["beta_raw"] = np.array(profiles)
59
61
  if calibration_factor is None:
60
62
  calibration_factor = 1.0
61
63
  self.data["beta_raw"] *= calibration_factor
@@ -75,36 +77,59 @@ class Cs135(Ceilometer):
75
77
  self.date = timestamp_components
76
78
  assert timestamp_components == self.date
77
79
 
78
- @staticmethod
79
- def _handle_large_values(array: np.ndarray) -> np.ndarray:
80
- ind = np.where(array > 524287)
81
- if ind[0].size > 0:
82
- array[ind] -= 1048576
83
- return array
84
80
 
81
+ class Message(NamedTuple):
82
+ scale: int
83
+ range_resolution: int
84
+ laser_pulse_energy: int
85
+ laser_temperature: int
86
+ tilt_angle: int
87
+ background_light: int
88
+ pulse_quantity: int
89
+ sample_rate: int
90
+ data: np.ndarray
91
+
92
+
93
+ class InvalidMessageError(Exception):
94
+ pass
85
95
 
86
- def is_timestamp(timestamp: str) -> bool:
87
- """Tests if the input string is formatted as -yyyy-mm-dd hh:mm:ss"""
88
- reg_exp = re.compile(r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{6}")
89
- if reg_exp.match(timestamp) is not None:
90
- return True
91
- return False
96
+
97
+ def _read_message(message: bytes) -> Message:
98
+ end_idx = message.index(3)
99
+ content = message[1 : end_idx + 1]
100
+ expected_checksum = int(message[end_idx + 1 : end_idx + 5], 16)
101
+ actual_checksum = _crc16(content)
102
+ if expected_checksum != actual_checksum:
103
+ raise InvalidMessageError(
104
+ "Invalid checksum: "
105
+ f"expected {expected_checksum:04x}, "
106
+ f"got {actual_checksum:04x}"
107
+ )
108
+ lines = message.splitlines()
109
+ if len(lines[0]) != 11:
110
+ raise NotImplementedError("Unknown message format")
111
+ if (msg_no := lines[0][-4:-1]) != b"002":
112
+ raise NotImplementedError(f"Message number {msg_no.decode()} not implemented")
113
+ if len(lines) != 5:
114
+ raise InvalidMessageError("Invalid line count")
115
+ scale, res, n, energy, lt, ti, bl, pulse, rate, _sum = map(int, lines[2].split())
116
+ data = _read_backscatter(lines[3].strip(), n)
117
+ return Message(scale, res, energy, lt, ti, bl, pulse, rate, data)
92
118
 
93
119
 
94
- def _hex2backscatter(data: str, n_gates: int):
95
- """Converts hex string to backscatter values."""
120
+ def _read_backscatter(data: bytes, n_gates: int) -> np.ndarray:
121
+ """Read backscatter values from hex-encoded two's complement values."""
96
122
  n_chars = 5
97
- return [
98
- int(data[i : i + n_chars], 16) for i in range(0, n_gates * n_chars, n_chars)
99
- ]
100
-
101
-
102
- def _scale_backscatter(data: np.ndarray, scales: list) -> np.ndarray:
103
- """Scales backscatter values."""
104
- unit_conversion_factor = 1e-8
105
- scales_array = np.array(scales)
106
- ind = np.where(scales_array != 100)
107
- if ind[0].size > 0:
108
- logging.info(f"{ind[0].size} profiles have not 100% scaling")
109
- data[ind, :] *= scales_array[ind] / 100
110
- return data * unit_conversion_factor
123
+ n_bits = n_chars * 4
124
+ limit = (1 << (n_bits - 1)) - 1
125
+ offset = 1 << n_bits
126
+ out = np.array(
127
+ [int(data[i : i + n_chars], 16) for i in range(0, n_gates * n_chars, n_chars)]
128
+ )
129
+ out[out > limit] -= offset
130
+ return out
131
+
132
+
133
+ def _crc16(data: bytes) -> int:
134
+ """Compute checksum similar to CRC-16-CCITT."""
135
+ return binascii.crc_hqx(data, 0xFFFF) ^ 0xFFFF
@@ -21,6 +21,8 @@ class NoiseParam:
21
21
  class Ceilometer:
22
22
  """Base class for all types of ceilometers and pollyxt."""
23
23
 
24
+ serial_number: str | None
25
+
24
26
  def __init__(self, noise_param: NoiseParam = NoiseParam()):
25
27
  self.noise_param = noise_param
26
28
  self.data: dict = {} # Need to contain 'beta_raw', 'range' and 'time'
@@ -29,6 +31,7 @@ class Ceilometer:
29
31
  self.site_meta: dict = {}
30
32
  self.date: list[str] = []
31
33
  self.instrument: Instrument | None = None
34
+ self.serial_number = None
32
35
 
33
36
  def calc_screened_product(
34
37
  self,
@@ -23,7 +23,8 @@ class Cl61d(NcLidar):
23
23
  """Reads data and metadata from concatenated Vaisala CL61d netCDF file."""
24
24
  with netCDF4.Dataset(self.file_name) as dataset:
25
25
  self.dataset = dataset
26
- self._fetch_zenith_angle("zenith", default=3.0)
26
+ self._fetch_attributes()
27
+ self._fetch_zenith_angle("tilt_angle", default=3.0)
27
28
  self._fetch_range(reference="lower")
28
29
  self._fetch_lidar_variables(calibration_factor)
29
30
  self._fetch_time_and_date()
@@ -41,3 +42,6 @@ class Cl61d(NcLidar):
41
42
  self.data["depolarisation"] = (
42
43
  self.dataset.variables["x_pol"][:] / self.dataset.variables["p_pol"][:]
43
44
  )
45
+
46
+ def _fetch_attributes(self):
47
+ self.serial_number = getattr(self.dataset, "instrument_serial_number", None)
@@ -36,7 +36,7 @@ def hatpro2l1c(
36
36
  Args:
37
37
  mwr_dir: Folder containing one day of HATPRO files.
38
38
  output_file: Output file name.
39
- site_meta: Dictionary containing information about the site
39
+ site_meta: Dictionary containing information about the site and instrument
40
40
  uuid: Set specific UUID for the file.
41
41
  date: Expected date in the input files.
42
42
 
@@ -44,7 +44,16 @@ def hatpro2l1c(
44
44
  UUID of the generated file.
45
45
  """
46
46
 
47
- hatpro_raw = mwrpy.lev1_to_nc(site_meta["coeffs_dir"], "1C01", mwr_dir)
47
+ coeff_files = site_meta.get("coefficientFiles", None)
48
+
49
+ hatpro_raw = mwrpy.lev1_to_nc(
50
+ "1C01",
51
+ mwr_dir,
52
+ output_file=output_file,
53
+ coeff_files=coeff_files,
54
+ instrument_config=site_meta,
55
+ )
56
+
48
57
  hatpro = HatproL1c(hatpro_raw, site_meta)
49
58
 
50
59
  timestamps = hatpro.data["time"][:]
@@ -75,7 +84,7 @@ def hatpro2l1c(
75
84
  nc.cloudnet_file_type = "mwr-l1c"
76
85
  nc.title = nc.title.replace("radiometer", "radiometer Level 1c")
77
86
  nc.mwrpy_version = mwrpy_version
78
- nc.mwrpy_coefficients = site_meta["coeffs_dir"]
87
+ nc.mwrpy_coefficients = ", ".join(site_meta["coefficientLinks"])
79
88
 
80
89
  return uuid
81
90
 
@@ -12,8 +12,6 @@ from cloudnetpy.instruments.nc_lidar import NcLidar
12
12
  class LufftCeilo(NcLidar):
13
13
  """Class for Lufft chm15k ceilometer."""
14
14
 
15
- serial_number: str | None
16
-
17
15
  def __init__(
18
16
  self, file_name: str, site_meta: dict, expected_date: str | None = None
19
17
  ):
@@ -21,7 +19,6 @@ class LufftCeilo(NcLidar):
21
19
  self.file_name = file_name
22
20
  self.site_meta = site_meta
23
21
  self.expected_date = expected_date
24
- self.serial_number = None
25
22
 
26
23
  def read_ceilometer_file(self, calibration_factor: float | None = None) -> None:
27
24
  """Reads data and metadata from Jenoptik netCDF file."""
@@ -30,7 +30,7 @@ class NcLidar(Ceilometer):
30
30
  def _fetch_zenith_angle(self, key: str, default: float = 3.0) -> None:
31
31
  assert self.dataset is not None
32
32
  if key in self.dataset.variables:
33
- zenith_angle = self.dataset.variables[key][:]
33
+ zenith_angle = np.median(self.dataset.variables[key][:])
34
34
  else:
35
35
  zenith_angle = float(default)
36
36
  logging.warning(f"No zenith angle found, assuming {zenith_angle} degrees")
@@ -103,6 +103,7 @@ class PollyXt(Ceilometer):
103
103
  raise InconsistentDataError(
104
104
  "Inconsistent number of pollyxt bsc / depol files"
105
105
  )
106
+ self._fetch_attributes(bsc_files[0])
106
107
  self.data["range"] = _read_array_from_multiple_files(
107
108
  bsc_files, depol_files, "height"
108
109
  )
@@ -157,6 +158,11 @@ class PollyXt(Ceilometer):
157
158
  return channel
158
159
  raise ValidTimeStampError("No functional pollyXT backscatter channels found")
159
160
 
161
+ def _fetch_attributes(self, file: str) -> None:
162
+ with netCDF4.Dataset(file, "r") as nc:
163
+ if hasattr(nc, "source"):
164
+ self.serial_number = nc.source.lower()
165
+
160
166
 
161
167
  def _read_array_from_multiple_files(files1: list, files2: list, key) -> np.ndarray:
162
168
  array: np.ndarray = np.array([])
@@ -483,8 +483,7 @@ def _plot_disdrometer(ax, data: ndarray, time: ndarray, name: str, unit: str):
483
483
 
484
484
  def _plot_hatpro(ax, data: dict, full_path: str):
485
485
  tb = _pointing_filter(full_path, data["tb"])
486
- time = _pointing_filter(full_path, data["time"])
487
- ax.plot(time, tb, color="royalblue", linestyle="-", linewidth=1)
486
+ ax.plot(data["time"], tb, color="royalblue", linestyle="-", linewidth=1)
488
487
  set_ax(
489
488
  ax,
490
489
  max_y=np.max(tb) + 0.5,
@@ -493,36 +492,21 @@ def _plot_hatpro(ax, data: dict, full_path: str):
493
492
  )
494
493
 
495
494
 
496
- def _elevation_filter(full_path: str, data_field: ndarray, ele_range: tuple) -> ndarray:
497
- """Filters data for specified range of elevation angles."""
498
- with netCDF4.Dataset(full_path) as nc:
499
- if "ele" in nc.variables:
500
- elevation = ptools.read_nc_fields(full_path, "ele")
501
- if data_field.ndim > 1:
502
- data_field = data_field[
503
- (elevation >= ele_range[0]) & (elevation <= ele_range[1]), :
504
- ]
505
- else:
506
- data_field = data_field[
507
- (elevation >= ele_range[0]) & (elevation <= ele_range[1])
508
- ]
509
- return data_field
510
-
511
-
512
495
  def _pointing_filter(
513
- full_path: str, data_field: ndarray, ele_range: tuple = (0, 91), status: int = 0
496
+ full_path: str, data: ndarray, zenith_limit=5, status: int = 0
514
497
  ) -> ndarray:
515
- """Filters data according to pointing flag."""
498
+ """Filters data according to pointing flag and zenith angle."""
516
499
  with netCDF4.Dataset(full_path) as nc:
517
500
  if "pointing_flag" in nc.variables:
518
501
  pointing = ptools.read_nc_fields(full_path, "pointing_flag")
519
- assert isinstance(pointing, ndarray)
520
- pointing_screened = _elevation_filter(full_path, pointing, ele_range)
521
- if data_field.ndim > 1:
522
- data_field = data_field[pointing_screened == status, :]
502
+ zenith_angle = ptools.read_nc_fields(full_path, "zenith_angle")
503
+ if data.ndim > 1:
504
+ data[np.abs(zenith_angle) > zenith_limit, :] = ma.masked
505
+ data[pointing != status, :] = ma.masked
523
506
  else:
524
- data_field = data_field[pointing_screened == status]
525
- return data_field
507
+ data[np.abs(zenith_angle) > zenith_limit] = ma.masked
508
+ data[pointing != status] = ma.masked
509
+ return data
526
510
 
527
511
 
528
512
  def _plot_weather_station(ax, data: ndarray, time: ndarray, name: str):
@@ -1,3 +1,4 @@
1
+ import tempfile
1
2
  from tempfile import NamedTemporaryFile
2
3
 
3
4
  import netCDF4
@@ -12,7 +13,6 @@ def generate_mwr_multi(
12
13
  mwr_l1c_file: str, output_file: str, uuid: str | None = None
13
14
  ) -> str:
14
15
  file_uuid = uuid if uuid is not None else utils.get_uuid()
15
- coeffs = product_tools.get_mwrpy_coeffs(mwr_l1c_file)
16
16
 
17
17
  with (
18
18
  NamedTemporaryFile() as temp_file,
@@ -20,16 +20,19 @@ def generate_mwr_multi(
20
20
  NamedTemporaryFile() as rel_hum_file,
21
21
  NamedTemporaryFile() as t_pot_file,
22
22
  NamedTemporaryFile() as eq_temp_file,
23
+ tempfile.TemporaryDirectory() as temp_dir,
23
24
  ):
25
+ coeffs = product_tools.get_read_mwrpy_coeffs(mwr_l1c_file, temp_dir)
26
+
24
27
  for prod, file in zip(
25
28
  ("2P02", "2P03", "2P04", "2P07", "2P08"),
26
29
  (temp_file, abs_hum_file, rel_hum_file, t_pot_file, eq_temp_file),
27
30
  ):
28
31
  lev2_to_nc(
29
- coeffs,
30
32
  prod,
31
33
  mwr_l1c_file,
32
34
  file.name,
35
+ coeff_files=coeffs,
33
36
  temp_file=temp_file.name if prod not in ("2P02", "2P03") else None,
34
37
  hum_file=abs_hum_file.name if prod not in ("2P02", "2P03") else None,
35
38
  )
@@ -1,3 +1,4 @@
1
+ import tempfile
1
2
  from tempfile import NamedTemporaryFile
2
3
 
3
4
  import netCDF4
@@ -12,19 +13,21 @@ def generate_mwr_single(
12
13
  mwr_l1c_file: str, output_file: str, uuid: str | None = None
13
14
  ) -> str:
14
15
  file_uuid = uuid if uuid is not None else utils.get_uuid()
15
- coeffs = product_tools.get_mwrpy_coeffs(mwr_l1c_file)
16
16
 
17
17
  with (
18
18
  NamedTemporaryFile() as lwp_file,
19
19
  NamedTemporaryFile() as iwv_file,
20
20
  NamedTemporaryFile() as t_prof_file,
21
21
  NamedTemporaryFile() as abs_hum_file,
22
+ tempfile.TemporaryDirectory() as temp_dir,
22
23
  ):
24
+ coeffs = product_tools.get_read_mwrpy_coeffs(mwr_l1c_file, temp_dir)
25
+
23
26
  for prod, file in zip(
24
27
  ("2I01", "2I02", "2P01", "2P03"),
25
28
  (lwp_file, iwv_file, t_prof_file, abs_hum_file),
26
29
  ):
27
- lev2_to_nc(coeffs, prod, mwr_l1c_file, file.name)
30
+ lev2_to_nc(prod, mwr_l1c_file, file.name, coeff_files=coeffs)
28
31
 
29
32
  with (
30
33
  netCDF4.Dataset(output_file, "w", format="NETCDF4_CLASSIC") as nc_output,
@@ -1,8 +1,10 @@
1
1
  """General helper classes and functions for all products."""
2
+ import os
2
3
  from collections import namedtuple
3
4
 
4
5
  import netCDF4
5
6
  import numpy as np
7
+ import requests
6
8
  from numpy import ma
7
9
 
8
10
  from cloudnetpy import constants, utils
@@ -276,4 +278,14 @@ def get_temperature(categorize_file: str) -> np.ndarray:
276
278
 
277
279
  def get_mwrpy_coeffs(nc_file: str) -> str:
278
280
  with netCDF4.Dataset(nc_file) as nc:
279
- return nc.mwrpy_coefficients
281
+ return nc.mwrpy_coefficients.split(", ")
282
+
283
+
284
+ def get_read_mwrpy_coeffs(mwr_l1c_file, folder: str) -> list:
285
+ coeffs = []
286
+ for link in get_mwrpy_coeffs(mwr_l1c_file):
287
+ full_path = os.path.join(folder, link.split("/")[-1])
288
+ with open(full_path, "wb") as f:
289
+ f.write(requests.get(link, timeout=10).content)
290
+ coeffs.append(full_path)
291
+ return coeffs
cloudnetpy/version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  MAJOR = 1
2
- MINOR = 51
2
+ MINOR = 52
3
3
  PATCH = 0
4
4
  __version__ = f"{MAJOR}.{MINOR}.{PATCH}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cloudnetpy
3
- Version: 1.51.0
3
+ Version: 1.52.0
4
4
  Summary: Python package for Cloudnet processing
5
5
  Author: Simo Tukiainen
6
6
  License: MIT License
@@ -39,18 +39,18 @@ Classifier: Topic :: Scientific/Engineering
39
39
  Requires-Python: >=3.10
40
40
  Description-Content-Type: text/markdown
41
41
  License-File: LICENSE
42
- Requires-Dist: cloudnetpy-qc (>=1.10.2)
42
+ Requires-Dist: cloudnetpy-qc >=1.10.2
43
43
  Requires-Dist: matplotlib
44
- Requires-Dist: mwrpy (>=0.1.6)
44
+ Requires-Dist: mwrpy >=0.4.1
45
45
  Requires-Dist: netCDF4
46
46
  Requires-Dist: requests
47
- Requires-Dist: rpgpy (>=0.14.2)
47
+ Requires-Dist: rpgpy >=0.14.2
48
48
  Requires-Dist: scikit-image
49
49
  Requires-Dist: scipy
50
50
  Provides-Extra: dev
51
51
  Requires-Dist: pre-commit ; extra == 'dev'
52
52
  Provides-Extra: extras
53
- Requires-Dist: voodoonet (>=0.1.1) ; extra == 'extras'
53
+ Requires-Dist: voodoonet >=0.1.1 ; extra == 'extras'
54
54
  Provides-Extra: test
55
55
  Requires-Dist: mypy ; extra == 'test'
56
56
  Requires-Dist: pylint ; extra == 'test'
@@ -8,7 +8,7 @@ cloudnetpy/metadata.py,sha256=-oRmr4HWjG_-P8jOjdBYMgRkOYnJKr6jmGIF-38Tno8,5023
8
8
  cloudnetpy/output.py,sha256=6ysoCcrk_pS_fWhyQoJX29V403f7UOloFw0SZjHCwKk,14236
9
9
  cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  cloudnetpy/utils.py,sha256=lKVPF7VpbX2IPXTztI8eJZm8rLne9IuhMngQXKP12vg,26971
11
- cloudnetpy/version.py,sha256=JM39_aFpgmiTfkxyUk3OmST3WcAdFhjWQpwVX81PIW4,72
11
+ cloudnetpy/version.py,sha256=umnfdBNz2LRH86t5ulPJADHW23wlT1a-rX-l2-1pqaQ,72
12
12
  cloudnetpy/categorize/__init__.py,sha256=gP5q3Vis1y9u9OWgA_idlbjfWXYN_S0IBSWdwBhL_uU,69
13
13
  cloudnetpy/categorize/atmos.py,sha256=_8VU0UpzKh7ZFh3TbGs-g3SYMRsRIR5mio0PmP66O7o,12372
14
14
  cloudnetpy/categorize/atmos_utils.py,sha256=6WdfGqzOvnaDW7vlMMrZBJIxW_eHQdjH-Xl_iPv1TTI,3716
@@ -26,20 +26,20 @@ cloudnetpy/categorize/mwr.py,sha256=PSXf-OukhRLlQIpXtkKhcdgiy-fQy-X-CaVh_G42P9s,
26
26
  cloudnetpy/categorize/radar.py,sha256=3Or3_jWxs9rbwJ3XKzl4hPilg0bFdCRMrbkIAuS3H08,12425
27
27
  cloudnetpy/instruments/__init__.py,sha256=-MOKjKNu8PRciX_PXEBRihGVaKrPIc_2sR-n0D9NEkc,374
28
28
  cloudnetpy/instruments/basta.py,sha256=9KeP65uxOTUH1YavaI8sp35n-VcM-WgtqMfB3bxKSPo,3714
29
- cloudnetpy/instruments/campbell_scientific.py,sha256=HQMPLBMHUojNFnt4WV8cvGrNPfSvv_IUQVeVyC3KJyo,4237
29
+ cloudnetpy/instruments/campbell_scientific.py,sha256=Y7Muf7PCIjXCQvH7wNwB8_v_mgG0jUF3LHjPUalgTDw,4853
30
30
  cloudnetpy/instruments/ceilo.py,sha256=_T_rbvy0kB6hol5iwNLtfFqYDM7g4ce9Mlt_Z1Vg2hU,8013
31
- cloudnetpy/instruments/ceilometer.py,sha256=j3Wb2wJlSGLaZkguPe3nv4751TfGd-hJjithKYNOsO4,10498
32
- cloudnetpy/instruments/cl61d.py,sha256=Qk2YQRrRkivc6nW2gOI7KKLt9rR4JAWF0bfbj8Hd_lY,1653
31
+ cloudnetpy/instruments/ceilometer.py,sha256=xgmDJfwmbWeP6xrMMybktEzgA6tVzTWg3kiKmvpZf6g,10563
32
+ cloudnetpy/instruments/cl61d.py,sha256=jETxUIIjILZwkMx9YKG8pI7cUodNjVoc6dYCqaxW1Uw,1813
33
33
  cloudnetpy/instruments/cloudnet_instrument.py,sha256=nnaOtJJotXzYdoMoYGKeLZ1MciDYBx7tqVBFKBQjKL0,3304
34
34
  cloudnetpy/instruments/copernicus.py,sha256=FDS7Rsunp4ieTPFh_T_LXvreNi5_HTv4ZzR3OnTcAX8,5013
35
35
  cloudnetpy/instruments/galileo.py,sha256=F_XyoAb9PR-ifGhqhXziKnv0KfyOh-yEBaE1NgRMzNg,4318
36
- cloudnetpy/instruments/hatpro.py,sha256=H0FgTIxIp3fl59nrTS9z8NyRX7ugkR32B2N1uwEOWtQ,7438
36
+ cloudnetpy/instruments/hatpro.py,sha256=kPIjHrLzMvZj4QBw0DjEMv8hofBSHdLb8hLcLlj6bKs,7631
37
37
  cloudnetpy/instruments/instruments.py,sha256=x_YV4UG05lF-39Yr-K3h5OrxSqrsndpF1K-KM0VURI0,2975
38
- cloudnetpy/instruments/lufft.py,sha256=E2qzvya206gNiML7BSM6vm1lzeOMBePrIuPT81NHPvw,3397
38
+ cloudnetpy/instruments/lufft.py,sha256=lZr_fz2vWQdPr4ZiWW7_wT7WlrMmPsQ2ko6MKygZv50,3332
39
39
  cloudnetpy/instruments/mira.py,sha256=5wmmJGYHVglxaCpSuL92WIisADRD-85k_jlsC9mKLgQ,5063
40
- cloudnetpy/instruments/nc_lidar.py,sha256=9FSsInEM8fdyyhgNXb2INBjb5OEGFE5ZaVSowHjzoCA,1386
40
+ cloudnetpy/instruments/nc_lidar.py,sha256=925SMVhbiadCYW_85EdGr_RNjNryZJbBXiffMRnu6Mc,1397
41
41
  cloudnetpy/instruments/nc_radar.py,sha256=hjmtgLuBPnfsyRInOZeKzAw3oZ82WSumrlPpycqBbjk,5530
42
- cloudnetpy/instruments/pollyxt.py,sha256=Ezuq9rJxQREKz5ed1sdMsuqHZwlKMQC_w5CZSpzQQko,7847
42
+ cloudnetpy/instruments/pollyxt.py,sha256=vs-_MwoC_rmTheqErNMaZjSg1drIKe7NXjtH1L73Mso,8085
43
43
  cloudnetpy/instruments/radiometrics.py,sha256=r73gDsB6ZSVRfMPkkf2mnhVSX8MxGTOuTjQyVmaQ5v8,7304
44
44
  cloudnetpy/instruments/rpg.py,sha256=szH59pXNKp6AfiL65_EQ5MRHSXduhO-uJoryfQpT7Mg,15741
45
45
  cloudnetpy/instruments/rpg_reader.py,sha256=8YaEZogUdIfIgVyZtvZ5f_lqm37SGcvmGCWdhaXG9xI,10711
@@ -91,7 +91,7 @@ cloudnetpy/model_evaluation/tests/unit/test_statistical_methods.py,sha256=CPbFwL
91
91
  cloudnetpy/model_evaluation/tests/unit/test_tools.py,sha256=84b1TxMogC1hyACQol7xthOWNkYXp3oZJF4GFokEkd4,3630
92
92
  cloudnetpy/plotting/__init__.py,sha256=3bhBlLx8o_SjVyuPxgT7mfZ145pd5erwcCoVNuj2z48,62
93
93
  cloudnetpy/plotting/plot_meta.py,sha256=CrRCwh5-YxOrIe2bJXnL9akdUGi-amsUCCHc5VoHAL8,26217
94
- cloudnetpy/plotting/plotting.py,sha256=ynjzRm6o5yUO2YI5robhVyiOYaGN88hoxU_FkPfhRaY,28174
94
+ cloudnetpy/plotting/plotting.py,sha256=Kj4Su_cq-znqAeDTUVBiWf1eilGYg00WX8zqetQ20lI,27523
95
95
  cloudnetpy/products/__init__.py,sha256=hGkngQT-YAC5cmDiHkSkQw2ZBrg0hN2z40Fizz0QU5Y,210
96
96
  cloudnetpy/products/classification.py,sha256=0Y5dEVDZFbq3UcFnyHomml5Au12SSMVznQTgAMyqh2I,7701
97
97
  cloudnetpy/products/der.py,sha256=zDehcsSCwDTADmxrK4Dmy5VcsrJmDbb-t_SiSU-C3M0,12241
@@ -102,12 +102,12 @@ cloudnetpy/products/ier.py,sha256=z0g0VKtnow9QlD492f6z1jPtslqvfmBBuITTrLYH3cI,77
102
102
  cloudnetpy/products/iwc.py,sha256=0sAGYcTGOJcVH3MxqGxuwxiUpiEG0NuPg49gPsI0wLo,10076
103
103
  cloudnetpy/products/lwc.py,sha256=8G8pJppEsLZjXOvX5xvXEqEVSCMZZLfIeOoAMX6Gnu8,18642
104
104
  cloudnetpy/products/mie_lu_tables.nc,sha256=It4fYpqJXlqOgL8jeZ-PxGzP08PMrELIDVe55y9ob58,16637951
105
- cloudnetpy/products/mwr_multi.py,sha256=9dw5DqU9uae54SDk0Pjzp4EKtQrjo1DeP-Xx41NEF_g,2804
106
- cloudnetpy/products/mwr_single.py,sha256=tfUYvkVf_Hh1GcpBnjjE8T30EYzyYc07UuzGJCBME-8,2931
107
- cloudnetpy/products/product_tools.py,sha256=Gk5e4N1m071IIFT9dy9lUvcDICsMYx-pMEtcWTJ54nw,9739
105
+ cloudnetpy/products/mwr_multi.py,sha256=DAehj30BjrkSvaEs1QrTN02lgHTdzSgP3E_vv35bvok,2903
106
+ cloudnetpy/products/mwr_single.py,sha256=nKl9eenNQXqpdsSxyKrnpCeoXRBcQnpkbESVceOdnRw,3030
107
+ cloudnetpy/products/product_tools.py,sha256=KLvQKRkPrzZXT4_mFh2O5oJ14kf6nEyYd0sCaWlR0gY,10119
108
108
  docs/source/conf.py,sha256=baQlgkkUGJi4952W6NRhLkIBbRtwFgqrIOBuEeSCLfk,1488
109
- cloudnetpy-1.51.0.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
110
- cloudnetpy-1.51.0.dist-info/METADATA,sha256=gpZm8SXKMmrzUrdD7AtO8cyjxlW_8aKz4DuOk5lz8LA,5759
111
- cloudnetpy-1.51.0.dist-info/WHEEL,sha256=AtBG6SXL3KF_v0NxLf0ehyVOh0cold-JbJYXNGorC6Q,92
112
- cloudnetpy-1.51.0.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
113
- cloudnetpy-1.51.0.dist-info/RECORD,,
109
+ cloudnetpy-1.52.0.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
110
+ cloudnetpy-1.52.0.dist-info/METADATA,sha256=ZWYxghjfTvHgL8ke4sT5Lxg_Br6MuEhUD_0vGt9J6H0,5751
111
+ cloudnetpy-1.52.0.dist-info/WHEEL,sha256=5sUXSg9e4bi7lTLOHcm6QEYwO5TIF1TNbTSVFVjcJcc,92
112
+ cloudnetpy-1.52.0.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
113
+ cloudnetpy-1.52.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.0)
2
+ Generator: bdist_wheel (0.41.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5