cloudnetpy 1.49.8__py3-none-any.whl → 1.50.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cloudnetpy/instruments/campbell_scientific.py +110 -0
- cloudnetpy/instruments/ceilo.py +25 -6
- cloudnetpy/instruments/instruments.py +8 -0
- cloudnetpy/version.py +2 -2
- {cloudnetpy-1.49.8.dist-info → cloudnetpy-1.50.0.dist-info}/METADATA +1 -1
- {cloudnetpy-1.49.8.dist-info → cloudnetpy-1.50.0.dist-info}/RECORD +9 -8
- {cloudnetpy-1.49.8.dist-info → cloudnetpy-1.50.0.dist-info}/LICENSE +0 -0
- {cloudnetpy-1.49.8.dist-info → cloudnetpy-1.50.0.dist-info}/WHEEL +0 -0
- {cloudnetpy-1.49.8.dist-info → cloudnetpy-1.50.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,110 @@
|
|
1
|
+
import logging
|
2
|
+
import re
|
3
|
+
from datetime import datetime
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
|
7
|
+
from cloudnetpy import utils
|
8
|
+
from cloudnetpy.exceptions import ValidTimeStampError
|
9
|
+
from cloudnetpy.instruments import instruments
|
10
|
+
from cloudnetpy.instruments.ceilometer import Ceilometer
|
11
|
+
|
12
|
+
|
13
|
+
class Cs135(Ceilometer):
|
14
|
+
def __init__(
|
15
|
+
self, full_path: str, site_meta: dict, expected_date: str | None = None
|
16
|
+
):
|
17
|
+
super().__init__()
|
18
|
+
self.full_path = full_path
|
19
|
+
self.site_meta = site_meta
|
20
|
+
self.expected_date = expected_date
|
21
|
+
self.data = {}
|
22
|
+
self.metadata = {}
|
23
|
+
self.instrument = instruments.CS135
|
24
|
+
|
25
|
+
def read_ceilometer_file(self, calibration_factor: float | None = None) -> None:
|
26
|
+
with open(self.full_path, mode="r", encoding="utf-8") as f:
|
27
|
+
lines = f.readlines()
|
28
|
+
timestamps, profiles, scales, tilt_angles = [], [], [], []
|
29
|
+
range_resolution, n_gates = 0, 0
|
30
|
+
for i, line in enumerate(lines):
|
31
|
+
line_splat = line.strip().split(",")
|
32
|
+
if is_timestamp(line_splat[0]):
|
33
|
+
timestamp = datetime.strptime(line_splat[0], "%Y-%m-%dT%H:%M:%S.%f")
|
34
|
+
try:
|
35
|
+
self._check_timestamp(timestamp)
|
36
|
+
except ValidTimeStampError:
|
37
|
+
continue
|
38
|
+
timestamps.append(timestamp)
|
39
|
+
_line1 = line_splat[1]
|
40
|
+
if len(_line1) != 11:
|
41
|
+
raise NotImplementedError("Unknown message number")
|
42
|
+
if (msg_no := _line1[-4:-1]) != "002":
|
43
|
+
raise NotImplementedError(
|
44
|
+
f"Message number {msg_no} not implemented"
|
45
|
+
)
|
46
|
+
_line3 = lines[i + 2].strip().split(" ")
|
47
|
+
scale, range_resolution, n_gates, tilt_angle = [
|
48
|
+
int(_line3[ind]) for ind in [0, 1, 2, 5]
|
49
|
+
]
|
50
|
+
scales.append(scale)
|
51
|
+
tilt_angles.append(tilt_angle)
|
52
|
+
_line4 = lines[i + 3].strip()
|
53
|
+
profiles.append(_hex2backscatter(_line4, n_gates))
|
54
|
+
|
55
|
+
if len(timestamps) == 0:
|
56
|
+
raise ValidTimeStampError("No valid timestamps found in the file")
|
57
|
+
array = self._handle_large_values(np.array(profiles))
|
58
|
+
self.data["beta_raw"] = _scale_backscatter(array, scales)
|
59
|
+
if calibration_factor is None:
|
60
|
+
calibration_factor = 1.0
|
61
|
+
self.data["beta_raw"] *= calibration_factor
|
62
|
+
self.data["calibration_factor"] = calibration_factor
|
63
|
+
self.data["range"] = (
|
64
|
+
np.arange(n_gates) * range_resolution + range_resolution / 2
|
65
|
+
)
|
66
|
+
self.data["time"] = utils.datetime2decimal_hours(timestamps)
|
67
|
+
self.data["zenith_angle"] = np.median(tilt_angles)
|
68
|
+
|
69
|
+
def _check_timestamp(self, timestamp: datetime):
|
70
|
+
timestamp_components = str(timestamp.date()).split("-")
|
71
|
+
if self.expected_date is not None:
|
72
|
+
if timestamp_components != self.expected_date.split("-"):
|
73
|
+
raise ValidTimeStampError
|
74
|
+
if not self.date:
|
75
|
+
self.date = timestamp_components
|
76
|
+
assert timestamp_components == self.date
|
77
|
+
|
78
|
+
@staticmethod
|
79
|
+
def _handle_large_values(array: np.ndarray) -> np.ndarray:
|
80
|
+
ind = np.where(array > 524287)
|
81
|
+
if ind[0].size > 0:
|
82
|
+
array[ind] -= 1048576
|
83
|
+
return array
|
84
|
+
|
85
|
+
|
86
|
+
def is_timestamp(timestamp: str) -> bool:
|
87
|
+
"""Tests if the input string is formatted as -yyyy-mm-dd hh:mm:ss"""
|
88
|
+
reg_exp = re.compile(r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{6}")
|
89
|
+
if reg_exp.match(timestamp) is not None:
|
90
|
+
return True
|
91
|
+
return False
|
92
|
+
|
93
|
+
|
94
|
+
def _hex2backscatter(data: str, n_gates: int):
|
95
|
+
"""Converts hex string to backscatter values."""
|
96
|
+
n_chars = 5
|
97
|
+
return [
|
98
|
+
int(data[i : i + n_chars], 16) for i in range(0, n_gates * n_chars, n_chars)
|
99
|
+
]
|
100
|
+
|
101
|
+
|
102
|
+
def _scale_backscatter(data: np.ndarray, scales: list) -> np.ndarray:
|
103
|
+
"""Scales backscatter values."""
|
104
|
+
unit_conversion_factor = 1e-8
|
105
|
+
scales_array = np.array(scales)
|
106
|
+
ind = np.where(scales_array != 100)
|
107
|
+
if ind[0].size > 0:
|
108
|
+
logging.info(f"{ind[0].size} profiles have not 100% scaling")
|
109
|
+
data[ind, :] *= scales_array[ind] / 100
|
110
|
+
return data * unit_conversion_factor
|
cloudnetpy/instruments/ceilo.py
CHANGED
@@ -4,6 +4,7 @@ from itertools import islice
|
|
4
4
|
import netCDF4
|
5
5
|
|
6
6
|
from cloudnetpy import output
|
7
|
+
from cloudnetpy.instruments.campbell_scientific import Cs135
|
7
8
|
from cloudnetpy.instruments.cl61d import Cl61d
|
8
9
|
from cloudnetpy.instruments.lufft import LufftCeilo
|
9
10
|
from cloudnetpy.instruments.vaisala import ClCeilo, Ct25k
|
@@ -40,10 +41,11 @@ def ceilo2nc(
|
|
40
41
|
output_file: Output file name, e.g. 'ceilo.nc'.
|
41
42
|
site_meta: Dictionary containing information about the site and instrument.
|
42
43
|
Required key value pairs are `name` and `altitude` (metres above mean
|
43
|
-
sea level).
|
44
|
-
|
45
|
-
|
46
|
-
|
44
|
+
sea level). Also, 'calibration_factor' is recommended because the default
|
45
|
+
value is probably incorrect. If the backround noise is *not*
|
46
|
+
range-corrected, you must define: {'range_corrected': False}.
|
47
|
+
You can also explicitly set the instrument model with
|
48
|
+
e.g. {'model': 'cl61d'}.
|
47
49
|
uuid: Set specific UUID for the file.
|
48
50
|
date: Expected date as YYYY-MM-DD of all profiles in the file.
|
49
51
|
|
@@ -90,14 +92,31 @@ def ceilo2nc(
|
|
90
92
|
|
91
93
|
def _initialize_ceilo(
|
92
94
|
full_path: str, site_meta: dict, date: str | None = None
|
93
|
-
) -> ClCeilo | Ct25k | LufftCeilo | Cl61d:
|
94
|
-
model
|
95
|
+
) -> ClCeilo | Ct25k | LufftCeilo | Cl61d | Cs135:
|
96
|
+
if "model" in site_meta:
|
97
|
+
if site_meta["model"] not in (
|
98
|
+
"cl31",
|
99
|
+
"cl51",
|
100
|
+
"cl61d",
|
101
|
+
"ct25k",
|
102
|
+
"chm15k",
|
103
|
+
"cs135",
|
104
|
+
):
|
105
|
+
raise ValueError(f"Invalid ceilometer model: {site_meta['model']}")
|
106
|
+
if site_meta["model"] in ("cl31", "cl51"):
|
107
|
+
model = "cl31_or_cl51"
|
108
|
+
else:
|
109
|
+
model = site_meta["model"]
|
110
|
+
else:
|
111
|
+
model = _find_ceilo_model(full_path)
|
95
112
|
if model == "cl31_or_cl51":
|
96
113
|
return ClCeilo(full_path, site_meta, date)
|
97
114
|
if model == "ct25k":
|
98
115
|
return Ct25k(full_path, site_meta, date)
|
99
116
|
if model == "cl61d":
|
100
117
|
return Cl61d(full_path, site_meta, date)
|
118
|
+
if model == "cs135":
|
119
|
+
return Cs135(full_path, site_meta, date)
|
101
120
|
return LufftCeilo(full_path, site_meta, date)
|
102
121
|
|
103
122
|
|
@@ -35,6 +35,14 @@ CL31 = Instrument(
|
|
35
35
|
wavelength=910.0,
|
36
36
|
)
|
37
37
|
|
38
|
+
CS135 = Instrument(
|
39
|
+
manufacturer="Campbell Scientific",
|
40
|
+
domain="lidar",
|
41
|
+
category="ceilometer",
|
42
|
+
model="CS135",
|
43
|
+
wavelength=905.0,
|
44
|
+
)
|
45
|
+
|
38
46
|
CT25K = Instrument(
|
39
47
|
manufacturer="Vaisala",
|
40
48
|
domain="lidar",
|
cloudnetpy/version.py
CHANGED
@@ -8,7 +8,7 @@ cloudnetpy/metadata.py,sha256=-oRmr4HWjG_-P8jOjdBYMgRkOYnJKr6jmGIF-38Tno8,5023
|
|
8
8
|
cloudnetpy/output.py,sha256=6ysoCcrk_pS_fWhyQoJX29V403f7UOloFw0SZjHCwKk,14236
|
9
9
|
cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
cloudnetpy/utils.py,sha256=lKVPF7VpbX2IPXTztI8eJZm8rLne9IuhMngQXKP12vg,26971
|
11
|
-
cloudnetpy/version.py,sha256=
|
11
|
+
cloudnetpy/version.py,sha256=f1gG8ukA8980EWUjCKF9qA8P9pYzoCtL8gGNb2eCEX0,72
|
12
12
|
cloudnetpy/categorize/__init__.py,sha256=gP5q3Vis1y9u9OWgA_idlbjfWXYN_S0IBSWdwBhL_uU,69
|
13
13
|
cloudnetpy/categorize/atmos.py,sha256=_8VU0UpzKh7ZFh3TbGs-g3SYMRsRIR5mio0PmP66O7o,12372
|
14
14
|
cloudnetpy/categorize/atmos_utils.py,sha256=6WdfGqzOvnaDW7vlMMrZBJIxW_eHQdjH-Xl_iPv1TTI,3716
|
@@ -26,14 +26,15 @@ cloudnetpy/categorize/mwr.py,sha256=PSXf-OukhRLlQIpXtkKhcdgiy-fQy-X-CaVh_G42P9s,
|
|
26
26
|
cloudnetpy/categorize/radar.py,sha256=3Or3_jWxs9rbwJ3XKzl4hPilg0bFdCRMrbkIAuS3H08,12425
|
27
27
|
cloudnetpy/instruments/__init__.py,sha256=-MOKjKNu8PRciX_PXEBRihGVaKrPIc_2sR-n0D9NEkc,374
|
28
28
|
cloudnetpy/instruments/basta.py,sha256=9KeP65uxOTUH1YavaI8sp35n-VcM-WgtqMfB3bxKSPo,3714
|
29
|
-
cloudnetpy/instruments/
|
29
|
+
cloudnetpy/instruments/campbell_scientific.py,sha256=HQMPLBMHUojNFnt4WV8cvGrNPfSvv_IUQVeVyC3KJyo,4237
|
30
|
+
cloudnetpy/instruments/ceilo.py,sha256=_T_rbvy0kB6hol5iwNLtfFqYDM7g4ce9Mlt_Z1Vg2hU,8013
|
30
31
|
cloudnetpy/instruments/ceilometer.py,sha256=j3Wb2wJlSGLaZkguPe3nv4751TfGd-hJjithKYNOsO4,10498
|
31
32
|
cloudnetpy/instruments/cl61d.py,sha256=Qk2YQRrRkivc6nW2gOI7KKLt9rR4JAWF0bfbj8Hd_lY,1653
|
32
33
|
cloudnetpy/instruments/cloudnet_instrument.py,sha256=nnaOtJJotXzYdoMoYGKeLZ1MciDYBx7tqVBFKBQjKL0,3304
|
33
34
|
cloudnetpy/instruments/copernicus.py,sha256=FDS7Rsunp4ieTPFh_T_LXvreNi5_HTv4ZzR3OnTcAX8,5013
|
34
35
|
cloudnetpy/instruments/galileo.py,sha256=F_XyoAb9PR-ifGhqhXziKnv0KfyOh-yEBaE1NgRMzNg,4318
|
35
36
|
cloudnetpy/instruments/hatpro.py,sha256=H0FgTIxIp3fl59nrTS9z8NyRX7ugkR32B2N1uwEOWtQ,7438
|
36
|
-
cloudnetpy/instruments/instruments.py,sha256=
|
37
|
+
cloudnetpy/instruments/instruments.py,sha256=x_YV4UG05lF-39Yr-K3h5OrxSqrsndpF1K-KM0VURI0,2975
|
37
38
|
cloudnetpy/instruments/lufft.py,sha256=E2qzvya206gNiML7BSM6vm1lzeOMBePrIuPT81NHPvw,3397
|
38
39
|
cloudnetpy/instruments/mira.py,sha256=5wmmJGYHVglxaCpSuL92WIisADRD-85k_jlsC9mKLgQ,5063
|
39
40
|
cloudnetpy/instruments/nc_lidar.py,sha256=9FSsInEM8fdyyhgNXb2INBjb5OEGFE5ZaVSowHjzoCA,1386
|
@@ -105,8 +106,8 @@ cloudnetpy/products/mwr_multi.py,sha256=9dw5DqU9uae54SDk0Pjzp4EKtQrjo1DeP-Xx41NE
|
|
105
106
|
cloudnetpy/products/mwr_single.py,sha256=tfUYvkVf_Hh1GcpBnjjE8T30EYzyYc07UuzGJCBME-8,2931
|
106
107
|
cloudnetpy/products/product_tools.py,sha256=Gk5e4N1m071IIFT9dy9lUvcDICsMYx-pMEtcWTJ54nw,9739
|
107
108
|
docs/source/conf.py,sha256=baQlgkkUGJi4952W6NRhLkIBbRtwFgqrIOBuEeSCLfk,1488
|
108
|
-
cloudnetpy-1.
|
109
|
-
cloudnetpy-1.
|
110
|
-
cloudnetpy-1.
|
111
|
-
cloudnetpy-1.
|
112
|
-
cloudnetpy-1.
|
109
|
+
cloudnetpy-1.50.0.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
|
110
|
+
cloudnetpy-1.50.0.dist-info/METADATA,sha256=mzFxNLsFFEPSD86rJ6RmgYmHdx9OA8zYONk3n_SL3h8,5759
|
111
|
+
cloudnetpy-1.50.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
112
|
+
cloudnetpy-1.50.0.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
|
113
|
+
cloudnetpy-1.50.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|