cloudnetpy 1.49.8__py3-none-any.whl → 1.50.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,110 @@
1
+ import logging
2
+ import re
3
+ from datetime import datetime
4
+
5
+ import numpy as np
6
+
7
+ from cloudnetpy import utils
8
+ from cloudnetpy.exceptions import ValidTimeStampError
9
+ from cloudnetpy.instruments import instruments
10
+ from cloudnetpy.instruments.ceilometer import Ceilometer
11
+
12
+
13
+ class Cs135(Ceilometer):
14
+ def __init__(
15
+ self, full_path: str, site_meta: dict, expected_date: str | None = None
16
+ ):
17
+ super().__init__()
18
+ self.full_path = full_path
19
+ self.site_meta = site_meta
20
+ self.expected_date = expected_date
21
+ self.data = {}
22
+ self.metadata = {}
23
+ self.instrument = instruments.CS135
24
+
25
+ def read_ceilometer_file(self, calibration_factor: float | None = None) -> None:
26
+ with open(self.full_path, mode="r", encoding="utf-8") as f:
27
+ lines = f.readlines()
28
+ timestamps, profiles, scales, tilt_angles = [], [], [], []
29
+ range_resolution, n_gates = 0, 0
30
+ for i, line in enumerate(lines):
31
+ line_splat = line.strip().split(",")
32
+ if is_timestamp(line_splat[0]):
33
+ timestamp = datetime.strptime(line_splat[0], "%Y-%m-%dT%H:%M:%S.%f")
34
+ try:
35
+ self._check_timestamp(timestamp)
36
+ except ValidTimeStampError:
37
+ continue
38
+ timestamps.append(timestamp)
39
+ _line1 = line_splat[1]
40
+ if len(_line1) != 11:
41
+ raise NotImplementedError("Unknown message number")
42
+ if (msg_no := _line1[-4:-1]) != "002":
43
+ raise NotImplementedError(
44
+ f"Message number {msg_no} not implemented"
45
+ )
46
+ _line3 = lines[i + 2].strip().split(" ")
47
+ scale, range_resolution, n_gates, tilt_angle = [
48
+ int(_line3[ind]) for ind in [0, 1, 2, 5]
49
+ ]
50
+ scales.append(scale)
51
+ tilt_angles.append(tilt_angle)
52
+ _line4 = lines[i + 3].strip()
53
+ profiles.append(_hex2backscatter(_line4, n_gates))
54
+
55
+ if len(timestamps) == 0:
56
+ raise ValidTimeStampError("No valid timestamps found in the file")
57
+ array = self._handle_large_values(np.array(profiles))
58
+ self.data["beta_raw"] = _scale_backscatter(array, scales)
59
+ if calibration_factor is None:
60
+ calibration_factor = 1.0
61
+ self.data["beta_raw"] *= calibration_factor
62
+ self.data["calibration_factor"] = calibration_factor
63
+ self.data["range"] = (
64
+ np.arange(n_gates) * range_resolution + range_resolution / 2
65
+ )
66
+ self.data["time"] = utils.datetime2decimal_hours(timestamps)
67
+ self.data["zenith_angle"] = np.median(tilt_angles)
68
+
69
+ def _check_timestamp(self, timestamp: datetime):
70
+ timestamp_components = str(timestamp.date()).split("-")
71
+ if self.expected_date is not None:
72
+ if timestamp_components != self.expected_date.split("-"):
73
+ raise ValidTimeStampError
74
+ if not self.date:
75
+ self.date = timestamp_components
76
+ assert timestamp_components == self.date
77
+
78
+ @staticmethod
79
+ def _handle_large_values(array: np.ndarray) -> np.ndarray:
80
+ ind = np.where(array > 524287)
81
+ if ind[0].size > 0:
82
+ array[ind] -= 1048576
83
+ return array
84
+
85
+
86
+ def is_timestamp(timestamp: str) -> bool:
87
+ """Tests if the input string is formatted as -yyyy-mm-dd hh:mm:ss"""
88
+ reg_exp = re.compile(r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{6}")
89
+ if reg_exp.match(timestamp) is not None:
90
+ return True
91
+ return False
92
+
93
+
94
+ def _hex2backscatter(data: str, n_gates: int):
95
+ """Converts hex string to backscatter values."""
96
+ n_chars = 5
97
+ return [
98
+ int(data[i : i + n_chars], 16) for i in range(0, n_gates * n_chars, n_chars)
99
+ ]
100
+
101
+
102
+ def _scale_backscatter(data: np.ndarray, scales: list) -> np.ndarray:
103
+ """Scales backscatter values."""
104
+ unit_conversion_factor = 1e-8
105
+ scales_array = np.array(scales)
106
+ ind = np.where(scales_array != 100)
107
+ if ind[0].size > 0:
108
+ logging.info(f"{ind[0].size} profiles have not 100% scaling")
109
+ data[ind, :] *= scales_array[ind] / 100
110
+ return data * unit_conversion_factor
@@ -4,6 +4,7 @@ from itertools import islice
4
4
  import netCDF4
5
5
 
6
6
  from cloudnetpy import output
7
+ from cloudnetpy.instruments.campbell_scientific import Cs135
7
8
  from cloudnetpy.instruments.cl61d import Cl61d
8
9
  from cloudnetpy.instruments.lufft import LufftCeilo
9
10
  from cloudnetpy.instruments.vaisala import ClCeilo, Ct25k
@@ -40,10 +41,11 @@ def ceilo2nc(
40
41
  output_file: Output file name, e.g. 'ceilo.nc'.
41
42
  site_meta: Dictionary containing information about the site and instrument.
42
43
  Required key value pairs are `name` and `altitude` (metres above mean
43
- sea level).
44
- Also 'calibration_factor' is recommended because the default value is
45
- probably incorrect. If the backround noise is *not* range-corrected,
46
- you must define: {'range_corrected': False}.
44
+ sea level). Also, 'calibration_factor' is recommended because the default
45
+ value is probably incorrect. If the backround noise is *not*
46
+ range-corrected, you must define: {'range_corrected': False}.
47
+ You can also explicitly set the instrument model with
48
+ e.g. {'model': 'cl61d'}.
47
49
  uuid: Set specific UUID for the file.
48
50
  date: Expected date as YYYY-MM-DD of all profiles in the file.
49
51
 
@@ -90,14 +92,31 @@ def ceilo2nc(
90
92
 
91
93
  def _initialize_ceilo(
92
94
  full_path: str, site_meta: dict, date: str | None = None
93
- ) -> ClCeilo | Ct25k | LufftCeilo | Cl61d:
94
- model = _find_ceilo_model(full_path)
95
+ ) -> ClCeilo | Ct25k | LufftCeilo | Cl61d | Cs135:
96
+ if "model" in site_meta:
97
+ if site_meta["model"] not in (
98
+ "cl31",
99
+ "cl51",
100
+ "cl61d",
101
+ "ct25k",
102
+ "chm15k",
103
+ "cs135",
104
+ ):
105
+ raise ValueError(f"Invalid ceilometer model: {site_meta['model']}")
106
+ if site_meta["model"] in ("cl31", "cl51"):
107
+ model = "cl31_or_cl51"
108
+ else:
109
+ model = site_meta["model"]
110
+ else:
111
+ model = _find_ceilo_model(full_path)
95
112
  if model == "cl31_or_cl51":
96
113
  return ClCeilo(full_path, site_meta, date)
97
114
  if model == "ct25k":
98
115
  return Ct25k(full_path, site_meta, date)
99
116
  if model == "cl61d":
100
117
  return Cl61d(full_path, site_meta, date)
118
+ if model == "cs135":
119
+ return Cs135(full_path, site_meta, date)
101
120
  return LufftCeilo(full_path, site_meta, date)
102
121
 
103
122
 
@@ -35,6 +35,14 @@ CL31 = Instrument(
35
35
  wavelength=910.0,
36
36
  )
37
37
 
38
+ CS135 = Instrument(
39
+ manufacturer="Campbell Scientific",
40
+ domain="lidar",
41
+ category="ceilometer",
42
+ model="CS135",
43
+ wavelength=905.0,
44
+ )
45
+
38
46
  CT25K = Instrument(
39
47
  manufacturer="Vaisala",
40
48
  domain="lidar",
cloudnetpy/version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  MAJOR = 1
2
- MINOR = 49
3
- PATCH = 8
2
+ MINOR = 50
3
+ PATCH = 0
4
4
  __version__ = f"{MAJOR}.{MINOR}.{PATCH}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cloudnetpy
3
- Version: 1.49.8
3
+ Version: 1.50.0
4
4
  Summary: Python package for Cloudnet processing
5
5
  Author: Simo Tukiainen
6
6
  License: MIT License
@@ -8,7 +8,7 @@ cloudnetpy/metadata.py,sha256=-oRmr4HWjG_-P8jOjdBYMgRkOYnJKr6jmGIF-38Tno8,5023
8
8
  cloudnetpy/output.py,sha256=6ysoCcrk_pS_fWhyQoJX29V403f7UOloFw0SZjHCwKk,14236
9
9
  cloudnetpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  cloudnetpy/utils.py,sha256=lKVPF7VpbX2IPXTztI8eJZm8rLne9IuhMngQXKP12vg,26971
11
- cloudnetpy/version.py,sha256=H8Z-e1lp7jMV7M-Dsgt0gAyPgaut-wn22FPaAKGj-PY,72
11
+ cloudnetpy/version.py,sha256=f1gG8ukA8980EWUjCKF9qA8P9pYzoCtL8gGNb2eCEX0,72
12
12
  cloudnetpy/categorize/__init__.py,sha256=gP5q3Vis1y9u9OWgA_idlbjfWXYN_S0IBSWdwBhL_uU,69
13
13
  cloudnetpy/categorize/atmos.py,sha256=_8VU0UpzKh7ZFh3TbGs-g3SYMRsRIR5mio0PmP66O7o,12372
14
14
  cloudnetpy/categorize/atmos_utils.py,sha256=6WdfGqzOvnaDW7vlMMrZBJIxW_eHQdjH-Xl_iPv1TTI,3716
@@ -26,14 +26,15 @@ cloudnetpy/categorize/mwr.py,sha256=PSXf-OukhRLlQIpXtkKhcdgiy-fQy-X-CaVh_G42P9s,
26
26
  cloudnetpy/categorize/radar.py,sha256=3Or3_jWxs9rbwJ3XKzl4hPilg0bFdCRMrbkIAuS3H08,12425
27
27
  cloudnetpy/instruments/__init__.py,sha256=-MOKjKNu8PRciX_PXEBRihGVaKrPIc_2sR-n0D9NEkc,374
28
28
  cloudnetpy/instruments/basta.py,sha256=9KeP65uxOTUH1YavaI8sp35n-VcM-WgtqMfB3bxKSPo,3714
29
- cloudnetpy/instruments/ceilo.py,sha256=UouuG0cUf_iQQOwsWjX6PajkkmiUkiefnqjnmkh_8r4,7341
29
+ cloudnetpy/instruments/campbell_scientific.py,sha256=HQMPLBMHUojNFnt4WV8cvGrNPfSvv_IUQVeVyC3KJyo,4237
30
+ cloudnetpy/instruments/ceilo.py,sha256=_T_rbvy0kB6hol5iwNLtfFqYDM7g4ce9Mlt_Z1Vg2hU,8013
30
31
  cloudnetpy/instruments/ceilometer.py,sha256=j3Wb2wJlSGLaZkguPe3nv4751TfGd-hJjithKYNOsO4,10498
31
32
  cloudnetpy/instruments/cl61d.py,sha256=Qk2YQRrRkivc6nW2gOI7KKLt9rR4JAWF0bfbj8Hd_lY,1653
32
33
  cloudnetpy/instruments/cloudnet_instrument.py,sha256=nnaOtJJotXzYdoMoYGKeLZ1MciDYBx7tqVBFKBQjKL0,3304
33
34
  cloudnetpy/instruments/copernicus.py,sha256=FDS7Rsunp4ieTPFh_T_LXvreNi5_HTv4ZzR3OnTcAX8,5013
34
35
  cloudnetpy/instruments/galileo.py,sha256=F_XyoAb9PR-ifGhqhXziKnv0KfyOh-yEBaE1NgRMzNg,4318
35
36
  cloudnetpy/instruments/hatpro.py,sha256=H0FgTIxIp3fl59nrTS9z8NyRX7ugkR32B2N1uwEOWtQ,7438
36
- cloudnetpy/instruments/instruments.py,sha256=FGiN0369--1z8uYzgDP9_1A7DFLL_Cl4-Ca-OMsjBdI,2824
37
+ cloudnetpy/instruments/instruments.py,sha256=x_YV4UG05lF-39Yr-K3h5OrxSqrsndpF1K-KM0VURI0,2975
37
38
  cloudnetpy/instruments/lufft.py,sha256=E2qzvya206gNiML7BSM6vm1lzeOMBePrIuPT81NHPvw,3397
38
39
  cloudnetpy/instruments/mira.py,sha256=5wmmJGYHVglxaCpSuL92WIisADRD-85k_jlsC9mKLgQ,5063
39
40
  cloudnetpy/instruments/nc_lidar.py,sha256=9FSsInEM8fdyyhgNXb2INBjb5OEGFE5ZaVSowHjzoCA,1386
@@ -105,8 +106,8 @@ cloudnetpy/products/mwr_multi.py,sha256=9dw5DqU9uae54SDk0Pjzp4EKtQrjo1DeP-Xx41NE
105
106
  cloudnetpy/products/mwr_single.py,sha256=tfUYvkVf_Hh1GcpBnjjE8T30EYzyYc07UuzGJCBME-8,2931
106
107
  cloudnetpy/products/product_tools.py,sha256=Gk5e4N1m071IIFT9dy9lUvcDICsMYx-pMEtcWTJ54nw,9739
107
108
  docs/source/conf.py,sha256=baQlgkkUGJi4952W6NRhLkIBbRtwFgqrIOBuEeSCLfk,1488
108
- cloudnetpy-1.49.8.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
109
- cloudnetpy-1.49.8.dist-info/METADATA,sha256=2r1KgQj196QOuyymMZ4ZXghE6kqw3cJSGn-2Y7yFutA,5759
110
- cloudnetpy-1.49.8.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
111
- cloudnetpy-1.49.8.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
112
- cloudnetpy-1.49.8.dist-info/RECORD,,
109
+ cloudnetpy-1.50.0.dist-info/LICENSE,sha256=wcZF72bdaoG9XugpyE95Juo7lBQOwLuTKBOhhtANZMM,1094
110
+ cloudnetpy-1.50.0.dist-info/METADATA,sha256=mzFxNLsFFEPSD86rJ6RmgYmHdx9OA8zYONk3n_SL3h8,5759
111
+ cloudnetpy-1.50.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
112
+ cloudnetpy-1.50.0.dist-info/top_level.txt,sha256=ibSPWRr6ojS1i11rtBFz2_gkIe68mggj7aeswYfaOo0,16
113
+ cloudnetpy-1.50.0.dist-info/RECORD,,