cloe-nessy 0.3.1__py3-none-any.whl → 0.3.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cloe_nessy/pipeline/actions/__init__.py +2 -0
- cloe_nessy/pipeline/actions/transform_clean_column_names.py +77 -0
- cloe_nessy/pipeline/actions/transform_deduplication.py +125 -0
- cloe_nessy/pipeline/actions/transform_distinct.py +18 -1
- cloe_nessy/session/session_manager.py +13 -7
- {cloe_nessy-0.3.1.dist-info → cloe_nessy-0.3.3.dist-info}/METADATA +1 -1
- {cloe_nessy-0.3.1.dist-info → cloe_nessy-0.3.3.dist-info}/RECORD +9 -7
- {cloe_nessy-0.3.1.dist-info → cloe_nessy-0.3.3.dist-info}/WHEEL +1 -1
- {cloe_nessy-0.3.1.dist-info → cloe_nessy-0.3.3.dist-info}/top_level.txt +0 -0
|
@@ -7,6 +7,7 @@ from .read_excel import ReadExcelAction
|
|
|
7
7
|
from .read_files import ReadFilesAction
|
|
8
8
|
from .read_metadata_yaml import ReadMetadataYAMLAction
|
|
9
9
|
from .transform_change_datatype import TransformChangeDatatypeAction
|
|
10
|
+
from .transform_clean_column_names import TransformCleanColumnNamesAction
|
|
10
11
|
from .transform_concat_columns import TransformConcatColumnsAction
|
|
11
12
|
from .transform_decode import TransformDecodeAction
|
|
12
13
|
from .transform_distinct import TransformDistinctAction
|
|
@@ -39,6 +40,7 @@ __all__ = [
|
|
|
39
40
|
"TransformFilterAction",
|
|
40
41
|
"TransformUnionAction",
|
|
41
42
|
"TransformChangeDatatypeAction",
|
|
43
|
+
"TransformCleanColumnNamesAction",
|
|
42
44
|
"TransformConcatColumnsAction",
|
|
43
45
|
"TransformDecodeAction",
|
|
44
46
|
"TransformDistinctAction",
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import re
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
import pyspark.sql.functions as F
|
|
6
|
+
import pyspark.sql.types as T
|
|
7
|
+
|
|
8
|
+
from ..pipeline_action import PipelineAction
|
|
9
|
+
from ..pipeline_context import PipelineContext
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TransformCleanColumnNamesAction(PipelineAction):
|
|
13
|
+
"""Fixes column names in the DataFrame to be valid.
|
|
14
|
+
|
|
15
|
+
Removes invalid characters from the column names, including the fields of a struct and
|
|
16
|
+
replaces a single leading underscore by a double underscore.
|
|
17
|
+
|
|
18
|
+
Example:
|
|
19
|
+
```yaml
|
|
20
|
+
Clean Column Names:
|
|
21
|
+
action: TRANSFORM_CLEAN_COLUMN_NAMES
|
|
22
|
+
```
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
name: str = "TRANSFORM_CLEAN_COLUMN_NAMES"
|
|
26
|
+
|
|
27
|
+
def run(
|
|
28
|
+
self,
|
|
29
|
+
context: PipelineContext,
|
|
30
|
+
**_: Any,
|
|
31
|
+
) -> PipelineContext:
|
|
32
|
+
"""Fixes column names in the DataFrame to be valid.
|
|
33
|
+
|
|
34
|
+
Removes invalid characters from the column names, including the fields of a struct and
|
|
35
|
+
replaces a single leading underscore by a double underscore.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
context: The context in which this Action is executed.
|
|
39
|
+
|
|
40
|
+
Raises:
|
|
41
|
+
ValueError: If the data from the context is None.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
The context after the execution of this Action, containing the DataFrame with cleaned column names.
|
|
45
|
+
"""
|
|
46
|
+
if context.data is None:
|
|
47
|
+
raise ValueError("Data from the context is required for the operation.")
|
|
48
|
+
|
|
49
|
+
with_columns_renamed = {}
|
|
50
|
+
with_columns_casted: dict[str, T.StructType | T.ArrayType | T.MapType] = {}
|
|
51
|
+
|
|
52
|
+
single_underscrore_at_beginning = r"^_(?=[^_])"
|
|
53
|
+
|
|
54
|
+
for c in context.data.schema:
|
|
55
|
+
old_name = c.name
|
|
56
|
+
new_name = re.sub(single_underscrore_at_beginning, "__", re.sub("\W", "_", old_name))
|
|
57
|
+
with_columns_renamed[old_name] = new_name
|
|
58
|
+
|
|
59
|
+
if isinstance(c.dataType, (T.StructType | T.ArrayType | T.MapType)):
|
|
60
|
+
old_column_schema = c.dataType.json()
|
|
61
|
+
new_column_schema = re.sub(
|
|
62
|
+
r'(?<="name":")[^"]+',
|
|
63
|
+
lambda m: re.sub("\W", "_", str(m.group())),
|
|
64
|
+
old_column_schema,
|
|
65
|
+
)
|
|
66
|
+
if isinstance(c.dataType, T.StructType):
|
|
67
|
+
with_columns_casted[new_name] = T.StructType.fromJson(json.loads(new_column_schema))
|
|
68
|
+
elif isinstance(c.dataType, T.ArrayType):
|
|
69
|
+
with_columns_casted[new_name] = T.ArrayType.fromJson(json.loads(new_column_schema))
|
|
70
|
+
elif isinstance(c.dataType, T.MapType):
|
|
71
|
+
with_columns_casted[new_name] = T.MapType.fromJson(json.loads(new_column_schema))
|
|
72
|
+
|
|
73
|
+
df = context.data.withColumnsRenamed(with_columns_renamed)
|
|
74
|
+
for c_name, c_type in with_columns_casted.items():
|
|
75
|
+
df = df.withColumn(c_name, F.col(c_name).cast(c_type))
|
|
76
|
+
|
|
77
|
+
return context.from_existing(data=df) # type: ignore
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
import random
|
|
2
|
+
import string
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
import pyspark.sql.functions as F
|
|
6
|
+
import pyspark.sql.types as T
|
|
7
|
+
from pyspark.sql import Window
|
|
8
|
+
|
|
9
|
+
from ..pipeline_action import PipelineAction
|
|
10
|
+
from ..pipeline_context import PipelineContext
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class TransformDeduplication(PipelineAction):
|
|
14
|
+
"""Deduplicates the data from the given DataFrame.
|
|
15
|
+
|
|
16
|
+
This method deduplicates the data where the key columns are the same
|
|
17
|
+
and keeps the entry with the highest values in the order_by_columns
|
|
18
|
+
(can be changed to lowest by setting the parameter descending to false).
|
|
19
|
+
|
|
20
|
+
Example:
|
|
21
|
+
```yaml
|
|
22
|
+
Deduplicate Columns:
|
|
23
|
+
action: TRANSFORM_DEDUPLICATION
|
|
24
|
+
options:
|
|
25
|
+
key_columns:
|
|
26
|
+
- id
|
|
27
|
+
order_by_columns:
|
|
28
|
+
- source_file_modification_time
|
|
29
|
+
```
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
name: str = "TRANSFORM_DEDUPLICATION"
|
|
33
|
+
|
|
34
|
+
def run(
|
|
35
|
+
self,
|
|
36
|
+
context: PipelineContext,
|
|
37
|
+
*,
|
|
38
|
+
key_columns: list[str] | None = None,
|
|
39
|
+
order_by_columns: list[str] | None = None,
|
|
40
|
+
descending: bool = True,
|
|
41
|
+
**_: Any,
|
|
42
|
+
) -> PipelineContext:
|
|
43
|
+
"""Deduplicates the data based on key columns and order by columns.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
context: The context in which this Action is executed.
|
|
47
|
+
key_columns: A list of the key column names. The returned data only keeps one
|
|
48
|
+
line of data with the same key columns.
|
|
49
|
+
order_by_columns: A list of order by column names. The returned data keeps the
|
|
50
|
+
first line of data with the same key columns ordered by these columns.
|
|
51
|
+
descending: Whether to sort descending or ascending.
|
|
52
|
+
|
|
53
|
+
Raises:
|
|
54
|
+
ValueError: If no key_columns are specified.
|
|
55
|
+
ValueError: If no order_by_columns are specified.
|
|
56
|
+
ValueError: If the data from context is None.
|
|
57
|
+
ValueError: If key_columns and order_by_columns overlap.
|
|
58
|
+
ValueError: If key_columns or order_by_columns contain Nulls.
|
|
59
|
+
|
|
60
|
+
Returns:
|
|
61
|
+
The context after the execution of this Action, containing the DataFrame with the deduplicated data.
|
|
62
|
+
"""
|
|
63
|
+
if context.data is None:
|
|
64
|
+
raise ValueError("Data from the context is required for the operation.")
|
|
65
|
+
if key_columns is None:
|
|
66
|
+
raise ValueError("Please provide at least one key column.")
|
|
67
|
+
if order_by_columns is None:
|
|
68
|
+
raise ValueError("Please provide at least one order by column.")
|
|
69
|
+
|
|
70
|
+
# check if the key_columns and order_by_columns are the same
|
|
71
|
+
if len(set(key_columns) & set(order_by_columns)) != 0:
|
|
72
|
+
raise ValueError("The key_columns and order_by_columns cannot contain the same column")
|
|
73
|
+
|
|
74
|
+
# check if the key_columns and order_by_columns are not null
|
|
75
|
+
df_nulls = context.data.filter(F.greatest(*[F.col(c).isNull() for c in key_columns + order_by_columns]) == 1)
|
|
76
|
+
if df_nulls.head(1): # if the filteredDataFrame is not empty
|
|
77
|
+
raise ValueError(
|
|
78
|
+
"The key_columns and order_by_columns cannot be null. Please check the quality of the provided columns (null handling)"
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# check if the order_by columns have the preferred data types
|
|
82
|
+
recommended_order_by_data_types = [
|
|
83
|
+
T.TimestampType(),
|
|
84
|
+
T.TimestampNTZType(),
|
|
85
|
+
T.DataType(),
|
|
86
|
+
T.IntegerType(),
|
|
87
|
+
T.LongType(),
|
|
88
|
+
T.DoubleType(),
|
|
89
|
+
T.FloatType(),
|
|
90
|
+
T.DecimalType(),
|
|
91
|
+
]
|
|
92
|
+
|
|
93
|
+
for c in context.data.schema:
|
|
94
|
+
if c.name in order_by_columns and c.dataType not in recommended_order_by_data_types:
|
|
95
|
+
log_message = (
|
|
96
|
+
f"action_name : {self.name} | message : order_by_column `{c.name}` is of type {c.dataType}; "
|
|
97
|
+
"recommended data types are {recommended_order_by_data_types}"
|
|
98
|
+
)
|
|
99
|
+
self._console_logger.warning(log_message)
|
|
100
|
+
self._tabular_logger.warning(log_message)
|
|
101
|
+
|
|
102
|
+
# sort the order_by columns in the preferred order
|
|
103
|
+
if descending:
|
|
104
|
+
order_by_list = [F.col(col_name).desc() for col_name in order_by_columns]
|
|
105
|
+
else:
|
|
106
|
+
order_by_list = [F.col(col_name).asc() for col_name in order_by_columns]
|
|
107
|
+
|
|
108
|
+
# create the window specification
|
|
109
|
+
window_specification = Window.partitionBy(key_columns).orderBy(order_by_list)
|
|
110
|
+
|
|
111
|
+
# generate a column name that is not in the input dataframe
|
|
112
|
+
def generate_random_string(length):
|
|
113
|
+
return "".join(random.choice(string.ascii_uppercase) for _ in range(length))
|
|
114
|
+
|
|
115
|
+
row_number_col_name = generate_random_string(20)
|
|
116
|
+
while row_number_col_name in context.data.columns:
|
|
117
|
+
row_number_col_name = generate_random_string(20)
|
|
118
|
+
|
|
119
|
+
# drop the duplicates
|
|
120
|
+
df = (
|
|
121
|
+
context.data.withColumn(row_number_col_name, F.row_number().over(window_specification))
|
|
122
|
+
.filter(F.col(row_number_col_name) == 1)
|
|
123
|
+
.drop(row_number_col_name)
|
|
124
|
+
)
|
|
125
|
+
return context.from_existing(data=df)
|
|
@@ -7,10 +7,16 @@ from ..pipeline_context import PipelineContext
|
|
|
7
7
|
class TransformDistinctAction(PipelineAction):
|
|
8
8
|
"""Selects distinct rows from the DataFrame in the given context.
|
|
9
9
|
|
|
10
|
+
If a subset is given these columns are used for duplicate comparison. If no subset is given all columns are used.
|
|
11
|
+
|
|
10
12
|
Example:
|
|
11
13
|
```yaml
|
|
12
14
|
Decode Columns:
|
|
13
15
|
action: TRANSFORM_DISTINCT
|
|
16
|
+
options:
|
|
17
|
+
subset:
|
|
18
|
+
- first_name
|
|
19
|
+
- last_name
|
|
14
20
|
```
|
|
15
21
|
"""
|
|
16
22
|
|
|
@@ -19,12 +25,15 @@ class TransformDistinctAction(PipelineAction):
|
|
|
19
25
|
def run(
|
|
20
26
|
self,
|
|
21
27
|
context: PipelineContext,
|
|
28
|
+
*,
|
|
29
|
+
subset: list[str] | None = None,
|
|
22
30
|
**_: Any,
|
|
23
31
|
) -> PipelineContext:
|
|
24
32
|
"""Selects distinct rows from the DataFrame in the given context.
|
|
25
33
|
|
|
26
34
|
Args:
|
|
27
35
|
context: The context in which this Action is executed.
|
|
36
|
+
subset: List of column names to use for duplicate comparison (default All columns).
|
|
28
37
|
|
|
29
38
|
Raises:
|
|
30
39
|
ValueError: If the data from the context is None.
|
|
@@ -35,6 +44,14 @@ class TransformDistinctAction(PipelineAction):
|
|
|
35
44
|
if context.data is None:
|
|
36
45
|
raise ValueError("Data from the context is required for the operation.")
|
|
37
46
|
|
|
38
|
-
|
|
47
|
+
# check if all columns that are part of the subset are actually part of the dataframe.
|
|
48
|
+
if subset is not None:
|
|
49
|
+
subset_columns_not_in_dataframe = set(subset) - set(context.data.columns)
|
|
50
|
+
if len(subset_columns_not_in_dataframe) != 0:
|
|
51
|
+
raise ValueError(
|
|
52
|
+
f"The following subset columns are not part of the dataframe: {subset_columns_not_in_dataframe}"
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
df = context.data.dropDuplicates(subset=subset)
|
|
39
56
|
|
|
40
57
|
return context.from_existing(data=df) # type: ignore
|
|
@@ -63,13 +63,13 @@ class SessionManager:
|
|
|
63
63
|
@classmethod
|
|
64
64
|
def get_utils(
|
|
65
65
|
cls,
|
|
66
|
-
) -> Any: # return type should be Union[DBUtils, MsSparkUtils
|
|
67
|
-
"""Get or create a DBUtils or MsSparkUtils instance, depending on the context.
|
|
66
|
+
) -> Any: # return type should be Union[DBUtils, MsSparkUtils, RemoteDbUtils].
|
|
67
|
+
"""Get or create a DBUtils, RemoteDbUtils or MsSparkUtils instance, depending on the context.
|
|
68
68
|
|
|
69
|
-
In Databricks this will return DBUtils,
|
|
69
|
+
In Databricks this will return DBUtils, when using Databricks-Connect it returns RemoteDbUtils, and in Fabric it will return MsSparkUtils.
|
|
70
70
|
|
|
71
71
|
Returns:
|
|
72
|
-
utils: The DBUtils or MsSparkUtils instance.
|
|
72
|
+
utils: The DBUtils, RemoteDbUtils or MsSparkUtils instance.
|
|
73
73
|
|
|
74
74
|
Raises:
|
|
75
75
|
RuntimeError: If the instance cannot be created.
|
|
@@ -88,19 +88,25 @@ class SessionManager:
|
|
|
88
88
|
}
|
|
89
89
|
|
|
90
90
|
try:
|
|
91
|
-
cls._utils = utils_function[cls._env](
|
|
91
|
+
cls._utils = utils_function[cls._env]() # type: ignore
|
|
92
92
|
except Exception as e:
|
|
93
93
|
raise RuntimeError(f"Cannot create utils instance. Error: {e}") from e
|
|
94
94
|
|
|
95
95
|
return cls._utils
|
|
96
96
|
|
|
97
|
+
@classmethod
|
|
97
98
|
def _get_dbutils(cls):
|
|
99
|
+
if cls._env == cls.Environment.DATABRICKS_CONNECT:
|
|
100
|
+
from databricks.sdk import WorkspaceClient
|
|
101
|
+
|
|
102
|
+
return WorkspaceClient().dbutils
|
|
103
|
+
|
|
98
104
|
from pyspark.dbutils import DBUtils
|
|
99
105
|
|
|
100
106
|
cls.get_spark_session()
|
|
101
|
-
|
|
102
|
-
return utils
|
|
107
|
+
return DBUtils(cls._spark)
|
|
103
108
|
|
|
109
|
+
@classmethod
|
|
104
110
|
def _get_mssparkutils(cls):
|
|
105
111
|
from notebookutils import mssparkutils # type: ignore
|
|
106
112
|
|
|
@@ -47,16 +47,18 @@ cloe_nessy/pipeline/pipeline_config.py,sha256=BN3ZSbr6bC-X9edoh-n5vRfPHFMbgtAU7m
|
|
|
47
47
|
cloe_nessy/pipeline/pipeline_context.py,sha256=csElDc6BsynDUtRXgQOSCH7ONc_b-ag0YEg0zlQTz58,1874
|
|
48
48
|
cloe_nessy/pipeline/pipeline_parsing_service.py,sha256=c_nAsgw81QYBM9AFiTxGgqRhNXABkDKplbeoCJPtbpE,6434
|
|
49
49
|
cloe_nessy/pipeline/pipeline_step.py,sha256=UlnmpS6gm_dZ7m9dD1mZvye7mvUF_DA7HjOZo0oGYDU,1977
|
|
50
|
-
cloe_nessy/pipeline/actions/__init__.py,sha256=
|
|
50
|
+
cloe_nessy/pipeline/actions/__init__.py,sha256=LwKctXy4Jun52BnCVGvWa8nnKVjTSov4GT58j6Zy8zg,2273
|
|
51
51
|
cloe_nessy/pipeline/actions/read_api.py,sha256=wGyPZdeh3Cam_BQBilltWBWCIdD9I_kv4lunEhE39Tg,6625
|
|
52
52
|
cloe_nessy/pipeline/actions/read_catalog_table.py,sha256=aZy4sJLLE8ZQ_SPXGSDoHYaBJTz8s7xQDVn5eYrYHvE,2689
|
|
53
53
|
cloe_nessy/pipeline/actions/read_excel.py,sha256=EgHbK1wO6dkDo0KErYDhK_2sNIkIoa-6As9oo9dNFsE,7708
|
|
54
54
|
cloe_nessy/pipeline/actions/read_files.py,sha256=8twjprqKYEmVu5QITEGe4no45TfhgzZosTFVQ89vV6g,3861
|
|
55
55
|
cloe_nessy/pipeline/actions/read_metadata_yaml.py,sha256=aZtkstf9jBYYN2MGnazz63BG_hJ7mIgAfKiNqUpc26E,2235
|
|
56
56
|
cloe_nessy/pipeline/actions/transform_change_datatype.py,sha256=Nz3Ncr-Zd-wy8g9-aN5XcvpWAHLyWs70RpZ7KqKqIaU,1788
|
|
57
|
+
cloe_nessy/pipeline/actions/transform_clean_column_names.py,sha256=XuVAVEbp-UiF8PO6wAEJyl1TYgBD7MSnuOGhuEvXKv4,2881
|
|
57
58
|
cloe_nessy/pipeline/actions/transform_concat_columns.py,sha256=V0TzeQFpBYur_T1Nv0nRpOU02nKQ2iypo2CCcV2rBtk,3083
|
|
58
59
|
cloe_nessy/pipeline/actions/transform_decode.py,sha256=DmT-29dIqbz_xTj4GSCfnbgYRCiUrWzKvGrRYy1frNw,4004
|
|
59
|
-
cloe_nessy/pipeline/actions/
|
|
60
|
+
cloe_nessy/pipeline/actions/transform_deduplication.py,sha256=2VN5_wza7sD7fERyG6ElGh_Yo-W-Mxw-QBmtDXs1MGQ,5063
|
|
61
|
+
cloe_nessy/pipeline/actions/transform_distinct.py,sha256=R0Wv_YnWOw198r0rPR_72fgH5sp7upgjZzfOPTZ1oPA,1942
|
|
60
62
|
cloe_nessy/pipeline/actions/transform_filter.py,sha256=vOAxKtNWCABLb6G6Xz98NK7fEfgn6QJia31S7IvoUTg,1428
|
|
61
63
|
cloe_nessy/pipeline/actions/transform_generic_sql.py,sha256=cli59HCERFge7f0RB8yXw2oDtHSbMCWQMdeCeqhbdg8,2355
|
|
62
64
|
cloe_nessy/pipeline/actions/transform_group_aggregate.py,sha256=HcY4sqb2yNBCz90jQtxGA8fZPuQXfJuaDmv8lWuoTqg,4050
|
|
@@ -68,12 +70,12 @@ cloe_nessy/pipeline/actions/transform_select_columns.py,sha256=Kez8puDK7cRfhleBE
|
|
|
68
70
|
cloe_nessy/pipeline/actions/transform_union.py,sha256=TDER06IABzxvIez4bGLKCLaDA4eScpTzYRbfUzwv_RQ,2342
|
|
69
71
|
cloe_nessy/pipeline/actions/write_catalog_table.py,sha256=6yAHTX5kZviumgBW_NYVGAUin6U2nDzmic9of6wA8FY,2590
|
|
70
72
|
cloe_nessy/session/__init__.py,sha256=t7_YjUhJYW3km_FrucaUdbIl1boQtwkyhw_8yE10qzc,74
|
|
71
|
-
cloe_nessy/session/session_manager.py,sha256=
|
|
73
|
+
cloe_nessy/session/session_manager.py,sha256=PK7awMc6fmot7f9FMmvIUbIzKFgjcy2o2bZS9kjVs10,6733
|
|
72
74
|
cloe_nessy/settings/__init__.py,sha256=ZbkneO3WaKOxon7qHFHnou7EnBOSnBFyKMDZblIEvzM,101
|
|
73
75
|
cloe_nessy/settings/settings.py,sha256=I4n129lrujriW-d8q4as2Kb4_kI932ModfZ5Ow_UpVM,3653
|
|
74
76
|
cloe_nessy/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
75
77
|
cloe_nessy/utils/file_and_directory_handler.py,sha256=r2EVt9xG81p6ScaJCwETC5an6pMT6WseB0jMOR-JlpU,602
|
|
76
|
-
cloe_nessy-0.3.
|
|
77
|
-
cloe_nessy-0.3.
|
|
78
|
-
cloe_nessy-0.3.
|
|
79
|
-
cloe_nessy-0.3.
|
|
78
|
+
cloe_nessy-0.3.3.dist-info/METADATA,sha256=StCfl2I5dItaMzO10u3gQw6WxfjZUZHRIodEvKuQu_s,1837
|
|
79
|
+
cloe_nessy-0.3.3.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
|
80
|
+
cloe_nessy-0.3.3.dist-info/top_level.txt,sha256=Z7izn8HmQpg2wBUb-0jzaKlYKMU7Ypzuc9__9vPtW_I,11
|
|
81
|
+
cloe_nessy-0.3.3.dist-info/RECORD,,
|
|
File without changes
|