climate-ref-esmvaltool 0.6.5__py3-none-any.whl → 0.6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. climate_ref_esmvaltool/dataset_registry/data.txt +4 -0
  2. climate_ref_esmvaltool/diagnostics/__init__.py +22 -0
  3. climate_ref_esmvaltool/diagnostics/base.py +80 -12
  4. climate_ref_esmvaltool/diagnostics/climate_at_global_warming_levels.py +5 -2
  5. climate_ref_esmvaltool/diagnostics/climate_drivers_for_fire.py +68 -0
  6. climate_ref_esmvaltool/diagnostics/cloud_radiative_effects.py +2 -2
  7. climate_ref_esmvaltool/diagnostics/cloud_scatterplots.py +188 -0
  8. climate_ref_esmvaltool/diagnostics/ecs.py +9 -18
  9. climate_ref_esmvaltool/diagnostics/enso.py +10 -4
  10. climate_ref_esmvaltool/diagnostics/example.py +15 -2
  11. climate_ref_esmvaltool/diagnostics/regional_historical_changes.py +340 -0
  12. climate_ref_esmvaltool/diagnostics/sea_ice_area_basic.py +5 -2
  13. climate_ref_esmvaltool/diagnostics/sea_ice_sensitivity.py +5 -2
  14. climate_ref_esmvaltool/diagnostics/tcr.py +9 -18
  15. climate_ref_esmvaltool/diagnostics/tcre.py +5 -2
  16. climate_ref_esmvaltool/diagnostics/zec.py +5 -2
  17. climate_ref_esmvaltool/recipe.py +46 -5
  18. climate_ref_esmvaltool/recipes.txt +16 -11
  19. climate_ref_esmvaltool/requirements/conda-lock.yml +4081 -3770
  20. climate_ref_esmvaltool/requirements/environment.yml +1 -0
  21. {climate_ref_esmvaltool-0.6.5.dist-info → climate_ref_esmvaltool-0.6.6.dist-info}/METADATA +1 -1
  22. climate_ref_esmvaltool-0.6.6.dist-info/RECORD +30 -0
  23. climate_ref_esmvaltool-0.6.5.dist-info/RECORD +0 -27
  24. {climate_ref_esmvaltool-0.6.5.dist-info → climate_ref_esmvaltool-0.6.6.dist-info}/WHEEL +0 -0
  25. {climate_ref_esmvaltool-0.6.5.dist-info → climate_ref_esmvaltool-0.6.6.dist-info}/entry_points.txt +0 -0
  26. {climate_ref_esmvaltool-0.6.5.dist-info → climate_ref_esmvaltool-0.6.6.dist-info}/licenses/LICENCE +0 -0
  27. {climate_ref_esmvaltool-0.6.5.dist-info → climate_ref_esmvaltool-0.6.6.dist-info}/licenses/NOTICE +0 -0
@@ -0,0 +1,340 @@
1
+ import copy
2
+ from pathlib import Path
3
+
4
+ import numpy as np
5
+ import pandas
6
+ import xarray
7
+
8
+ from climate_ref_core.constraints import (
9
+ AddSupplementaryDataset,
10
+ RequireContiguousTimerange,
11
+ RequireFacets,
12
+ )
13
+ from climate_ref_core.datasets import ExecutionDatasetCollection, FacetFilter, SourceDatasetType
14
+ from climate_ref_core.diagnostics import DataRequirement
15
+ from climate_ref_core.metric_values.typing import SeriesDefinition
16
+ from climate_ref_core.pycmec.metric import CMECMetric, MetricCV
17
+ from climate_ref_core.pycmec.output import CMECOutput
18
+ from climate_ref_esmvaltool.diagnostics.base import ESMValToolDiagnostic
19
+ from climate_ref_esmvaltool.recipe import dataframe_to_recipe
20
+ from climate_ref_esmvaltool.types import MetricBundleArgs, OutputBundleArgs, Recipe
21
+
22
+ REGIONS = (
23
+ "Arabian-Peninsula",
24
+ "Arabian-Sea",
25
+ "Arctic-Ocean",
26
+ "Bay-of-Bengal",
27
+ "C.Australia",
28
+ "C.North-America",
29
+ "Caribbean",
30
+ "Central-Africa",
31
+ "E.Antarctica",
32
+ "E.Asia",
33
+ "E.Australia",
34
+ "E.C.Asia",
35
+ "E.Europe",
36
+ "E.North-America",
37
+ "E.Siberia",
38
+ "E.Southern-Africa",
39
+ "Equatorial.Atlantic-Ocean",
40
+ "Equatorial.Indic-Ocean",
41
+ "Equatorial.Pacific-Ocean",
42
+ "Greenland/Iceland",
43
+ "Madagascar",
44
+ "Mediterranean",
45
+ "N.Atlantic-Ocean",
46
+ "N.Australia",
47
+ "N.Central-America",
48
+ "N.E.North-America",
49
+ "N.E.South-America",
50
+ "N.Eastern-Africa",
51
+ "N.Europe",
52
+ "N.Pacific-Ocean",
53
+ "N.South-America",
54
+ "N.W.North-America",
55
+ "N.W.South-America",
56
+ "New-Zealand",
57
+ "Russian-Arctic",
58
+ "Russian-Far-East",
59
+ "S.Asia",
60
+ "S.Atlantic-Ocean",
61
+ "S.Australia",
62
+ "S.Central-America",
63
+ "S.E.Asia",
64
+ "S.E.South-America",
65
+ "S.Eastern-Africa",
66
+ "S.Indic-Ocean",
67
+ "S.Pacific-Ocean",
68
+ "S.South-America",
69
+ "S.W.South-America",
70
+ "Sahara",
71
+ "South-American-Monsoon",
72
+ "Southern-Ocean",
73
+ "Tibetan-Plateau",
74
+ "W.Antarctica",
75
+ "W.C.Asia",
76
+ "W.North-America",
77
+ "W.Siberia",
78
+ "W.Southern-Africa",
79
+ "West&Central-Europe",
80
+ "Western-Africa",
81
+ )
82
+
83
+
84
+ def normalize_region(region: str) -> str:
85
+ """Normalize region name so it can be used in filenames."""
86
+ return region.replace("&", "-and-").replace("/", "-and-")
87
+
88
+
89
+ class RegionalHistoricalAnnualCycle(ESMValToolDiagnostic):
90
+ """
91
+ Plot regional historical annual cycle of climate variables.
92
+ """
93
+
94
+ name = "Regional historical annual cycle of climate variables"
95
+ slug = "regional-historical-annual-cycle"
96
+ base_recipe = "ref/recipe_ref_annual_cycle_region.yml"
97
+
98
+ variables = (
99
+ "hus",
100
+ "pr",
101
+ "psl",
102
+ "tas",
103
+ "ua",
104
+ )
105
+ series = tuple(
106
+ SeriesDefinition(
107
+ file_pattern=f"anncyc-{region}/allplots/*_{var_name}_*.nc",
108
+ sel={"dim0": 0}, # Select the model and not the observation.
109
+ dimensions={"region": region},
110
+ values_name=var_name,
111
+ index_name="month_number",
112
+ attributes=[],
113
+ )
114
+ for var_name in variables
115
+ for region in REGIONS
116
+ )
117
+
118
+ data_requirements = (
119
+ DataRequirement(
120
+ source_type=SourceDatasetType.CMIP6,
121
+ filters=(
122
+ FacetFilter(
123
+ facets={
124
+ "variable_id": variables,
125
+ "experiment_id": "historical",
126
+ "frequency": "mon",
127
+ },
128
+ ),
129
+ ),
130
+ group_by=("source_id", "member_id", "grid_label"),
131
+ constraints=(
132
+ RequireFacets("variable_id", variables),
133
+ RequireContiguousTimerange(group_by=("instance_id",)),
134
+ AddSupplementaryDataset.from_defaults("areacella", SourceDatasetType.CMIP6),
135
+ ),
136
+ ),
137
+ DataRequirement(
138
+ source_type=SourceDatasetType.obs4MIPs,
139
+ filters=(
140
+ FacetFilter(
141
+ facets={
142
+ "variable_id": (
143
+ "psl",
144
+ "ua",
145
+ ),
146
+ "source_id": "ERA-5",
147
+ "frequency": "mon",
148
+ },
149
+ ),
150
+ ),
151
+ group_by=("source_id",),
152
+ constraints=(RequireContiguousTimerange(group_by=("instance_id",)),),
153
+ # TODO: Add obs4MIPs datasets once available and working:
154
+ #
155
+ # obs4MIPs dataset that cannot be ingested (https://github.com/Climate-REF/climate-ref/issues/260):
156
+ # - GPCP-V2.3: pr
157
+ #
158
+ # Not yet available on obs4MIPs:
159
+ # - ERA5: hus
160
+ # - HadCRUT5_ground_5.0.1.0-analysis: tas
161
+ ),
162
+ )
163
+ facets = ()
164
+
165
+ @staticmethod
166
+ def update_recipe(
167
+ recipe: Recipe,
168
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
169
+ ) -> None:
170
+ """Update the recipe."""
171
+ # Update the dataset.
172
+ recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
173
+ dataset = recipe_variables["hus"]["additional_datasets"][0]
174
+ dataset.pop("timerange")
175
+ dataset["benchmark_dataset"] = True
176
+ dataset["plot_label"] = "{dataset}.{ensemble}.{grid}".format(**dataset)
177
+ recipe["datasets"] = [dataset]
178
+
179
+ # Generate diagnostics for each region.
180
+ diagnostics = {}
181
+ for region in REGIONS:
182
+ for diagnostic_name, orig_diagnostic in recipe["diagnostics"].items():
183
+ # Create the diagnostic for the region.
184
+ diagnostic = copy.deepcopy(orig_diagnostic)
185
+ normalized_region = normalize_region(region)
186
+ diagnostics[f"{diagnostic_name}-{normalized_region}"] = diagnostic
187
+
188
+ for variable in diagnostic["variables"].values():
189
+ # Remove unwanted facets that are part of the dataset.
190
+ for facet in ("project", "exp", "ensemble", "grid"):
191
+ variable.pop(facet, None)
192
+ # Update the preprocessor so it extracts the region.
193
+ preprocessor_name = variable["preprocessor"]
194
+ preprocessor = copy.deepcopy(recipe["preprocessors"][preprocessor_name])
195
+ preprocessor["extract_shape"]["ids"] = {"Name": [region]}
196
+ variable["preprocessor"] = f"{preprocessor_name}-{normalized_region}"
197
+ recipe["preprocessors"][variable["preprocessor"]] = preprocessor
198
+
199
+ # Update plot titles with region name.
200
+ for script in diagnostic["scripts"].values():
201
+ for plot in script["plots"].values():
202
+ plot["pyplot_kwargs"] = {"title": f"{{long_name}} {region}"}
203
+ recipe["diagnostics"] = diagnostics
204
+
205
+
206
+ class RegionalHistoricalTimeSeries(RegionalHistoricalAnnualCycle):
207
+ """
208
+ Plot regional historical mean and anomaly of climate variables.
209
+ """
210
+
211
+ name = "Regional historical mean and anomaly of climate variables"
212
+ slug = "regional-historical-timeseries"
213
+ base_recipe = "ref/recipe_ref_timeseries_region.yml"
214
+ series = tuple(
215
+ SeriesDefinition(
216
+ file_pattern=f"{diagnostic}-{region}/allplots/*_{var_name}_*.nc",
217
+ sel={"dim0": 0}, # Select the model and not the observation.
218
+ dimensions={"region": region},
219
+ values_name=var_name,
220
+ index_name="time",
221
+ attributes=[],
222
+ )
223
+ for var_name in RegionalHistoricalAnnualCycle.variables
224
+ for region in REGIONS
225
+ for diagnostic in ["timeseries_abs", "timeseries"]
226
+ )
227
+
228
+
229
+ class RegionalHistoricalTrend(ESMValToolDiagnostic):
230
+ """
231
+ Plot regional historical trend of climate variables.
232
+ """
233
+
234
+ name = "Regional historical trend of climate variables"
235
+ slug = "regional-historical-trend"
236
+ base_recipe = "ref/recipe_ref_trend_regions.yml"
237
+
238
+ data_requirements = (
239
+ DataRequirement(
240
+ source_type=SourceDatasetType.CMIP6,
241
+ filters=(
242
+ FacetFilter(
243
+ facets={
244
+ "variable_id": (
245
+ "hus",
246
+ "pr",
247
+ "psl",
248
+ "tas",
249
+ "ua",
250
+ ),
251
+ "experiment_id": "historical",
252
+ "frequency": "mon",
253
+ },
254
+ ),
255
+ ),
256
+ group_by=("source_id", "member_id", "grid_label"),
257
+ constraints=(
258
+ RequireContiguousTimerange(group_by=("instance_id",)),
259
+ AddSupplementaryDataset.from_defaults("areacella", SourceDatasetType.CMIP6),
260
+ ),
261
+ ),
262
+ DataRequirement(
263
+ source_type=SourceDatasetType.obs4MIPs,
264
+ filters=(
265
+ FacetFilter(
266
+ facets={
267
+ "variable_id": (
268
+ "psl",
269
+ "tas",
270
+ "ua",
271
+ ),
272
+ "source_id": "ERA-5",
273
+ "frequency": "mon",
274
+ },
275
+ ),
276
+ ),
277
+ group_by=("source_id",),
278
+ constraints=(RequireContiguousTimerange(group_by=("instance_id",)),),
279
+ # TODO: Add obs4MIPs datasets once available and working:
280
+ #
281
+ # obs4MIPs dataset that cannot be ingested (https://github.com/Climate-REF/climate-ref/issues/260):
282
+ # - GPCP-V2.3: pr
283
+ #
284
+ # Not yet available on obs4MIPs:
285
+ # - ERA5: hus
286
+ # - HadCRUT5_ground_5.0.1.0-analysis: tas
287
+ ),
288
+ )
289
+ facets = ("grid_label", "member_id", "source_id", "variable_id", "region", "metric")
290
+
291
+ @staticmethod
292
+ def update_recipe(
293
+ recipe: Recipe,
294
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
295
+ ) -> None:
296
+ """Update the recipe."""
297
+ recipe["datasets"] = []
298
+ recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
299
+ diagnostics = {}
300
+ for diagnostic_name, diagnostic in recipe["diagnostics"].items():
301
+ for variable_name, variable in diagnostic["variables"].items():
302
+ if variable_name not in recipe_variables:
303
+ continue
304
+ dataset = recipe_variables[variable_name]["additional_datasets"][0]
305
+ dataset.pop("timerange")
306
+ variable["additional_datasets"].append(dataset)
307
+ diagnostics[diagnostic_name] = diagnostic
308
+ recipe["diagnostics"] = diagnostics
309
+
310
+ @classmethod
311
+ def format_result(
312
+ cls,
313
+ result_dir: Path,
314
+ execution_dataset: ExecutionDatasetCollection,
315
+ metric_args: MetricBundleArgs,
316
+ output_args: OutputBundleArgs,
317
+ ) -> tuple[CMECMetric, CMECOutput]:
318
+ """Format the result."""
319
+ metric_args[MetricCV.DIMENSIONS.value] = {
320
+ "json_structure": ["variable_id", "region", "metric"],
321
+ "variable_id": {},
322
+ "region": {},
323
+ "metric": {"trend": {}},
324
+ }
325
+ for file in result_dir.glob("work/*_trends/plot/seaborn_barplot.nc"):
326
+ ds = xarray.open_dataset(file)
327
+ source_id = execution_dataset[SourceDatasetType.CMIP6].source_id.iloc[0]
328
+ select = source_id == np.array([s.strip() for s in ds.dataset.values.astype(str).tolist()])
329
+ ds.isel(dim0=select)
330
+ variable_id = next(iter(ds.data_vars.keys()))
331
+ metric_args[MetricCV.DIMENSIONS.value]["variable_id"][variable_id] = {}
332
+ metric_args[MetricCV.RESULTS.value][variable_id] = {}
333
+ for region_value, trend_value in zip(ds.shape_id.astype(str).values, ds[variable_id].values):
334
+ region = region_value.strip()
335
+ trend = float(trend_value)
336
+ if region not in metric_args[MetricCV.DIMENSIONS.value]["region"]:
337
+ metric_args[MetricCV.DIMENSIONS.value]["region"][region] = {}
338
+ metric_args[MetricCV.RESULTS.value][variable_id][region] = {"trend": trend}
339
+
340
+ return CMECMetric.model_validate(metric_args), CMECOutput.model_validate(output_args)
@@ -42,10 +42,13 @@ class SeaIceAreaBasic(ESMValToolDiagnostic):
42
42
  facets = ()
43
43
 
44
44
  @staticmethod
45
- def update_recipe(recipe: Recipe, input_files: pandas.DataFrame) -> None:
45
+ def update_recipe(
46
+ recipe: Recipe,
47
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
48
+ ) -> None:
46
49
  """Update the recipe."""
47
50
  # Update datasets
48
- recipe_variables = dataframe_to_recipe(input_files)
51
+ recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
49
52
  recipe["datasets"] = recipe_variables["siconc"]["additional_datasets"]
50
53
 
51
54
  # Use the timerange from the recipe, as defined in the variable.
@@ -57,9 +57,12 @@ class SeaIceSensitivity(ESMValToolDiagnostic):
57
57
  facets = ("experiment_id", "source_id", "region", "metric")
58
58
 
59
59
  @staticmethod
60
- def update_recipe(recipe: Recipe, input_files: pandas.DataFrame) -> None:
60
+ def update_recipe(
61
+ recipe: Recipe,
62
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
63
+ ) -> None:
61
64
  """Update the recipe."""
62
- recipe_variables = dataframe_to_recipe(input_files)
65
+ recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
63
66
  datasets = recipe_variables["tas"]["additional_datasets"]
64
67
  for dataset in datasets:
65
68
  dataset.pop("mip")
@@ -54,7 +54,10 @@ class TransientClimateResponse(ESMValToolDiagnostic):
54
54
  facets = ("grid_label", "member_id", "source_id", "region", "metric")
55
55
 
56
56
  @staticmethod
57
- def update_recipe(recipe: Recipe, input_files: pandas.DataFrame) -> None:
57
+ def update_recipe(
58
+ recipe: Recipe,
59
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
60
+ ) -> None:
58
61
  """Update the recipe."""
59
62
  # Only run the diagnostic that computes TCR for a single model.
60
63
  recipe["diagnostics"] = {
@@ -77,21 +80,11 @@ class TransientClimateResponse(ESMValToolDiagnostic):
77
80
  # Prepare updated datasets section in recipe. It contains two
78
81
  # datasets, one for the "1pctCO2" and one for the "piControl"
79
82
  # experiment.
80
- recipe_variables = dataframe_to_recipe(input_files)
81
- recipe_variables = {k: v for k, v in recipe_variables.items() if k != "areacella"}
82
-
83
- # Select a timerange covered by all datasets.
84
- start_times, end_times = [], []
85
- for variable in recipe_variables.values():
86
- for dataset in variable["additional_datasets"]:
87
- start, end = dataset["timerange"].split("/")
88
- start_times.append(start)
89
- end_times.append(end)
90
- timerange = f"{max(start_times)}/{min(end_times)}"
91
-
92
- datasets = recipe_variables["tas"]["additional_datasets"]
93
- for dataset in datasets:
94
- dataset["timerange"] = timerange
83
+ recipe_variables = dataframe_to_recipe(
84
+ input_files[SourceDatasetType.CMIP6],
85
+ equalize_timerange=True,
86
+ )
87
+ recipe["datasets"] = recipe_variables["tas"]["additional_datasets"]
95
88
 
96
89
  # Remove keys from the recipe that are only used for YAML anchors
97
90
  keys_to_remove = [
@@ -102,8 +95,6 @@ class TransientClimateResponse(ESMValToolDiagnostic):
102
95
  for key in keys_to_remove:
103
96
  recipe.pop(key, None)
104
97
 
105
- recipe["datasets"] = datasets
106
-
107
98
  @staticmethod
108
99
  def format_result(
109
100
  result_dir: Path,
@@ -67,12 +67,15 @@ class TransientClimateResponseEmissions(ESMValToolDiagnostic):
67
67
  facets = ("grid_label", "member_id", "source_id", "region", "metric")
68
68
 
69
69
  @staticmethod
70
- def update_recipe(recipe: Recipe, input_files: pandas.DataFrame) -> None:
70
+ def update_recipe(
71
+ recipe: Recipe,
72
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
73
+ ) -> None:
71
74
  """Update the recipe."""
72
75
  # Prepare updated datasets section in recipe. It contains three
73
76
  # datasets, "tas" and "fco2antt" for the "esm-1pctCO2" and just "tas"
74
77
  # for the "esm-piControl" experiment.
75
- recipe_variables = dataframe_to_recipe(input_files)
78
+ recipe_variables = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])
76
79
  tas_esm_1pctCO2 = next(
77
80
  ds for ds in recipe_variables["tas"]["additional_datasets"] if ds["exp"] == "esm-1pctCO2"
78
81
  )
@@ -54,12 +54,15 @@ class ZeroEmissionCommitment(ESMValToolDiagnostic):
54
54
  facets = ("grid_label", "member_id", "source_id", "region", "metric")
55
55
 
56
56
  @staticmethod
57
- def update_recipe(recipe: Recipe, input_files: pandas.DataFrame) -> None:
57
+ def update_recipe(
58
+ recipe: Recipe,
59
+ input_files: dict[SourceDatasetType, pandas.DataFrame],
60
+ ) -> None:
58
61
  """Update the recipe."""
59
62
  # Prepare updated datasets section in recipe. It contains two
60
63
  # datasets, one for the "esm-1pct-brch-1000PgC" and one for the "piControl"
61
64
  # experiment.
62
- datasets = dataframe_to_recipe(input_files)["tas"]["additional_datasets"]
65
+ datasets = dataframe_to_recipe(input_files[SourceDatasetType.CMIP6])["tas"]["additional_datasets"]
63
66
  base_dataset = next(ds for ds in datasets if ds["exp"] == "1pctCO2")
64
67
  dataset = next(ds for ds in datasets if ds["exp"] == "esm-1pct-brch-1000PgC")
65
68
  start = dataset["timerange"].split("/")[0]
@@ -12,6 +12,7 @@ from climate_ref_esmvaltool.types import Recipe
12
12
  if TYPE_CHECKING:
13
13
  import pandas as pd
14
14
 
15
+
15
16
  FACETS = {
16
17
  "CMIP6": {
17
18
  "activity": "activity_id",
@@ -23,6 +24,13 @@ FACETS = {
23
24
  "mip": "table_id",
24
25
  "short_name": "variable_id",
25
26
  },
27
+ "obs4MIPs": {
28
+ "dataset": "source_id",
29
+ "frequency": "frequency",
30
+ "grid": "grid_label",
31
+ "institute": "institution_id",
32
+ "short_name": "variable_id",
33
+ },
26
34
  }
27
35
 
28
36
 
@@ -90,7 +98,10 @@ def as_facets(
90
98
  return facets
91
99
 
92
100
 
93
- def dataframe_to_recipe(files: pd.DataFrame) -> dict[str, Any]:
101
+ def dataframe_to_recipe(
102
+ files: pd.DataFrame,
103
+ equalize_timerange: bool = False,
104
+ ) -> dict[str, Any]:
94
105
  """Convert the datasets dataframe to a recipe "variables" section.
95
106
 
96
107
  Parameters
@@ -110,11 +121,27 @@ def dataframe_to_recipe(files: pd.DataFrame) -> dict[str, Any]:
110
121
  if short_name not in variables:
111
122
  variables[short_name] = {"additional_datasets": []}
112
123
  variables[short_name]["additional_datasets"].append(facets)
124
+
125
+ if equalize_timerange:
126
+ # Select a timerange covered by all datasets.
127
+ start_times, end_times = [], []
128
+ for variable in variables.values():
129
+ for dataset in variable["additional_datasets"]:
130
+ if "timerange" in dataset:
131
+ start, end = dataset["timerange"].split("/")
132
+ start_times.append(start)
133
+ end_times.append(end)
134
+ timerange = f"{max(start_times)}/{min(end_times)}"
135
+ for variable in variables.values():
136
+ for dataset in variable["additional_datasets"]:
137
+ if "timerange" in dataset:
138
+ dataset["timerange"] = timerange
139
+
113
140
  return variables
114
141
 
115
142
 
116
- _ESMVALTOOL_COMMIT = "8f56863a70ba4df76ec501ba0372c571a0af6cf9"
117
- _ESMVALTOOL_VERSION = f"2.13.0.dev120+g{_ESMVALTOOL_COMMIT[:9]}"
143
+ _ESMVALTOOL_COMMIT = "2c438d0e0cc8904790294c72450eb7f06552c52a"
144
+ _ESMVALTOOL_VERSION = f"2.13.0.dev148+g{_ESMVALTOOL_COMMIT[:9]}"
118
145
 
119
146
  _RECIPES = pooch.create(
120
147
  path=pooch.os_cache("climate_ref_esmvaltool"),
@@ -142,7 +169,16 @@ def load_recipe(recipe: str) -> Recipe:
142
169
  The loaded recipe.
143
170
  """
144
171
  filename = _RECIPES.fetch(recipe)
145
- return yaml.safe_load(Path(filename).read_text(encoding="utf-8")) # type: ignore[no-any-return]
172
+
173
+ def normalize(obj: Any) -> Any:
174
+ # Ensure objects in the recipe are not shared.
175
+ if isinstance(obj, dict):
176
+ return {k: normalize(v) for k, v in obj.items()}
177
+ if isinstance(obj, list):
178
+ return [normalize(item) for item in obj]
179
+ return obj
180
+
181
+ return normalize(yaml.safe_load(Path(filename).read_text(encoding="utf-8"))) # type: ignore[no-any-return]
146
182
 
147
183
 
148
184
  def prepare_climate_data(datasets: pd.DataFrame, climate_data_dir: Path) -> None:
@@ -165,6 +201,11 @@ def prepare_climate_data(datasets: pd.DataFrame, climate_data_dir: Path) -> None
165
201
  if not isinstance(row.path, str): # pragma: no branch
166
202
  msg = f"Invalid path encountered in {row}"
167
203
  raise ValueError(msg)
168
- tgt = climate_data_dir.joinpath(*row.instance_id.split(".")) / Path(row.path).name
204
+ if row.instance_id.startswith("obs4MIPs."):
205
+ version = row.instance_id.split(".")[-1]
206
+ subdirs: list[str] = ["obs4MIPs", row.source_id, version] # type: ignore[list-item]
207
+ else:
208
+ subdirs = row.instance_id.split(".")
209
+ tgt = climate_data_dir.joinpath(*subdirs) / Path(row.path).name
169
210
  tgt.parent.mkdir(parents=True, exist_ok=True)
170
211
  tgt.symlink_to(row.path)
@@ -1,11 +1,16 @@
1
- examples/recipe_python.yml ab3f06d269bb2c1368f4dc39da9bcb232fb2adb1fa556ba769e6c16294ffb4a3
2
- recipe_calculate_gwl_exceedance_stats.yml 5aa266abc9a8029649b689a2b369a47623b0935d609354332ff4148994642d6b
3
- recipe_ecs.yml 0cc57034fcb64e32015b4ff949ece5df8cdb8c6f493618b50ceded119fb37918
4
- recipe_seaice_sensitivity.yml f7247c076e161c582d422947c8155f3ca98549e6f2e4c3b1c76414786d7e50c5
5
- recipe_tcr.yml 35f9ef035a4e71aff5cac5dd26c49da2162fc00291bf3b0bd16b661b7b2f606b
6
- recipe_tcre.yml 48fc9e3baf541bbcef7491853ea3a774053771dca33352b41466425faeaa38af
7
- recipe_zec.yml b0af7f789b7610ab3f29a6617124aa40c40866ead958204fc199eaf82863de51
8
- ref/recipe_enso_basicclimatology.yml 9ea7deb7ee668e39ac44618b96496d898bd82285c22dcee4fce4695e0c9fa82b
9
- ref/recipe_enso_characteristics.yml 34c2518b138068ac96d212910b979d54a8fcedee2c0089b5acd56a42c41dc3e4
10
- ref/recipe_ref_cre.yml 4375f262479c3b3e1b348b71080a6d758e195bda76516a591182045a3a29aa32
11
- ref/recipe_ref_sea_ice_area_basic.yml 7d01a8527880663ca28284772f83a8356d9972fb4f022a4000e50a56ce044b09
1
+ examples/recipe_python.yml ab3f06d269bb2c1368f4dc39da9bcb232fb2adb1fa556ba769e6c16294ffb4a3
2
+ recipe_calculate_gwl_exceedance_stats.yml 5aa266abc9a8029649b689a2b369a47623b0935d609354332ff4148994642d6b
3
+ recipe_ecs.yml 0cc57034fcb64e32015b4ff949ece5df8cdb8c6f493618b50ceded119fb37918
4
+ recipe_seaice_sensitivity.yml f7247c076e161c582d422947c8155f3ca98549e6f2e4c3b1c76414786d7e50c5
5
+ recipe_tcr.yml 35f9ef035a4e71aff5cac5dd26c49da2162fc00291bf3b0bd16b661b7b2f606b
6
+ recipe_tcre.yml 48fc9e3baf541bbcef7491853ea3a774053771dca33352b41466425faeaa38af
7
+ recipe_zec.yml b0af7f789b7610ab3f29a6617124aa40c40866ead958204fc199eaf82863de51
8
+ ref/recipe_enso_basicclimatology.yml 9ea7deb7ee668e39ac44618b96496d898bd82285c22dcee4fce4695e0c9fa82b
9
+ ref/recipe_enso_characteristics.yml 34c2518b138068ac96d212910b979d54a8fcedee2c0089b5acd56a42c41dc3e4
10
+ ref/recipe_ref_annual_cycle_region.yml 64ebc687789dad6c45a2361b45218cb5a0ad0e38c516840c65fc7e8bf7b5ace7
11
+ ref/recipe_ref_cre.yml 4375f262479c3b3e1b348b71080a6d758e195bda76516a591182045a3a29aa32
12
+ ref/recipe_ref_fire.yml 2ad82effaca4e742d8abe6a0aa07bb46e1e92ef0d2d240760f7623b0ba045926
13
+ ref/recipe_ref_sea_ice_area_basic.yml 7d01a8527880663ca28284772f83a8356d9972fb4f022a4000e50a56ce044b09
14
+ ref/recipe_ref_scatterplot.yml b99d1736e16256d161847b025811d7088ad9f892d4887fb009fa99c4079135a0
15
+ ref/recipe_ref_timeseries_region.yml 86f36e442021caba201601d8cf4624f8ce6715ce421670a467c792db2910db22
16
+ ref/recipe_ref_trend_regions.yml 18fe246a51474bd12172ab1ba141efac999a247de7774822f77ae6ef144645fe