classy-szfast 0.0.9__py3-none-any.whl → 0.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- classy_szfast/classy_sz.py +79 -117
- classy_szfast/classy_szfast.py +85 -98
- classy_szfast/config.py +4 -0
- classy_szfast/cosmopower.py +19 -7
- classy_szfast/custom_bias/custom_bias.py +1 -1
- {classy_szfast-0.0.9.dist-info → classy_szfast-0.0.11.dist-info}/METADATA +2 -1
- classy_szfast-0.0.11.dist-info/RECORD +17 -0
- {classy_szfast-0.0.9.dist-info → classy_szfast-0.0.11.dist-info}/WHEEL +1 -1
- classy_szfast-0.0.9.dist-info/RECORD +0 -17
- {classy_szfast-0.0.9.dist-info → classy_szfast-0.0.11.dist-info}/top_level.txt +0 -0
classy_szfast/classy_sz.py
CHANGED
@@ -8,59 +8,69 @@ import numpy as np
|
|
8
8
|
import time
|
9
9
|
|
10
10
|
class classy_sz(classy):
|
11
|
-
|
11
|
+
|
12
|
+
use_class_sz_fast_mode = 1 # this is passed in the yaml file
|
12
13
|
use_class_sz_no_cosmo_mode = 0 # this is passed in the yaml file
|
13
|
-
lensing_lkl =
|
14
|
-
|
15
|
-
|
14
|
+
lensing_lkl = 'ACT'
|
15
|
+
|
16
|
+
baos = None
|
16
17
|
|
17
18
|
def initialize(self):
|
18
19
|
"""Importing CLASS from the correct path, if given, and if not, globally."""
|
20
|
+
|
19
21
|
self.classy_module = self.is_installed()
|
20
22
|
if not self.classy_module:
|
21
23
|
raise NotInstalledError(
|
22
24
|
self.log, "Could not find CLASS_SZ. Check error message above.")
|
25
|
+
|
23
26
|
from classy_sz import Class, CosmoSevereError, CosmoComputationError
|
27
|
+
|
24
28
|
global CosmoComputationError, CosmoSevereError
|
29
|
+
|
25
30
|
self.classy = Class()
|
26
31
|
super(classy,self).initialize()
|
32
|
+
|
33
|
+
|
27
34
|
# Add general CLASS stuff
|
28
35
|
self.extra_args["output"] = self.extra_args.get("output", "")
|
36
|
+
|
29
37
|
if "sBBN file" in self.extra_args:
|
30
38
|
self.extra_args["sBBN file"] = (
|
31
39
|
self.extra_args["sBBN file"].format(classy=self.path))
|
40
|
+
|
32
41
|
# Derived parameters that may not have been requested, but will be necessary later
|
33
42
|
self.derived_extra = []
|
34
43
|
self.log.info("Initialized!")
|
35
44
|
|
45
|
+
|
46
|
+
## rename some parameters to avoid conflices
|
47
|
+
classy_sz_renames = {
|
48
|
+
|
49
|
+
'omega_m':'Omega_m',
|
50
|
+
'Omegam':'Omega_m',
|
51
|
+
'Omega_m':'Omega_m'
|
52
|
+
}
|
53
|
+
self.renames.update(classy_sz_renames)
|
54
|
+
|
55
|
+
|
36
56
|
if self.use_class_sz_no_cosmo_mode == 1:
|
57
|
+
|
37
58
|
self.log.info("Initializing cosmology part!")
|
59
|
+
|
38
60
|
initial_parameters = self.extra_args.copy()
|
39
|
-
|
61
|
+
|
40
62
|
|
41
63
|
self.classy.set(initial_parameters)
|
42
|
-
self.classy.compute_class_szfast()
|
64
|
+
self.classy.compute_class_szfast(likelihood_mode=True)
|
43
65
|
self.log.info("cosmology part initialized!")
|
44
66
|
|
45
67
|
|
46
|
-
# print(self.lensing_lkl)
|
47
|
-
# exit(0)
|
48
|
-
|
49
|
-
# # class_sz default params for lkl
|
50
|
-
# self.extra_args["output"] = 'tSZ_1h'
|
51
|
-
# self.extra_args["multipoles_sz"] = 'P15'
|
52
|
-
# self.extra_args['nlSZ'] = 18
|
53
68
|
|
54
69
|
|
55
|
-
|
56
|
-
# def calculate(self, state, want_derived=True, **params_values_dict):
|
57
|
-
# print("Bypassing class_sz")
|
58
|
-
|
70
|
+
def must_provide(self, **requirements):
|
59
71
|
|
60
72
|
|
61
73
|
|
62
|
-
def must_provide(self, **requirements):
|
63
|
-
|
64
74
|
if "Cl_sz" in requirements:
|
65
75
|
# make sure cobaya still runs as it does for standard classy
|
66
76
|
requirements.pop("Cl_sz")
|
@@ -246,25 +256,25 @@ class classy_sz(classy):
|
|
246
256
|
args=[])
|
247
257
|
super().must_provide(**requirements)
|
248
258
|
|
259
|
+
|
249
260
|
# get the required new observable
|
250
261
|
def get_Cl(self, ell_factor=False, units="FIRASmuK2"):
|
262
|
+
|
251
263
|
if self.use_class_sz_fast_mode:
|
264
|
+
|
252
265
|
return self.get_Clfast(ell_factor=ell_factor)
|
266
|
+
|
253
267
|
else:
|
268
|
+
|
254
269
|
return self._get_Cl(ell_factor=ell_factor, units=units, lensed=True)
|
255
270
|
|
256
271
|
def get_Clfast(self,ell_factor = False):
|
257
|
-
|
258
|
-
# exit(0)
|
272
|
+
|
259
273
|
cls = {}
|
260
274
|
cls = deepcopy(self._current_state["Cl"])
|
261
|
-
|
262
|
-
# print(cls)
|
263
|
-
# exit(0)
|
264
|
-
# print('in get clfast:',ell_factor)
|
265
|
-
# print(cls)
|
275
|
+
|
266
276
|
lcp = np.asarray(cls['ell'])
|
267
|
-
|
277
|
+
|
268
278
|
if ell_factor==True:
|
269
279
|
cls['tt'] *= (2.7255e6)**2.*(lcp*(lcp+1.))/2./np.pi
|
270
280
|
cls['te'] *= (2.7255e6)**2.*(lcp*(lcp+1.))/2./np.pi
|
@@ -274,17 +284,18 @@ class classy_sz(classy):
|
|
274
284
|
cls['tt'] *= (2.7255e6)**2.
|
275
285
|
cls['te'] *= (2.7255e6)**2.
|
276
286
|
cls['ee'] *= (2.7255e6)**2.
|
277
|
-
|
278
|
-
# print(cls['te'][1230])
|
279
|
-
# print(cls['ee'][1230])
|
280
|
-
# exit(0)
|
287
|
+
|
281
288
|
if self.lensing_lkl == "SOLikeT":
|
282
289
|
cls['pp'] *= (lcp*(lcp+1.))**2./4.
|
290
|
+
|
283
291
|
elif self.lensing_lkl == "ACT":
|
284
|
-
cls['pp'] *= 1
|
292
|
+
cls['pp'] *= 1.
|
293
|
+
|
285
294
|
else: # here for the planck lensing lkl, using lfactor option gives:
|
286
295
|
cls['pp'] *= (lcp*(lcp+1.))**2.*1./2./np.pi
|
296
|
+
|
287
297
|
return cls
|
298
|
+
|
288
299
|
# get the required new observable
|
289
300
|
def get_Cl_sz(self):
|
290
301
|
cls = {}
|
@@ -362,8 +373,9 @@ class classy_sz(classy):
|
|
362
373
|
|
363
374
|
# get the required new observable
|
364
375
|
def get_sz_unbinned_cluster_counts(self):
|
376
|
+
|
365
377
|
cls = deepcopy(self._current_state["sz_unbinned_cluster_counts"])
|
366
|
-
|
378
|
+
|
367
379
|
return cls['loglike'],cls['ntot'],cls['rates']
|
368
380
|
|
369
381
|
|
@@ -380,37 +392,53 @@ class classy_sz(classy):
|
|
380
392
|
|
381
393
|
# IMPORTANT: this method is imported from cobaya and modified to accomodate the emulators
|
382
394
|
def calculate(self, state, want_derived=True, **params_values_dict):
|
383
|
-
|
395
|
+
|
396
|
+
|
384
397
|
params_values = params_values_dict.copy()
|
385
|
-
#
|
386
|
-
|
398
|
+
# if baos are requested we need to update the relevant flags
|
399
|
+
if self.baos:
|
400
|
+
params_values.update({'skip_chi':0,'skip_hubble':0})
|
401
|
+
|
387
402
|
if 'N_ncdm' in self.extra_args.keys():
|
403
|
+
|
388
404
|
if self.extra_args['N_ncdm'] == 3:
|
405
|
+
|
389
406
|
str_mncdm = str(params_values['m_ncdm'])
|
390
407
|
params_values['m_ncdm'] = str_mncdm+','+str_mncdm+','+str_mncdm
|
391
|
-
|
392
|
-
# exit(0)
|
408
|
+
|
393
409
|
try:
|
410
|
+
|
394
411
|
params_values['ln10^{10}A_s'] = params_values.pop("logA")
|
412
|
+
|
395
413
|
self.set(params_values)
|
414
|
+
|
396
415
|
except KeyError:
|
416
|
+
|
397
417
|
self.set(params_values)
|
418
|
+
|
398
419
|
# Compute!
|
399
420
|
try:
|
400
421
|
if self.use_class_sz_fast_mode == 1:
|
401
|
-
|
422
|
+
|
423
|
+
|
402
424
|
if self.use_class_sz_no_cosmo_mode == 1:
|
403
|
-
|
425
|
+
|
426
|
+
start_time = time.time()
|
404
427
|
self.classy.compute_class_sz(params_values)
|
428
|
+
end_time = time.time()
|
429
|
+
# self.log.info("Execution time of class_sz: {:.5f} seconds".format(end_time - start_time))
|
430
|
+
|
405
431
|
else:
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
432
|
+
|
433
|
+
start_time = time.time()
|
434
|
+
self.classy.compute_class_szfast(likelihood_mode=True)
|
435
|
+
end_time = time.time()
|
436
|
+
# self.log.info("Execution time of class_szfast: {:.5f} seconds".format(end_time - start_time))
|
437
|
+
# print('pars in classy',self.classy.pars)
|
412
438
|
else:
|
439
|
+
|
413
440
|
self.classy.compute()
|
441
|
+
|
414
442
|
# "Valid" failure of CLASS: parameters too extreme -> log and report
|
415
443
|
except self.classy_module.CosmoComputationError as e:
|
416
444
|
if self.stop_at_error:
|
@@ -492,81 +520,15 @@ class classy_sz(classy):
|
|
492
520
|
if collector.post:
|
493
521
|
state[product] = collector.post(*state[product])
|
494
522
|
# Prepare derived parameters
|
523
|
+
|
495
524
|
d, d_extra = self._get_derived_all(derived_requested=want_derived)
|
525
|
+
|
496
526
|
if want_derived:
|
527
|
+
|
497
528
|
state["derived"] = {p: d.get(p) for p in self.output_params}
|
498
|
-
|
529
|
+
|
530
|
+
|
499
531
|
state["derived_extra"] = deepcopy(d_extra)
|
500
|
-
# exit(0)
|
501
|
-
|
502
|
-
|
503
|
-
# # get the required new observable
|
504
|
-
# def get_Cl(self,ell_factor=True,units="FIRASmuK2"):
|
505
|
-
# ell_factor=self.ell_factor
|
506
|
-
# # if self.tsz.use_class_sz_fast_mode == 1:
|
507
|
-
# cls = {}
|
508
|
-
# cls['ell'] = np.arange(20000)
|
509
|
-
# # print(cls['ell'])
|
510
|
-
# cls['tt'] = np.zeros(20000)
|
511
|
-
# cls['te'] = np.zeros(20000)
|
512
|
-
# cls['ee'] = np.zeros(20000)
|
513
|
-
# cls['pp'] = np.zeros(20000)
|
514
|
-
# # if self.tt_spectra is not None:
|
515
|
-
# nl = len(self.classy.class_szfast.cp_predicted_tt_spectrum)
|
516
|
-
# # print('nl:',nl)
|
517
|
-
# cls['tt'][2:nl+2] = (2.7255e6)**2.*self.classy.class_szfast.cp_predicted_tt_spectrum
|
518
|
-
# if ell_factor==False:
|
519
|
-
# lcp = np.asarray(cls['ell'][2:nl+2])
|
520
|
-
# cls['tt'][2:nl+2] *= 1./(lcp*(lcp+1.)/2./np.pi)
|
521
|
-
#
|
522
|
-
# # if self.te_spectra is not None:
|
523
|
-
# cls['te'][2:nl+2] = (2.7255e6)**2.*self.classy.class_szfast.cp_predicted_te_spectrum
|
524
|
-
# if ell_factor==False:
|
525
|
-
# lcp = np.asarray(cls['ell'][2:nl+2])
|
526
|
-
# cls['te'][2:nl+2] *= 1./(lcp*(lcp+1.)/2./np.pi)
|
527
|
-
# # if self.ee_spectra is not None:
|
528
|
-
# cls['ee'][2:nl+2] = (2.7255e6)**2.*self.classy.class_szfast.cp_predicted_ee_spectrum
|
529
|
-
# if ell_factor==False:
|
530
|
-
# lcp = np.asarray(cls['ell'][2:nl+2])
|
531
|
-
# cls['ee'][2:nl+2] *= 1./(lcp*(lcp+1.)/2./np.pi)
|
532
|
-
# # if self.pp_spectra is not None:
|
533
|
-
# # nl = len(self.pp_spectra[0])
|
534
|
-
# if self.lensing_lkl == "SOLikeT":
|
535
|
-
# cls['pp'][2:nl+2] = self.classy.class_szfast.cp_predicted_pp_spectrum/4. ## this is clkk... works for so lensinglite lkl
|
536
|
-
# else:
|
537
|
-
# # here for the planck lensing lkl, using lfactor option gives:
|
538
|
-
# lcp = np.asarray(cls['ell'][2:nl+2])
|
539
|
-
# cls['pp'][2:nl+2] = self.classy.class_szfast.cp_predicted_pp_spectrum/(lcp*(lcp+1.))**2.
|
540
|
-
# cls['pp'][2:nl+2] *= (lcp*(lcp+1.))**2./2./np.pi
|
541
|
-
# return cls
|
542
|
-
|
543
|
-
# def check_ranges(self, z, k):
|
544
|
-
# return 1
|
545
|
-
|
546
|
-
# IMPORTANT: copied from cobaya and changed.
|
547
|
-
def get_param(self, p):
|
548
|
-
translated = self.translate_param(p)
|
549
|
-
for pool in ["params", "derived", "derived_extra"]:
|
550
|
-
value = (self.current_state[pool] or {}).get(translated, None)
|
551
|
-
if p == 'omegam':
|
552
|
-
print('getting omegam in get_param')
|
553
|
-
# print(translated)
|
554
|
-
# print(self.classy.Omega_m())
|
555
|
-
# exit(0)
|
556
|
-
return self.classy.Omega_m()
|
557
|
-
if value is not None:
|
558
|
-
return value
|
559
|
-
|
560
|
-
raise LoggedError(self.log, "Parameter not known: '%s'", p)
|
561
|
-
### ORIGINAL FUNCTION:
|
562
|
-
# def get_param(self, p):
|
563
|
-
# translated = self.translate_param(p)
|
564
|
-
# for pool in ["params", "derived", "derived_extra"]:
|
565
|
-
# value = (self.current_state[pool] or {}).get(translated, None)
|
566
|
-
# if value is not None:
|
567
|
-
# return value
|
568
|
-
#
|
569
|
-
# raise LoggedError(self.log, "Parameter not known: '%s'", p)
|
570
532
|
|
571
533
|
|
572
534
|
|
classy_szfast/classy_szfast.py
CHANGED
@@ -10,6 +10,7 @@ from mcfit import TophatVar
|
|
10
10
|
from scipy.interpolate import CubicSpline
|
11
11
|
import pickle
|
12
12
|
|
13
|
+
|
13
14
|
H_units_conv_factor = {"1/Mpc": 1, "km/s/Mpc": Const.c_km_s}
|
14
15
|
|
15
16
|
|
@@ -33,16 +34,15 @@ def set_verbosity(verbosity):
|
|
33
34
|
|
34
35
|
|
35
36
|
|
36
|
-
def update_params_with_defaults(params_values,
|
37
|
+
def update_params_with_defaults(params_values, default_values):
|
37
38
|
"""
|
38
39
|
Update params_values with default values if they don't already exist.
|
39
40
|
|
40
41
|
Args:
|
41
42
|
params_values (dict): Dictionary containing parameter values.
|
42
|
-
|
43
|
+
default_values (dict): Dictionary containing default parameter values.
|
43
44
|
"""
|
44
|
-
|
45
|
-
default_values = self.emulator_dict[self.cosmo_model]['default']
|
45
|
+
|
46
46
|
|
47
47
|
# Update params_values with default values if key does not exist
|
48
48
|
for key, value in default_values.items():
|
@@ -52,6 +52,7 @@ def update_params_with_defaults(params_values, self):
|
|
52
52
|
|
53
53
|
class Class_szfast(object):
|
54
54
|
def __init__(self,
|
55
|
+
params_settings = {},
|
55
56
|
#lowring=False, some options if needed
|
56
57
|
**kwargs):
|
57
58
|
# some parameters
|
@@ -59,7 +60,11 @@ class Class_szfast(object):
|
|
59
60
|
# self.lowring = lowring
|
60
61
|
|
61
62
|
|
62
|
-
|
63
|
+
self.A_s_fast = 0
|
64
|
+
self.logA_fast = 0
|
65
|
+
|
66
|
+
|
67
|
+
set_verbosity(params_settings["classy_sz_verbose"])
|
63
68
|
self.logger = logging.getLogger(__name__)
|
64
69
|
|
65
70
|
|
@@ -95,6 +100,7 @@ class Class_szfast(object):
|
|
95
100
|
self.cp_ls = np.arange(2,self.cp_lmax+1)
|
96
101
|
|
97
102
|
|
103
|
+
|
98
104
|
|
99
105
|
cosmo_model_dict = {0: 'lcdm',
|
100
106
|
1: 'mnu',
|
@@ -106,7 +112,7 @@ class Class_szfast(object):
|
|
106
112
|
}
|
107
113
|
|
108
114
|
|
109
|
-
if cosmo_model_dict[
|
115
|
+
if cosmo_model_dict[params_settings['cosmo_model']] == 'ede-v2':
|
110
116
|
|
111
117
|
self.cp_ndspl_k = 1
|
112
118
|
self.cp_nk = 1000
|
@@ -128,16 +134,16 @@ class Class_szfast(object):
|
|
128
134
|
|
129
135
|
|
130
136
|
|
131
|
-
if (cosmo_model_dict[
|
137
|
+
if (cosmo_model_dict[params_settings['cosmo_model']] == 'ede-v2'):
|
132
138
|
|
133
139
|
self.cszfast_pk_grid_zmax = 20.
|
134
140
|
self.cszfast_pk_grid_kmin = 5e-4
|
135
141
|
self.cszfast_pk_grid_kmax = 10.
|
136
142
|
self.cp_kmax = self.cszfast_pk_grid_kmax
|
137
143
|
self.cp_kmin = self.cszfast_pk_grid_kmin
|
138
|
-
self.logger.info(f">>> using kmin = {self.cp_kmin}")
|
139
|
-
self.logger.info(f">>> using kmax = {self.cp_kmax}")
|
140
|
-
self.logger.info(f">>> using zmax = {self.cszfast_pk_grid_zmax}")
|
144
|
+
# self.logger.info(f">>> using kmin = {self.cp_kmin}")
|
145
|
+
# self.logger.info(f">>> using kmax = {self.cp_kmax}")
|
146
|
+
# self.logger.info(f">>> using zmax = {self.cszfast_pk_grid_zmax}")
|
141
147
|
|
142
148
|
else:
|
143
149
|
|
@@ -146,9 +152,9 @@ class Class_szfast(object):
|
|
146
152
|
self.cszfast_pk_grid_kmax = 50.
|
147
153
|
self.cp_kmax = self.cszfast_pk_grid_kmax
|
148
154
|
self.cp_kmin = self.cszfast_pk_grid_kmin
|
149
|
-
self.logger.info(f">>> using kmin = {self.cp_kmin}")
|
150
|
-
self.logger.info(f">>> using kmax = {self.cp_kmax}")
|
151
|
-
self.logger.info(f">>> using zmax = {self.cszfast_pk_grid_zmax}")
|
155
|
+
# self.logger.info(f">>> using kmin = {self.cp_kmin}")
|
156
|
+
# self.logger.info(f">>> using kmax = {self.cp_kmax}")
|
157
|
+
# self.logger.info(f">>> using zmax = {self.cszfast_pk_grid_zmax}")
|
152
158
|
|
153
159
|
self.cszfast_pk_grid_z = np.linspace(0.,self.cszfast_pk_grid_zmax,self.cszfast_pk_grid_nz)
|
154
160
|
self.cszfast_pk_grid_ln1pz = np.log(1.+self.cszfast_pk_grid_z)
|
@@ -160,12 +166,14 @@ class Class_szfast(object):
|
|
160
166
|
|
161
167
|
self.cszfast_pk_grid_nk = len(np.geomspace(self.cp_kmin,self.cp_kmax,self.cp_nk)[::self.cp_ndspl_k]) # has to be same as ndimSZ, and the same as dimension of cosmopower pk emulators
|
162
168
|
|
163
|
-
for k,v in
|
169
|
+
for k,v in params_settings.items():
|
164
170
|
|
165
171
|
if k == 'ndim_redshifts':
|
172
|
+
|
166
173
|
self.cszfast_pk_grid_nz = v
|
167
174
|
self.cszfast_pk_grid_z = np.linspace(0.,self.cszfast_pk_grid_zmax,self.cszfast_pk_grid_nz)
|
168
175
|
self.cszfast_pk_grid_ln1pz = np.log(1.+self.cszfast_pk_grid_z)
|
176
|
+
|
169
177
|
self.cszfast_pk_grid_pknl_flat = np.zeros(self.cszfast_pk_grid_nz*self.cszfast_pk_grid_nk)
|
170
178
|
self.cszfast_pk_grid_pkl_flat = np.zeros(self.cszfast_pk_grid_nz*self.cszfast_pk_grid_nk)
|
171
179
|
|
@@ -176,11 +184,11 @@ class Class_szfast(object):
|
|
176
184
|
if k == 'use_Amod':
|
177
185
|
|
178
186
|
self.use_Amod = v
|
179
|
-
self.Amod =
|
187
|
+
self.Amod = params_settings['Amod']
|
180
188
|
|
181
189
|
|
182
190
|
|
183
|
-
if cosmo_model_dict[
|
191
|
+
if cosmo_model_dict[params_settings['cosmo_model']] == 'ede-v2':
|
184
192
|
|
185
193
|
self.pk_power_fac = self.cszfast_pk_grid_k**-3
|
186
194
|
|
@@ -194,14 +202,6 @@ class Class_szfast(object):
|
|
194
202
|
self.cp_z_interp = np.linspace(0.,20.,5000)
|
195
203
|
|
196
204
|
self.csz_base = None
|
197
|
-
# self.csz_base.compute()
|
198
|
-
|
199
|
-
|
200
|
-
# z_arr = np.linspace(0.,zmax,nz) # z-array of redshift data [21oct22] oct 26 22: nz = 1000, zmax = 20
|
201
|
-
#
|
202
|
-
# nk = self.cp_nk
|
203
|
-
# ndspl = self.cp_ndspl_k
|
204
|
-
# k_arr = np.geomspace(self.cp_kmin,self.cp_kmax,nk)[::ndspl] # oct 26 22 : (1e-4,50.,5000), jan 10: ndspl
|
205
205
|
|
206
206
|
|
207
207
|
self.cszfast_zgrid_zmin = 0.
|
@@ -225,16 +225,15 @@ class Class_szfast(object):
|
|
225
225
|
self.cszfast_gas_pressure_xgrid = np.geomspace(self.cszfast_gas_pressure_xgrid_xmin,
|
226
226
|
self.cszfast_gas_pressure_xgrid_xmax,
|
227
227
|
self.cszfast_gas_pressure_xgrid_nx)
|
228
|
-
|
228
|
+
|
229
229
|
self.params_for_emulators = {}
|
230
230
|
|
231
231
|
def find_As(self,params_cp):
|
232
|
-
# params_cp = self.params_cp
|
233
|
-
t0 = time.time()
|
234
232
|
|
235
233
|
sigma_8_asked = params_cp["sigma8"]
|
236
|
-
|
237
|
-
|
234
|
+
|
235
|
+
update_params_with_defaults(params_cp, self.emulator_dict[self.cosmo_model]['default'])
|
236
|
+
|
238
237
|
def to_root(ln10_10_As_goal):
|
239
238
|
params_cp["ln10^{10}A_s"] = ln10_10_As_goal[0]
|
240
239
|
params_dict = {}
|
@@ -247,14 +246,18 @@ class Class_szfast(object):
|
|
247
246
|
x0=3.046,
|
248
247
|
#tol = 1e-10,
|
249
248
|
method="hybr")
|
250
|
-
|
249
|
+
|
250
|
+
params_cp['ln10^{10}A_s'] = lnA_s.x[0]
|
251
|
+
|
251
252
|
params_cp.pop('sigma8')
|
252
|
-
|
253
|
-
# print(params_cp)
|
253
|
+
|
254
254
|
return 1
|
255
255
|
|
256
256
|
|
257
257
|
def get_H0_from_thetas(self,params_values):
|
258
|
+
|
259
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
260
|
+
|
258
261
|
# print(params_values)
|
259
262
|
theta_s_asked = params_values['100*theta_s']
|
260
263
|
def fzero(H0_goal):
|
@@ -262,7 +265,7 @@ class Class_szfast(object):
|
|
262
265
|
params_dict = {}
|
263
266
|
for k,v in params_values.items():
|
264
267
|
params_dict[k]=[v]
|
265
|
-
|
268
|
+
|
266
269
|
predicted_der_params = self.cp_der_nn[self.cosmo_model].ten_to_predictions_np(params_dict)
|
267
270
|
return predicted_der_params[0][0]-theta_s_asked
|
268
271
|
sol = optimize.root(fzero,
|
@@ -319,9 +322,10 @@ class Class_szfast(object):
|
|
319
322
|
want_pp=1,
|
320
323
|
**params_values_dict):
|
321
324
|
|
325
|
+
|
322
326
|
params_values = params_values_dict.copy()
|
323
|
-
update_params_with_defaults(params_values, self)
|
324
327
|
|
328
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
325
329
|
|
326
330
|
params_dict = {}
|
327
331
|
|
@@ -404,7 +408,7 @@ class Class_szfast(object):
|
|
404
408
|
|
405
409
|
|
406
410
|
params_values = params_values_dict.copy()
|
407
|
-
update_params_with_defaults(params_values, self)
|
411
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
408
412
|
|
409
413
|
|
410
414
|
params_dict = {}
|
@@ -455,57 +459,50 @@ class Class_szfast(object):
|
|
455
459
|
|
456
460
|
|
457
461
|
def calculate_sigma(self,
|
458
|
-
|
459
|
-
# z_asked = None,
|
460
|
-
# r_asked = None,
|
462
|
+
|
461
463
|
**params_values_dict):
|
464
|
+
|
462
465
|
params_values = params_values_dict.copy()
|
466
|
+
|
463
467
|
k = self.cszfast_pk_grid_k
|
464
|
-
|
465
|
-
# print(self.cszfast_pk_grid_pk,np.shape(self.cszfast_pk_grid_pk))
|
468
|
+
|
466
469
|
P = self.cszfast_pk_grid_pk
|
470
|
+
|
467
471
|
var = P.copy()
|
472
|
+
|
468
473
|
dvar = P.copy()
|
474
|
+
|
469
475
|
for iz,zp in enumerate(self.cszfast_pk_grid_z):
|
476
|
+
|
470
477
|
R, var[:,iz] = TophatVar(k, lowring=True)(P[:,iz], extrap=True)
|
471
|
-
# dvar[:,iz] = np.gradient(var[:,iz], np.log(R))
|
472
|
-
# if params_values_dict['sigma_derivative'] == 1: ## need more points here !!
|
473
|
-
# rds,dvar[:,iz] = TophatVar(k,lowring=True,deriv=1)(P[:,iz]*k,extrap=True)
|
474
|
-
# else:
|
475
|
-
# dvar[:,iz] = np.gradient(var[:,iz], R)
|
476
478
|
|
477
479
|
dvar[:,iz] = np.gradient(var[:,iz], R)
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
# print('in sigma:',params_values)
|
485
|
-
# h = params_values['H0']/100.
|
486
|
-
# var = var.T
|
487
|
-
# dvar = dvar.T
|
480
|
+
|
481
|
+
# print(k)
|
482
|
+
# print(R)
|
483
|
+
# print(k*R)
|
484
|
+
# exit(0)
|
485
|
+
|
488
486
|
|
489
487
|
self.cszfast_pk_grid_lnr = np.log(R)
|
490
488
|
self.cszfast_pk_grid_sigma2 = var
|
489
|
+
|
491
490
|
self.cszfast_pk_grid_sigma2_flat = var.flatten()
|
492
491
|
self.cszfast_pk_grid_lnsigma2_flat = 0.5*np.log(var.flatten())
|
493
|
-
|
492
|
+
|
494
493
|
self.cszfast_pk_grid_dsigma2 = dvar
|
495
494
|
self.cszfast_pk_grid_dsigma2_flat = dvar.flatten()
|
496
|
-
|
497
|
-
# print(z_asked[0],r_asked[0])
|
498
|
-
# return z_asked, r_asked
|
499
|
-
# else:
|
500
|
-
# return 0
|
495
|
+
|
501
496
|
return 0
|
502
497
|
|
503
498
|
|
504
499
|
def calculate_sigma8_and_der(self,
|
505
500
|
# cosmo_model = self.cosmo_model,
|
506
501
|
**params_values_dict):
|
502
|
+
|
507
503
|
params_values = params_values_dict.copy()
|
508
|
-
update_params_with_defaults(params_values, self)
|
504
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
505
|
+
|
509
506
|
# print('in pkl:',params_values)
|
510
507
|
|
511
508
|
params_dict = {}
|
@@ -560,7 +557,7 @@ class Class_szfast(object):
|
|
560
557
|
|
561
558
|
|
562
559
|
params_values = params_values_dict.copy()
|
563
|
-
update_params_with_defaults(params_values, self)
|
560
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
564
561
|
|
565
562
|
|
566
563
|
params_dict = {}
|
@@ -613,7 +610,7 @@ class Class_szfast(object):
|
|
613
610
|
|
614
611
|
params_values = self.params_for_emulators
|
615
612
|
|
616
|
-
update_params_with_defaults(params_values, self)
|
613
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
617
614
|
|
618
615
|
|
619
616
|
params_dict = {}
|
@@ -629,7 +626,7 @@ class Class_szfast(object):
|
|
629
626
|
|
630
627
|
z_asked = z_asked
|
631
628
|
params_dict_pp = params_dict.copy()
|
632
|
-
update_params_with_defaults(params_dict_pp, self)
|
629
|
+
update_params_with_defaults(params_dict_pp, self.emulator_dict[self.cosmo_model]['default'])
|
633
630
|
|
634
631
|
params_dict_pp['z_pk_save_nonclass'] = [z_asked]
|
635
632
|
predicted_pk_spectrum_z.append(self.cp_pkl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0])
|
@@ -661,7 +658,7 @@ class Class_szfast(object):
|
|
661
658
|
|
662
659
|
params_values = self.params_for_emulators
|
663
660
|
|
664
|
-
update_params_with_defaults(params_values, self)
|
661
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
665
662
|
|
666
663
|
|
667
664
|
params_dict = {}
|
@@ -677,7 +674,7 @@ class Class_szfast(object):
|
|
677
674
|
|
678
675
|
z_asked = z_asked
|
679
676
|
params_dict_pp = params_dict.copy()
|
680
|
-
update_params_with_defaults(params_dict_pp, self)
|
677
|
+
update_params_with_defaults(params_dict_pp, self.emulator_dict[self.cosmo_model]['default'])
|
681
678
|
|
682
679
|
params_dict_pp['z_pk_save_nonclass'] = [z_asked]
|
683
680
|
predicted_pk_spectrum_z.append(self.cp_pknl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0])
|
@@ -694,10 +691,12 @@ class Class_szfast(object):
|
|
694
691
|
|
695
692
|
|
696
693
|
def calculate_hubble(self,
|
697
|
-
|
698
|
-
|
694
|
+
**params_values_dict):
|
695
|
+
|
699
696
|
params_values = params_values_dict.copy()
|
700
697
|
|
698
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
699
|
+
|
701
700
|
params_dict = {}
|
702
701
|
for k,v in zip(params_values.keys(),params_values.values()):
|
703
702
|
params_dict[k]=[v]
|
@@ -706,11 +705,8 @@ class Class_szfast(object):
|
|
706
705
|
if isinstance(params_dict['m_ncdm'][0],str):
|
707
706
|
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
708
707
|
|
709
|
-
|
710
|
-
|
711
708
|
self.cp_predicted_hubble = self.cp_h_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
712
|
-
|
713
|
-
# z_interp =
|
709
|
+
|
714
710
|
self.hz_interp = scipy.interpolate.interp1d(
|
715
711
|
self.cp_z_interp,
|
716
712
|
self.cp_predicted_hubble,
|
@@ -722,36 +718,33 @@ class Class_szfast(object):
|
|
722
718
|
assume_sorted=False)
|
723
719
|
|
724
720
|
def calculate_chi(self,
|
725
|
-
# cosmo_model = self.cosmo_model,
|
726
721
|
**params_values_dict):
|
727
|
-
|
728
|
-
# return x * alpha * beta + i * j * k
|
729
|
-
#
|
730
|
-
#
|
731
|
-
# grid = np.random.random((5000, 2))
|
732
|
-
#
|
733
|
-
# res, err = pyquad.quad_grid(test_integrand_func, 0, 1, grid, (1.0, 1.0, 1.0, 1.0))
|
734
|
-
#
|
735
|
-
# print(res,err)
|
736
|
-
# def integrand_chi(z,alpha, beta, i, j, k, l):
|
737
|
-
# z = z-1.
|
738
|
-
# return 1./self.get_Hubble(z)
|
739
|
-
# zmax = 1.
|
740
|
-
# grid = np.random.random((10000000, 2))
|
741
|
-
# chiz,err = pyquad.quad_grid(integrand_chi, 1., 1.+zmax, grid, (1.0, 1.0, 1.0, 1.0))
|
742
|
-
# print(chiz)
|
722
|
+
|
743
723
|
params_values = params_values_dict.copy()
|
744
724
|
|
725
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
726
|
+
|
745
727
|
params_dict = {}
|
728
|
+
|
746
729
|
for k,v in zip(params_values.keys(),params_values.values()):
|
730
|
+
|
747
731
|
params_dict[k]=[v]
|
748
732
|
|
749
733
|
if 'm_ncdm' in params_dict.keys():
|
750
734
|
if isinstance(params_dict['m_ncdm'][0],str):
|
751
735
|
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
752
736
|
|
737
|
+
# deal with different scaling of DA in different model from emulator training
|
738
|
+
if self.cosmo_model == 'ede-v2':
|
739
|
+
|
740
|
+
self.cp_predicted_da = self.cp_da_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
741
|
+
self.cp_predicted_da = np.insert(self.cp_predicted_da, 0, 0)
|
742
|
+
|
743
|
+
else:
|
744
|
+
|
745
|
+
self.cp_predicted_da = self.cp_da_nn[self.cosmo_model].predictions_np(params_dict)[0]
|
746
|
+
|
753
747
|
|
754
|
-
self.cp_predicted_da = self.cp_da_nn[self.cosmo_model].predictions_np(params_dict)[0]
|
755
748
|
self.chi_interp = scipy.interpolate.interp1d(
|
756
749
|
self.cp_z_interp,
|
757
750
|
self.cp_predicted_da*(1.+self.cp_z_interp),
|
@@ -763,6 +756,7 @@ class Class_szfast(object):
|
|
763
756
|
assume_sorted=False)
|
764
757
|
|
765
758
|
def get_cmb_cls(self,ell_factor=True,Tcmb_uk = Tcmb_uk):
|
759
|
+
|
766
760
|
cls = {}
|
767
761
|
cls['ell'] = np.arange(self.cszfast_ldim)
|
768
762
|
cls['tt'] = np.zeros(self.cszfast_ldim)
|
@@ -774,13 +768,6 @@ class Class_szfast(object):
|
|
774
768
|
cls['te'][2:self.cp_lmax+1] = (Tcmb_uk)**2.*self.cp_predicted_te_spectrum.copy()
|
775
769
|
cls['ee'][2:self.cp_lmax+1] = (Tcmb_uk)**2.*self.cp_predicted_ee_spectrum.copy()
|
776
770
|
cls['pp'][2:self.cp_lmax+1] = self.cp_predicted_pp_spectrum.copy()/4. ## this is clkk... works for so lensinglite lkl
|
777
|
-
# cls['bb'][2:self.cp_lmax+1] = self.cp_predicted_pp_spectrum.copy()/4. ## this is clkk... works for so lensinglite lkl
|
778
|
-
# print('doing gets')
|
779
|
-
# For planck likelihood:
|
780
|
-
# lcp = np.asarray(cls['ell'][2:nl+2])
|
781
|
-
# cls['pp'][2:nl+2] = self.pp_spectra[0].copy()/(lcp*(lcp+1.))**2.
|
782
|
-
# cls['pp'][2:nl+2] *= (lcp*(lcp+1.))**2./2./np.pi
|
783
|
-
|
784
771
|
|
785
772
|
|
786
773
|
if ell_factor==False:
|
classy_szfast/config.py
CHANGED
classy_szfast/cosmopower.py
CHANGED
@@ -60,7 +60,9 @@ emulator_dict['lcdm']['HZ'] = 'HZ_v1'
|
|
60
60
|
emulator_dict['lcdm']['S8Z'] = 'S8Z_v1'
|
61
61
|
emulator_dict['lcdm']['default'] = {}
|
62
62
|
emulator_dict['lcdm']['default']['tau_reio'] = 0.054
|
63
|
-
|
63
|
+
emulator_dict['lcdm']['default']['N_ur'] = 2.0328
|
64
|
+
emulator_dict['lcdm']['default']['N_ncdm'] = 1
|
65
|
+
emulator_dict['lcdm']['default']['m_ncdm'] = 0.06
|
64
66
|
|
65
67
|
emulator_dict['mnu']['TT'] = 'TT_mnu_v1'
|
66
68
|
emulator_dict['mnu']['TE'] = 'TE_mnu_v1'
|
@@ -74,7 +76,9 @@ emulator_dict['mnu']['HZ'] = 'HZ_mnu_v1'
|
|
74
76
|
emulator_dict['mnu']['S8Z'] = 'S8Z_mnu_v1'
|
75
77
|
emulator_dict['mnu']['default'] = {}
|
76
78
|
emulator_dict['mnu']['default']['tau_reio'] = 0.054
|
77
|
-
|
79
|
+
emulator_dict['mnu']['default']['N_ur'] = 2.0328
|
80
|
+
emulator_dict['mnu']['default']['N_ncdm'] = 1
|
81
|
+
emulator_dict['mnu']['default']['m_ncdm'] = 0.06
|
78
82
|
|
79
83
|
emulator_dict['neff']['TT'] = 'TT_neff_v1'
|
80
84
|
emulator_dict['neff']['TE'] = 'TE_neff_v1'
|
@@ -88,7 +92,9 @@ emulator_dict['neff']['HZ'] = 'HZ_neff_v1'
|
|
88
92
|
emulator_dict['neff']['S8Z'] = 'S8Z_neff_v1'
|
89
93
|
emulator_dict['neff']['default'] = {}
|
90
94
|
emulator_dict['neff']['default']['tau_reio'] = 0.054
|
91
|
-
|
95
|
+
emulator_dict['neff']['default']['N_ur'] = 2.0328
|
96
|
+
emulator_dict['neff']['default']['N_ncdm'] = 1
|
97
|
+
emulator_dict['neff']['default']['m_ncdm'] = 0.06
|
92
98
|
|
93
99
|
|
94
100
|
emulator_dict['wcdm']['TT'] = 'TT_w_v1'
|
@@ -103,7 +109,9 @@ emulator_dict['wcdm']['HZ'] = 'HZ_w_v1'
|
|
103
109
|
emulator_dict['wcdm']['S8Z'] = 'S8Z_w_v1'
|
104
110
|
emulator_dict['wcdm']['default'] = {}
|
105
111
|
emulator_dict['wcdm']['default']['tau_reio'] = 0.054
|
106
|
-
|
112
|
+
emulator_dict['wcdm']['default']['N_ur'] = 2.0328
|
113
|
+
emulator_dict['wcdm']['default']['N_ncdm'] = 1
|
114
|
+
emulator_dict['wcdm']['default']['m_ncdm'] = 0.06
|
107
115
|
|
108
116
|
emulator_dict['ede']['TT'] = 'TT_v1'
|
109
117
|
emulator_dict['ede']['TE'] = 'TE_v1'
|
@@ -124,8 +132,6 @@ emulator_dict['ede']['default']['r'] = 0.
|
|
124
132
|
emulator_dict['ede']['default']['N_ur'] = 0.00641
|
125
133
|
emulator_dict['ede']['default']['N_ncdm'] = 3
|
126
134
|
emulator_dict['ede']['default']['m_ncdm'] = 0.02
|
127
|
-
emulator_dict['ede']['default'] = {}
|
128
|
-
emulator_dict['ede']['default']['tau_reio'] = 0.054
|
129
135
|
|
130
136
|
|
131
137
|
emulator_dict['mnu-3states']['TT'] = 'TT_v1'
|
@@ -140,7 +146,9 @@ emulator_dict['mnu-3states']['HZ'] = 'HZ_v1'
|
|
140
146
|
emulator_dict['mnu-3states']['S8Z'] = 'S8Z_v1'
|
141
147
|
emulator_dict['mnu-3states']['default'] = {}
|
142
148
|
emulator_dict['mnu-3states']['default']['tau_reio'] = 0.054
|
143
|
-
|
149
|
+
emulator_dict['mnu-3states']['default']['N_ur'] = 0.00641
|
150
|
+
emulator_dict['mnu-3states']['default']['N_ncdm'] = 3
|
151
|
+
emulator_dict['mnu-3states']['default']['m_ncdm'] = 0.02
|
144
152
|
|
145
153
|
emulator_dict['ede-v2']['TT'] = 'TT_v2'
|
146
154
|
emulator_dict['ede-v2']['TE'] = 'TE_v2'
|
@@ -156,6 +164,10 @@ emulator_dict['ede-v2']['S8Z'] = 'S8Z_v2'
|
|
156
164
|
emulator_dict['ede-v2']['default'] = {}
|
157
165
|
emulator_dict['ede-v2']['default']['fEDE'] = 0.001
|
158
166
|
emulator_dict['ede-v2']['default']['tau_reio'] = 0.054
|
167
|
+
emulator_dict['ede-v2']['default']['H0'] = 67.66
|
168
|
+
emulator_dict['ede-v2']['default']['ln10^{10}A_s'] = 3.047
|
169
|
+
emulator_dict['ede-v2']['default']['omega_b'] = 0.02242
|
170
|
+
emulator_dict['ede-v2']['default']['omega_cdm'] = 0.11933
|
159
171
|
emulator_dict['ede-v2']['default']['log10z_c'] = 3.562 # e.g. from https://github.com/mwt5345/class_ede/blob/master/class/notebooks-ede/2-CMB-Comparison.ipynb
|
160
172
|
emulator_dict['ede-v2']['default']['thetai_scf'] = 2.83 # e.g. from https://github.com/mwt5345/class_ede/blob/master/class/notebooks-ede/2-CMB-Comparison.ipynb
|
161
173
|
emulator_dict['ede-v2']['default']['r'] = 0.
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: classy_szfast
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.11
|
4
4
|
Summary: The accelerator of the class_sz code from https://github.com/CLASS-SZ
|
5
5
|
Home-page: https://github.com/CLASS-SZ/classy_szfast
|
6
6
|
Download-URL: https://github.com/CLASS-SZ/classy_szfast
|
@@ -16,4 +16,5 @@ Requires-Dist: tensorflow ==2.13.0
|
|
16
16
|
Requires-Dist: tensorflow-probability ==0.21.0
|
17
17
|
Requires-Dist: cosmopower
|
18
18
|
Requires-Dist: mcfit
|
19
|
+
Requires-Dist: get-cosmopower-emus
|
19
20
|
|
@@ -0,0 +1,17 @@
|
|
1
|
+
classy_szfast/__init__.py,sha256=E2thrL0Z9oXFfdzwcsu-xbOytudLFTlRlPqVFGlPPPg,279
|
2
|
+
classy_szfast/classy_sz.py,sha256=QmbwrSXInQLMvCDqsr7KPmtaU0KOiOt1Rb-cTKuulZw,22240
|
3
|
+
classy_szfast/classy_szfast.py,sha256=TBmm98jDakvLRbrDiI6m_youZXOONyhXAV2MyU41gFc,33729
|
4
|
+
classy_szfast/config.py,sha256=4CvejtLcFOQR30bJ8tlEeBHhu3Rr7LakeLO6dbFgPSU,210
|
5
|
+
classy_szfast/cosmopower.py,sha256=u9iLdt51Qss5KwOQ637lHDBWsUz0H2u-53VUMyP5foY,10435
|
6
|
+
classy_szfast/cosmosis_classy_szfast_interface.py,sha256=zAnxvFtn73a5yS7jgs59zpWFEYKCIQyraYPs5hQ4Le8,11483
|
7
|
+
classy_szfast/pks_and_sigmas.py,sha256=drtuujE1HhlrYY1hY92DyY5lXlYS1uE15MSuVI4uo6k,6625
|
8
|
+
classy_szfast/suppress_warnings.py,sha256=6wIBml2Sj9DyRGZlZWhuA9hqvpxqrNyYjuz6BPK_a6E,202
|
9
|
+
classy_szfast/utils.py,sha256=ZZxujm1yBM0KIeVVLOuoNqUVkXIZt817QDi7U_Fz_IM,1462
|
10
|
+
classy_szfast/custom_bias/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
|
+
classy_szfast/custom_bias/custom_bias.py,sha256=aR2t5RTIwv7P0m2bsEU0Eq6BTkj4pG10AebH6QpG4qM,486
|
12
|
+
classy_szfast/custom_profiles/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
|
+
classy_szfast/custom_profiles/custom_profiles.py,sha256=4LZwb2XoqwCyWNmW2s24Z7AJdmgVdaRG7yYaBYe-d9Q,1188
|
14
|
+
classy_szfast-0.0.11.dist-info/METADATA,sha256=q7a06RaiRRY8j-mjhJGEVeQUoZx-l-JJ1IpDnjL_UGw,749
|
15
|
+
classy_szfast-0.0.11.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
|
16
|
+
classy_szfast-0.0.11.dist-info/top_level.txt,sha256=hRgqpilUck4lx2KkaWI2y9aCDKqF6pFfGHfNaoPFxv0,14
|
17
|
+
classy_szfast-0.0.11.dist-info/RECORD,,
|
@@ -1,17 +0,0 @@
|
|
1
|
-
classy_szfast/__init__.py,sha256=E2thrL0Z9oXFfdzwcsu-xbOytudLFTlRlPqVFGlPPPg,279
|
2
|
-
classy_szfast/classy_sz.py,sha256=mp6tbYzeoi27ciShV2N8xGCR9vIrhm1ISgRHjDGEh-E,25829
|
3
|
-
classy_szfast/classy_szfast.py,sha256=WogzPos9dGlacklyAOjb58CS4Qbdip8BZyuj0RcGLtA,35452
|
4
|
-
classy_szfast/config.py,sha256=OJXwK9gTufJgmOxXUax3XJ6QJ1yF0pJARJBCG-odZQU,151
|
5
|
-
classy_szfast/cosmopower.py,sha256=poSQ6zRHJBPedZ-nO3BWjsxXLyd8FSh9aTCx6B-VoqQ,9553
|
6
|
-
classy_szfast/cosmosis_classy_szfast_interface.py,sha256=zAnxvFtn73a5yS7jgs59zpWFEYKCIQyraYPs5hQ4Le8,11483
|
7
|
-
classy_szfast/pks_and_sigmas.py,sha256=drtuujE1HhlrYY1hY92DyY5lXlYS1uE15MSuVI4uo6k,6625
|
8
|
-
classy_szfast/suppress_warnings.py,sha256=6wIBml2Sj9DyRGZlZWhuA9hqvpxqrNyYjuz6BPK_a6E,202
|
9
|
-
classy_szfast/utils.py,sha256=ZZxujm1yBM0KIeVVLOuoNqUVkXIZt817QDi7U_Fz_IM,1462
|
10
|
-
classy_szfast/custom_bias/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
|
-
classy_szfast/custom_bias/custom_bias.py,sha256=53RbMAawCurKuI44nqk6fTTkQbbuJDcZpK0YhNQS3j8,486
|
12
|
-
classy_szfast/custom_profiles/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
|
-
classy_szfast/custom_profiles/custom_profiles.py,sha256=4LZwb2XoqwCyWNmW2s24Z7AJdmgVdaRG7yYaBYe-d9Q,1188
|
14
|
-
classy_szfast-0.0.9.dist-info/METADATA,sha256=-hPJoxQ6DfJok-Uz8W_RS-77DQ32doSDnDl5_z_-vV4,713
|
15
|
-
classy_szfast-0.0.9.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
16
|
-
classy_szfast-0.0.9.dist-info/top_level.txt,sha256=hRgqpilUck4lx2KkaWI2y9aCDKqF6pFfGHfNaoPFxv0,14
|
17
|
-
classy_szfast-0.0.9.dist-info/RECORD,,
|
File without changes
|