classy-szfast 0.0.15__py3-none-any.whl → 0.0.20__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- classy_szfast/config.py +2 -1
- classy_szfast/restore_nn.py +88 -23
- {classy_szfast-0.0.15.dist-info → classy_szfast-0.0.20.dist-info}/METADATA +4 -3
- {classy_szfast-0.0.15.dist-info → classy_szfast-0.0.20.dist-info}/RECORD +6 -6
- {classy_szfast-0.0.15.dist-info → classy_szfast-0.0.20.dist-info}/WHEEL +1 -1
- {classy_szfast-0.0.15.dist-info → classy_szfast-0.0.20.dist-info}/top_level.txt +0 -0
classy_szfast/config.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1
1
|
import os
|
2
2
|
|
3
3
|
import get_cosmopower_emus
|
4
|
-
|
4
|
+
import class_sz_data
|
5
5
|
|
6
6
|
def get_cosmopower_path():
|
7
7
|
get_cosmopower_emus.set()
|
8
8
|
return os.getenv('PATH_TO_COSMOPOWER_ORGANIZATION')
|
9
9
|
|
10
10
|
path_to_cosmopower_organization = get_cosmopower_path()
|
11
|
+
class_sz_data.get_data_from_class_sz_repo(path_to_cosmopower_organization)
|
classy_szfast/restore_nn.py
CHANGED
@@ -18,7 +18,7 @@ with suppress_warnings():
|
|
18
18
|
import tensorflow as tf
|
19
19
|
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
20
20
|
dtype = tf.float32
|
21
|
-
|
21
|
+
|
22
22
|
|
23
23
|
class Restore_NN(tf.keras.Model):
|
24
24
|
|
@@ -121,7 +121,10 @@ class Restore_NN(tf.keras.Model):
|
|
121
121
|
" does not exist."))
|
122
122
|
|
123
123
|
with open(filename_npz, "rb") as fp:
|
124
|
-
fpz = np.load(fp)
|
124
|
+
fpz = np.load(fp, allow_pickle=True)["arr_0"].flatten()[0]
|
125
|
+
|
126
|
+
# print('filename_npz:', filename_npz)
|
127
|
+
# print("Keys in the .npz file:", list(fpz.keys()))
|
125
128
|
|
126
129
|
self.architecture = fpz["architecture"]
|
127
130
|
self.n_layers = fpz["n_layers"]
|
@@ -132,17 +135,35 @@ class Restore_NN(tf.keras.Model):
|
|
132
135
|
self.parameters = list(fpz["parameters"])
|
133
136
|
self.modes = fpz["modes"]
|
134
137
|
|
135
|
-
self.parameters_mean_ = fpz["parameters_mean"]
|
136
|
-
self.parameters_std_ = fpz["parameters_std"]
|
137
|
-
self.features_mean_ = fpz["features_mean"]
|
138
|
-
self.features_std_ = fpz["features_std"]
|
138
|
+
# self.parameters_mean_ = fpz["parameters_mean"]
|
139
|
+
# self.parameters_std_ = fpz["parameters_std"]
|
140
|
+
# self.features_mean_ = fpz["features_mean"]
|
141
|
+
# self.features_std_ = fpz["features_std"]
|
142
|
+
|
143
|
+
# Attempt to load 'parameters_mean' or fall back to 'param_train_mean'
|
144
|
+
self.parameters_mean_ = fpz.get("parameters_mean", fpz.get("param_train_mean"))
|
145
|
+
self.parameters_std_ = fpz.get("parameters_std", fpz.get("param_train_std"))
|
146
|
+
self.features_mean_ = fpz.get("features_mean", fpz.get("feature_train_mean"))
|
147
|
+
self.features_std_ = fpz.get("features_std", fpz.get("feature_train_std"))
|
148
|
+
|
149
|
+
|
150
|
+
# Fallback to 'weights_' if individual 'W_i' are not found
|
151
|
+
if "weights_" in fpz:
|
152
|
+
# Assign the list of weight arrays from 'weights_' directly
|
153
|
+
self.W_ = fpz["weights_"]
|
154
|
+
else:
|
155
|
+
# Use individual weight arrays if available
|
156
|
+
self.W_ = [fpz[f"W_{i}"] for i in range(self.n_layers)]
|
157
|
+
|
158
|
+
# Fallback to 'biases_' if individual 'b_i' are not found
|
159
|
+
if "biases_" in fpz:
|
160
|
+
self.b_ = fpz["biases_"]
|
161
|
+
else:
|
162
|
+
self.b_ = [fpz[f"b_{i}"] for i in range(self.n_layers)]
|
163
|
+
|
164
|
+
self.alphas_ = fpz[f"alphas_"]
|
165
|
+
self.betas_ = fpz[f"betas_"]
|
139
166
|
|
140
|
-
self.W_ = [fpz[f"W_{i}"] for i in range(self.n_layers)]
|
141
|
-
self.b_ = [fpz[f"b_{i}"] for i in range(self.n_layers)]
|
142
|
-
self.alphas_ = [
|
143
|
-
fpz[f"alphas_{i}"] for i in range(self.n_layers - 1)
|
144
|
-
]
|
145
|
-
self.betas_ = [fpz[f"betas_{i}"] for i in range(self.n_layers - 1)]
|
146
167
|
|
147
168
|
# auxiliary function to sort input parameters
|
148
169
|
def dict_to_ordered_arr_np(self,
|
@@ -342,7 +363,11 @@ class Restore_PCAplusNN(tf.keras.Model):
|
|
342
363
|
" does not exist."))
|
343
364
|
|
344
365
|
with open(filename_npz, "rb") as fp:
|
345
|
-
fpz = np.load(fp)
|
366
|
+
fpz = np.load(fp, allow_pickle=True)["arr_0"].flatten()[0]
|
367
|
+
|
368
|
+
# print('filename_npz:', filename_npz)
|
369
|
+
# print("Keys in the .npz file:", list(fpz.keys()))
|
370
|
+
|
346
371
|
|
347
372
|
self.architecture = fpz["architecture"]
|
348
373
|
self.n_layers = fpz["n_layers"]
|
@@ -353,22 +378,62 @@ class Restore_PCAplusNN(tf.keras.Model):
|
|
353
378
|
self.parameters = fpz["parameters"]
|
354
379
|
self.modes = fpz["modes"]
|
355
380
|
|
356
|
-
|
357
|
-
self.
|
358
|
-
self.
|
359
|
-
self.
|
381
|
+
# Attempt to load 'parameters_mean' or fall back to 'param_train_mean'
|
382
|
+
self.parameters_mean_ = fpz.get("parameters_mean", fpz.get("param_train_mean"))
|
383
|
+
self.parameters_std_ = fpz.get("parameters_std", fpz.get("param_train_std"))
|
384
|
+
self.features_mean_ = fpz.get("features_mean", fpz.get("feature_train_mean"))
|
385
|
+
self.features_std_ = fpz.get("features_std", fpz.get("feature_train_std"))
|
386
|
+
|
387
|
+
# Handle PCA-related keys
|
388
|
+
# self.pca_mean_ = fpz["pca_mean"]
|
389
|
+
# self.pca_std_ = fpz["pca_std"]
|
390
|
+
# self.n_pcas = fpz["n_pcas"]
|
360
391
|
|
361
392
|
self.pca_mean_ = fpz["pca_mean"]
|
362
393
|
self.pca_std_ = fpz["pca_std"]
|
363
394
|
self.n_pcas = fpz["n_pcas"]
|
364
395
|
self.pca_transform_matrix_ = fpz["pca_transform_matrix"]
|
365
396
|
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
self.
|
397
|
+
# print('n_pcas:', self.n_pcas)
|
398
|
+
|
399
|
+
# filename = "/Users/boris/Work/CLASS-SZ/SO-SZ/cosmopower-organization/lcdm/TTTEEE/TE_v1.pkl"
|
400
|
+
# f = open(filename, 'rb')
|
401
|
+
# self.W_, self.b_, self.alphas_, self.betas_, \
|
402
|
+
# self.parameters_mean_, self.parameters_std_, \
|
403
|
+
# self.pca_mean_, self.pca_std_, \
|
404
|
+
# self.features_mean_, self.features_std_, \
|
405
|
+
# self.parameters, self.n_parameters, \
|
406
|
+
# self.modes, self.n_modes, \
|
407
|
+
# self.n_pcas, self.pca_transform_matrix_, \
|
408
|
+
# self.n_hidden, self.n_layers, self.architecture = pickle.load(f)
|
409
|
+
|
410
|
+
# print('self.n_pcas:', self.n_pcas)
|
411
|
+
# print('self.pca_transform_matrix_:', self.pca_transform_matrix_)
|
412
|
+
# print('PCA mean:', self.pca_mean_)
|
413
|
+
# print('PCA std:', self.pca_std_)
|
414
|
+
# f.close()
|
415
|
+
# import sys
|
416
|
+
# sys.exit(0)
|
417
|
+
|
418
|
+
# self.pca_transform_matrix_ = fpz["pca_transform_matrix"]
|
419
|
+
|
420
|
+
# Fallback to 'weights_' if individual 'W_i' are not found
|
421
|
+
if "weights_" in fpz:
|
422
|
+
# Assign the list of weight arrays from 'weights_' directly
|
423
|
+
self.W_ = fpz["weights_"]
|
424
|
+
else:
|
425
|
+
# Use individual weight arrays if available
|
426
|
+
self.W_ = [fpz[f"W_{i}"] for i in range(self.n_layers)]
|
427
|
+
|
428
|
+
# Fallback to 'biases_' if individual 'b_i' are not found
|
429
|
+
if "biases_" in fpz:
|
430
|
+
self.b_ = fpz["biases_"]
|
431
|
+
else:
|
432
|
+
self.b_ = [fpz[f"b_{i}"] for i in range(self.n_layers)]
|
433
|
+
|
434
|
+
# Handle alphas and betas
|
435
|
+
self.alphas_ = fpz.get("alphas_", [fpz.get(f"alphas_{i}") for i in range(self.n_layers - 1)])
|
436
|
+
self.betas_ = fpz.get("betas_", [fpz.get(f"betas_{i}") for i in range(self.n_layers - 1)])
|
372
437
|
|
373
438
|
|
374
439
|
|
@@ -1,14 +1,15 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: classy_szfast
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.20
|
4
4
|
Summary: The accelerator of the class_sz code from https://github.com/CLASS-SZ
|
5
5
|
Maintainer-email: Boris Bolliet <bb667@cam.ac.uk>
|
6
6
|
Project-URL: Homepage, https://github.com/CLASS-SZ
|
7
7
|
Project-URL: GitHub, https://github.com/CLASS-SZ
|
8
8
|
Description-Content-Type: text/markdown
|
9
|
-
Requires-Dist: numpy
|
10
|
-
Requires-Dist: Cython
|
9
|
+
Requires-Dist: numpy>=1.19.0
|
10
|
+
Requires-Dist: Cython>=0.29.21
|
11
11
|
Requires-Dist: tensorflow
|
12
12
|
Requires-Dist: mcfit
|
13
13
|
Requires-Dist: get-cosmopower-emus
|
14
|
+
Requires-Dist: class-sz-data
|
14
15
|
|
@@ -1,18 +1,18 @@
|
|
1
1
|
classy_szfast/__init__.py,sha256=E2thrL0Z9oXFfdzwcsu-xbOytudLFTlRlPqVFGlPPPg,279
|
2
2
|
classy_szfast/classy_sz.py,sha256=QmbwrSXInQLMvCDqsr7KPmtaU0KOiOt1Rb-cTKuulZw,22240
|
3
3
|
classy_szfast/classy_szfast.py,sha256=A06tLt_Slxd5TvSQLHaqmX2-Z0aI6p3nWo6jEQ2oWeM,33748
|
4
|
-
classy_szfast/config.py,sha256=
|
4
|
+
classy_szfast/config.py,sha256=0sx_r9diFJ3mR4zvuTGxN63wTw10sEw06FbFcjVWaB0,304
|
5
5
|
classy_szfast/cosmopower.py,sha256=eym72TFAcSJSTUlrwD-sAg8_9e2GdZq0m3lLPQ7uvPU,9858
|
6
6
|
classy_szfast/cosmosis_classy_szfast_interface.py,sha256=zAnxvFtn73a5yS7jgs59zpWFEYKCIQyraYPs5hQ4Le8,11483
|
7
7
|
classy_szfast/pks_and_sigmas.py,sha256=drtuujE1HhlrYY1hY92DyY5lXlYS1uE15MSuVI4uo6k,6625
|
8
|
-
classy_szfast/restore_nn.py,sha256=
|
8
|
+
classy_szfast/restore_nn.py,sha256=DqA9thhTRiGBDVb9zjhqcbF2W4V0AU0vrjJFhnLboU4,21075
|
9
9
|
classy_szfast/suppress_warnings.py,sha256=6wIBml2Sj9DyRGZlZWhuA9hqvpxqrNyYjuz6BPK_a6E,202
|
10
10
|
classy_szfast/utils.py,sha256=VdaRsJK2ttHI9zkyxVhergxHPC6t99usrlycblyqcP8,1464
|
11
11
|
classy_szfast/custom_bias/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
12
|
classy_szfast/custom_bias/custom_bias.py,sha256=aR2t5RTIwv7P0m2bsEU0Eq6BTkj4pG10AebH6QpG4qM,486
|
13
13
|
classy_szfast/custom_profiles/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
classy_szfast/custom_profiles/custom_profiles.py,sha256=4LZwb2XoqwCyWNmW2s24Z7AJdmgVdaRG7yYaBYe-d9Q,1188
|
15
|
-
classy_szfast-0.0.
|
16
|
-
classy_szfast-0.0.
|
17
|
-
classy_szfast-0.0.
|
18
|
-
classy_szfast-0.0.
|
15
|
+
classy_szfast-0.0.20.dist-info/METADATA,sha256=rIQVXCYoFtsApJw-q1eieIam5rGa8B2YU7oALMVeuUU,499
|
16
|
+
classy_szfast-0.0.20.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
17
|
+
classy_szfast-0.0.20.dist-info/top_level.txt,sha256=hRgqpilUck4lx2KkaWI2y9aCDKqF6pFfGHfNaoPFxv0,14
|
18
|
+
classy_szfast-0.0.20.dist-info/RECORD,,
|
File without changes
|