classy-szfast 0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- classy_szfast/__init__.py +14 -0
- classy_szfast/classy_sz.py +547 -0
- classy_szfast/classy_szfast.py +933 -0
- classy_szfast/config.py +10 -0
- classy_szfast/cosmopower.py +259 -0
- classy_szfast/cosmosis_classy_szfast_interface.py +331 -0
- classy_szfast/custom_bias/__init__.py +0 -0
- classy_szfast/custom_bias/custom_bias.py +20 -0
- classy_szfast/custom_profiles/__init__.py +0 -0
- classy_szfast/custom_profiles/custom_profiles.py +45 -0
- classy_szfast/pks_and_sigmas.py +150 -0
- classy_szfast/restore_nn.py +395 -0
- classy_szfast/suppress_warnings.py +10 -0
- classy_szfast/utils.py +62 -0
- classy_szfast-0.0.0.dist-info/METADATA +15 -0
- classy_szfast-0.0.0.dist-info/RECORD +18 -0
- classy_szfast-0.0.0.dist-info/WHEEL +5 -0
- classy_szfast-0.0.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,933 @@
|
|
1
|
+
from .utils import *
|
2
|
+
from .config import *
|
3
|
+
import numpy as np
|
4
|
+
from .cosmopower import *
|
5
|
+
from .pks_and_sigmas import *
|
6
|
+
import scipy
|
7
|
+
import time
|
8
|
+
from multiprocessing import Process
|
9
|
+
from mcfit import TophatVar
|
10
|
+
from scipy.interpolate import CubicSpline
|
11
|
+
import pickle
|
12
|
+
|
13
|
+
|
14
|
+
H_units_conv_factor = {"1/Mpc": 1, "km/s/Mpc": Const.c_km_s}
|
15
|
+
|
16
|
+
|
17
|
+
import logging
|
18
|
+
|
19
|
+
def configure_logging(level=logging.INFO):
|
20
|
+
logging.basicConfig(
|
21
|
+
format='%(levelname)s - %(message)s',
|
22
|
+
level=level
|
23
|
+
)
|
24
|
+
|
25
|
+
def set_verbosity(verbosity):
|
26
|
+
levels = {
|
27
|
+
'none': logging.CRITICAL,
|
28
|
+
'minimal': logging.INFO,
|
29
|
+
'extensive': logging.DEBUG
|
30
|
+
}
|
31
|
+
# print(f'Setting verbosity to {verbosity}')
|
32
|
+
level = levels.get(verbosity, logging.INFO)
|
33
|
+
configure_logging(level)
|
34
|
+
|
35
|
+
|
36
|
+
|
37
|
+
def update_params_with_defaults(params_values, default_values):
|
38
|
+
"""
|
39
|
+
Update params_values with default values if they don't already exist.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
params_values (dict): Dictionary containing parameter values.
|
43
|
+
default_values (dict): Dictionary containing default parameter values.
|
44
|
+
"""
|
45
|
+
|
46
|
+
|
47
|
+
# Update params_values with default values if key does not exist
|
48
|
+
for key, value in default_values.items():
|
49
|
+
if key not in params_values:
|
50
|
+
params_values[key] = value
|
51
|
+
|
52
|
+
|
53
|
+
class Class_szfast(object):
|
54
|
+
def __init__(self,
|
55
|
+
params_settings = {},
|
56
|
+
#lowring=False, some options if needed
|
57
|
+
**kwargs):
|
58
|
+
# some parameters
|
59
|
+
# self.xy = xy
|
60
|
+
# self.lowring = lowring
|
61
|
+
|
62
|
+
|
63
|
+
self.A_s_fast = 0
|
64
|
+
self.logA_fast = 0
|
65
|
+
|
66
|
+
|
67
|
+
set_verbosity(params_settings["classy_sz_verbose"])
|
68
|
+
self.logger = logging.getLogger(__name__)
|
69
|
+
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
|
74
|
+
|
75
|
+
# cosmopower emulators
|
76
|
+
self.cp_path_to_cosmopower_organization = path_to_cosmopower_organization + '/'
|
77
|
+
self.cp_tt_nn = cp_tt_nn
|
78
|
+
self.cp_te_nn = cp_te_nn
|
79
|
+
self.cp_ee_nn = cp_ee_nn
|
80
|
+
self.cp_pp_nn = cp_pp_nn
|
81
|
+
self.cp_pknl_nn = cp_pknl_nn
|
82
|
+
self.cp_pkl_nn = cp_pkl_nn
|
83
|
+
self.cp_der_nn = cp_der_nn
|
84
|
+
self.cp_da_nn = cp_da_nn
|
85
|
+
self.cp_h_nn = cp_h_nn
|
86
|
+
self.cp_s8_nn = cp_s8_nn
|
87
|
+
|
88
|
+
self.emulator_dict = emulator_dict
|
89
|
+
|
90
|
+
if dofftlog_alphas == True:
|
91
|
+
self.cp_pkl_fftlog_alphas_nus = cp_pkl_fftlog_alphas_nus
|
92
|
+
self.cp_pkl_fftlog_alphas_real_nn = cp_pkl_fftlog_alphas_real_nn
|
93
|
+
self.cp_pkl_fftlog_alphas_imag_nn = cp_pkl_fftlog_alphas_imag_nn
|
94
|
+
|
95
|
+
self.cosmo_model = 'ede-v2'
|
96
|
+
self.use_Amod = 0
|
97
|
+
self.Amod = 0
|
98
|
+
|
99
|
+
self.cp_lmax = cp_l_max_scalars
|
100
|
+
self.cp_ls = np.arange(2,self.cp_lmax+1)
|
101
|
+
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
cosmo_model_dict = {0: 'lcdm',
|
106
|
+
1: 'mnu',
|
107
|
+
2: 'neff',
|
108
|
+
3: 'wcdm',
|
109
|
+
4: 'ede',
|
110
|
+
5: 'mnu-3states',
|
111
|
+
6: 'ede-v2'
|
112
|
+
}
|
113
|
+
|
114
|
+
|
115
|
+
if cosmo_model_dict[params_settings['cosmo_model']] == 'ede-v2':
|
116
|
+
|
117
|
+
self.cp_ndspl_k = 1
|
118
|
+
self.cp_nk = 1000
|
119
|
+
|
120
|
+
else:
|
121
|
+
|
122
|
+
self.cp_ndspl_k = 10
|
123
|
+
self.cp_nk = 5000
|
124
|
+
|
125
|
+
self.cp_predicted_tt_spectrum =np.zeros(self.cp_lmax)
|
126
|
+
self.cp_predicted_te_spectrum =np.zeros(self.cp_lmax)
|
127
|
+
self.cp_predicted_ee_spectrum =np.zeros(self.cp_lmax)
|
128
|
+
self.cp_predicted_pp_spectrum =np.zeros(self.cp_lmax)
|
129
|
+
|
130
|
+
|
131
|
+
self.cszfast_ldim = 20000 # used for the cls arrays
|
132
|
+
|
133
|
+
self.cszfast_pk_grid_nz = 100 # has to be same as narraySZ, i.e., ndim_redshifts; it is setup hereafter if ndim_redshifts is passed
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
if (cosmo_model_dict[params_settings['cosmo_model']] == 'ede-v2'):
|
138
|
+
|
139
|
+
self.cszfast_pk_grid_zmax = 20.
|
140
|
+
self.cszfast_pk_grid_kmin = 5e-4
|
141
|
+
self.cszfast_pk_grid_kmax = 10.
|
142
|
+
self.cp_kmax = self.cszfast_pk_grid_kmax
|
143
|
+
self.cp_kmin = self.cszfast_pk_grid_kmin
|
144
|
+
# self.logger.info(f">>> using kmin = {self.cp_kmin}")
|
145
|
+
# self.logger.info(f">>> using kmax = {self.cp_kmax}")
|
146
|
+
# self.logger.info(f">>> using zmax = {self.cszfast_pk_grid_zmax}")
|
147
|
+
|
148
|
+
else:
|
149
|
+
|
150
|
+
self.cszfast_pk_grid_zmax = 5. # max z of our pk emulators (sept 23)
|
151
|
+
self.cszfast_pk_grid_kmin = 1e-4
|
152
|
+
self.cszfast_pk_grid_kmax = 50.
|
153
|
+
self.cp_kmax = self.cszfast_pk_grid_kmax
|
154
|
+
self.cp_kmin = self.cszfast_pk_grid_kmin
|
155
|
+
# self.logger.info(f">>> using kmin = {self.cp_kmin}")
|
156
|
+
# self.logger.info(f">>> using kmax = {self.cp_kmax}")
|
157
|
+
# self.logger.info(f">>> using zmax = {self.cszfast_pk_grid_zmax}")
|
158
|
+
|
159
|
+
self.cszfast_pk_grid_z = np.linspace(0.,self.cszfast_pk_grid_zmax,self.cszfast_pk_grid_nz)
|
160
|
+
self.cszfast_pk_grid_ln1pz = np.log(1.+self.cszfast_pk_grid_z)
|
161
|
+
|
162
|
+
|
163
|
+
self.cszfast_pk_grid_k = np.geomspace(self.cp_kmin,self.cp_kmax,self.cp_nk)[::self.cp_ndspl_k]
|
164
|
+
|
165
|
+
self.cszfast_pk_grid_lnk = np.log(self.cszfast_pk_grid_k)
|
166
|
+
|
167
|
+
self.cszfast_pk_grid_nk = len(np.geomspace(self.cp_kmin,self.cp_kmax,self.cp_nk)[::self.cp_ndspl_k]) # has to be same as ndimSZ, and the same as dimension of cosmopower pk emulators
|
168
|
+
|
169
|
+
for k,v in params_settings.items():
|
170
|
+
|
171
|
+
if k == 'ndim_redshifts':
|
172
|
+
|
173
|
+
self.cszfast_pk_grid_nz = v
|
174
|
+
self.cszfast_pk_grid_z = np.linspace(0.,self.cszfast_pk_grid_zmax,self.cszfast_pk_grid_nz)
|
175
|
+
self.cszfast_pk_grid_ln1pz = np.log(1.+self.cszfast_pk_grid_z)
|
176
|
+
|
177
|
+
self.cszfast_pk_grid_pknl_flat = np.zeros(self.cszfast_pk_grid_nz*self.cszfast_pk_grid_nk)
|
178
|
+
self.cszfast_pk_grid_pkl_flat = np.zeros(self.cszfast_pk_grid_nz*self.cszfast_pk_grid_nk)
|
179
|
+
|
180
|
+
if k == 'cosmo_model':
|
181
|
+
|
182
|
+
self.cosmo_model = cosmo_model_dict[v]
|
183
|
+
|
184
|
+
if k == 'use_Amod':
|
185
|
+
|
186
|
+
self.use_Amod = v
|
187
|
+
self.Amod = params_settings['Amod']
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
if cosmo_model_dict[params_settings['cosmo_model']] == 'ede-v2':
|
192
|
+
|
193
|
+
self.pk_power_fac = self.cszfast_pk_grid_k**-3
|
194
|
+
|
195
|
+
else:
|
196
|
+
|
197
|
+
ls = np.arange(2,self.cp_nk+2)[::self.cp_ndspl_k] # jan 10 ndspl
|
198
|
+
dls = ls*(ls+1.)/2./np.pi
|
199
|
+
self.pk_power_fac= (dls)**-1
|
200
|
+
|
201
|
+
|
202
|
+
self.cp_z_interp = np.linspace(0.,20.,5000)
|
203
|
+
|
204
|
+
self.csz_base = None
|
205
|
+
|
206
|
+
|
207
|
+
self.cszfast_zgrid_zmin = 0.
|
208
|
+
self.cszfast_zgrid_zmax = 4.
|
209
|
+
self.cszfast_zgrid_nz = 250
|
210
|
+
self.cszfast_zgrid = np.linspace(self.cszfast_zgrid_zmin,
|
211
|
+
self.cszfast_zgrid_zmax,
|
212
|
+
self.cszfast_zgrid_nz)
|
213
|
+
|
214
|
+
|
215
|
+
self.cszfast_mgrid_mmin = 1e10
|
216
|
+
self.cszfast_mgrid_mmax = 1e15
|
217
|
+
self.cszfast_mgrid_nm = 50
|
218
|
+
self.cszfast_mgrid = np.geomspace(self.cszfast_mgrid_mmin,
|
219
|
+
self.cszfast_mgrid_mmax,
|
220
|
+
self.cszfast_mgrid_nm)
|
221
|
+
|
222
|
+
self.cszfast_gas_pressure_xgrid_xmin = 1e-2
|
223
|
+
self.cszfast_gas_pressure_xgrid_xmax = 1e2
|
224
|
+
self.cszfast_gas_pressure_xgrid_nx = 100
|
225
|
+
self.cszfast_gas_pressure_xgrid = np.geomspace(self.cszfast_gas_pressure_xgrid_xmin,
|
226
|
+
self.cszfast_gas_pressure_xgrid_xmax,
|
227
|
+
self.cszfast_gas_pressure_xgrid_nx)
|
228
|
+
|
229
|
+
self.params_for_emulators = {}
|
230
|
+
|
231
|
+
def find_As(self,params_cp):
|
232
|
+
|
233
|
+
sigma_8_asked = params_cp["sigma8"]
|
234
|
+
|
235
|
+
update_params_with_defaults(params_cp, self.emulator_dict[self.cosmo_model]['default'])
|
236
|
+
|
237
|
+
def to_root(ln10_10_As_goal):
|
238
|
+
params_cp["ln10^{10}A_s"] = ln10_10_As_goal[0]
|
239
|
+
params_dict = {}
|
240
|
+
for k,v in params_cp.items():
|
241
|
+
params_dict[k]=[v]
|
242
|
+
|
243
|
+
return self.cp_der_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0][1]-sigma_8_asked
|
244
|
+
|
245
|
+
lnA_s = optimize.root(to_root,
|
246
|
+
x0=3.046,
|
247
|
+
#tol = 1e-10,
|
248
|
+
method="hybr")
|
249
|
+
|
250
|
+
params_cp['ln10^{10}A_s'] = lnA_s.x[0]
|
251
|
+
|
252
|
+
params_cp.pop('sigma8')
|
253
|
+
|
254
|
+
return 1
|
255
|
+
|
256
|
+
|
257
|
+
def get_H0_from_thetas(self,params_values):
|
258
|
+
|
259
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
260
|
+
|
261
|
+
# print(params_values)
|
262
|
+
theta_s_asked = params_values['100*theta_s']
|
263
|
+
def fzero(H0_goal):
|
264
|
+
params_values['H0'] = H0_goal[0]
|
265
|
+
params_dict = {}
|
266
|
+
for k,v in params_values.items():
|
267
|
+
params_dict[k]=[v]
|
268
|
+
|
269
|
+
predicted_der_params = self.cp_der_nn[self.cosmo_model].ten_to_predictions_np(params_dict)
|
270
|
+
return predicted_der_params[0][0]-theta_s_asked
|
271
|
+
sol = optimize.root(fzero,
|
272
|
+
#[40., 99.],
|
273
|
+
x0 = 100.*(3.54*theta_s_asked**2-5.455*theta_s_asked+2.548),
|
274
|
+
#jac=jac,
|
275
|
+
tol = 1e-10,
|
276
|
+
method='hybr')
|
277
|
+
|
278
|
+
params_values.pop('100*theta_s')
|
279
|
+
params_values['H0'] = sol.x[0]
|
280
|
+
return 1
|
281
|
+
|
282
|
+
|
283
|
+
def calculate_pkl_fftlog_alphas(self,zpk = 0.,**params_values_dict):
|
284
|
+
params_values = params_values_dict.copy()
|
285
|
+
params_dict = {}
|
286
|
+
for k,v in params_values.items():
|
287
|
+
params_dict[k]=[v]
|
288
|
+
params_dict['z_pk_save_nonclass'] = [zpk]
|
289
|
+
|
290
|
+
predicted_testing_alphas_creal = self.cp_pkl_fftlog_alphas_real_nn[self.cosmo_model].predictions_np(params_dict)[0]
|
291
|
+
predicted_testing_alphas_cimag = self.cp_pkl_fftlog_alphas_imag_nn[self.cosmo_model].predictions_np(params_dict)[0]
|
292
|
+
predicted_testing_alphas_cimag = np.append(predicted_testing_alphas_cimag,0.)
|
293
|
+
creal = predicted_testing_alphas_creal
|
294
|
+
cimag = predicted_testing_alphas_cimag
|
295
|
+
Nmax = len(self.cszfast_pk_grid_k)
|
296
|
+
cnew = np.zeros(Nmax+1,dtype=complex)
|
297
|
+
for i in range(Nmax+1):
|
298
|
+
if i<int(Nmax/2):
|
299
|
+
cnew[i] = complex(creal[i],cimag[i])
|
300
|
+
elif i==int(Nmax/2):
|
301
|
+
cnew[i] = complex(creal[i],cimag[i])
|
302
|
+
else:
|
303
|
+
j = i-int(Nmax/2)
|
304
|
+
cnew[i] = complex(creal[::-1][j],-cimag[::-1][j])
|
305
|
+
# self.predicted_fftlog_pkl_alphas = cnew
|
306
|
+
return cnew
|
307
|
+
|
308
|
+
def get_pkl_reconstructed_from_fftlog(self,zpk = 0.,**params_values_dict):
|
309
|
+
#c_n_math = self.predicted_fftlog_pkl_alphas
|
310
|
+
c_n_math = self.calculate_pkl_fftlog_alphas(zpk = zpk,**params_values_dict)
|
311
|
+
nu_n_math = self.cp_pkl_fftlog_alphas_nus[self.cosmo_model]['arr_0']
|
312
|
+
Nmax = int(len(c_n_math)-1)
|
313
|
+
term1 = c_n_math[int(Nmax/2)]*self.cszfast_pk_grid_k**(nu_n_math[int(Nmax/2)])
|
314
|
+
term2_array = [c_n_math[int(Nmax/2)+i]*self.cszfast_pk_grid_k**(nu_n_math[int(Nmax/2)+i]) for i in range(1, int(Nmax/2)+1)]
|
315
|
+
pk_reconstructed = (term1 + 2*np.sum(term2_array,axis=0)).real
|
316
|
+
return self.cszfast_pk_grid_k,pk_reconstructed
|
317
|
+
|
318
|
+
def calculate_cmb(self,
|
319
|
+
want_tt=True,
|
320
|
+
want_te=True,
|
321
|
+
want_ee=True,
|
322
|
+
want_pp=1,
|
323
|
+
**params_values_dict):
|
324
|
+
|
325
|
+
|
326
|
+
params_values = params_values_dict.copy()
|
327
|
+
|
328
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
329
|
+
|
330
|
+
params_dict = {}
|
331
|
+
|
332
|
+
for k,v in params_values.items():
|
333
|
+
params_dict[k]=[v]
|
334
|
+
|
335
|
+
if 'm_ncdm' in params_dict.keys():
|
336
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
337
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
338
|
+
|
339
|
+
|
340
|
+
|
341
|
+
# if want_tt: for now always want_tt = True
|
342
|
+
self.cp_predicted_tt_spectrum = self.cp_tt_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
343
|
+
|
344
|
+
nl = len(self.cp_predicted_tt_spectrum)
|
345
|
+
cls = {}
|
346
|
+
cls['ell'] = np.arange(20000)
|
347
|
+
cls['tt'] = np.zeros(20000)
|
348
|
+
cls['te'] = np.zeros(20000)
|
349
|
+
cls['ee'] = np.zeros(20000)
|
350
|
+
cls['pp'] = np.zeros(20000)
|
351
|
+
cls['bb'] = np.zeros(20000)
|
352
|
+
lcp = np.asarray(cls['ell'][2:nl+2])
|
353
|
+
|
354
|
+
# print('cosmo_model:',self.cosmo_model,nl)
|
355
|
+
if self.cosmo_model == 'ede-v2':
|
356
|
+
factor_ttteee = 1./lcp**2
|
357
|
+
factor_pp = 1./lcp**3
|
358
|
+
else:
|
359
|
+
factor_ttteee = 1./(lcp*(lcp+1.)/2./np.pi)
|
360
|
+
factor_pp = 1./(lcp*(lcp+1.))**2.
|
361
|
+
|
362
|
+
self.cp_predicted_tt_spectrum *= factor_ttteee
|
363
|
+
|
364
|
+
|
365
|
+
if want_te:
|
366
|
+
self.cp_predicted_te_spectrum = self.cp_te_nn[self.cosmo_model].predictions_np(params_dict)[0]
|
367
|
+
self.cp_predicted_te_spectrum *= factor_ttteee
|
368
|
+
if want_ee:
|
369
|
+
self.cp_predicted_ee_spectrum = self.cp_ee_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
370
|
+
self.cp_predicted_ee_spectrum *= factor_ttteee
|
371
|
+
if want_pp:
|
372
|
+
self.cp_predicted_pp_spectrum = self.cp_pp_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
373
|
+
self.cp_predicted_pp_spectrum *= factor_pp
|
374
|
+
|
375
|
+
|
376
|
+
|
377
|
+
|
378
|
+
# print('>>> clssy_szfast.py cmb computed')
|
379
|
+
|
380
|
+
def load_cmb_cls_from_file(self,**params_values_dict):
|
381
|
+
cls_filename = params_values_dict['cmb_cls_filename']
|
382
|
+
with open(cls_filename, 'rb') as handle:
|
383
|
+
cmb_cls_loaded = pickle.load(handle)
|
384
|
+
nl_cls_file = len(cmb_cls_loaded['ell'])
|
385
|
+
cls_ls = cmb_cls_loaded['ell']
|
386
|
+
dlfac = cls_ls*(cls_ls+1.)/2./np.pi
|
387
|
+
cls_tt = cmb_cls_loaded['tt']*dlfac
|
388
|
+
cls_te = cmb_cls_loaded['te']*dlfac
|
389
|
+
cls_ee = cmb_cls_loaded['ee']*dlfac
|
390
|
+
# cls_pp = cmb_cls_loaded['pp']*dlfac # check the normalization.
|
391
|
+
nl_cp_cmb = len(self.cp_predicted_tt_spectrum)
|
392
|
+
nl_req = min(nl_cls_file,nl_cp_cmb)
|
393
|
+
|
394
|
+
self.cp_predicted_tt_spectrum[:nl_req-2] = cls_tt[2:nl_req]
|
395
|
+
self.cp_predicted_te_spectrum[:nl_req-2] = cls_te[2:nl_req]
|
396
|
+
self.cp_predicted_ee_spectrum[:nl_req-2] = cls_ee[2:nl_req]
|
397
|
+
# self.cp_predicted_pp_spectrum[:nl_req-2] = cls_pp[2:nl_req]
|
398
|
+
|
399
|
+
|
400
|
+
def calculate_pkl(self,
|
401
|
+
# cosmo_model = self.cosmo_model,
|
402
|
+
**params_values_dict):
|
403
|
+
|
404
|
+
z_arr = self.cszfast_pk_grid_z
|
405
|
+
|
406
|
+
|
407
|
+
k_arr = self.cszfast_pk_grid_k
|
408
|
+
|
409
|
+
|
410
|
+
params_values = params_values_dict.copy()
|
411
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
412
|
+
|
413
|
+
|
414
|
+
params_dict = {}
|
415
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
416
|
+
params_dict[k]=[v]
|
417
|
+
|
418
|
+
if 'm_ncdm' in params_dict.keys():
|
419
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
420
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
421
|
+
|
422
|
+
|
423
|
+
|
424
|
+
predicted_pk_spectrum_z = []
|
425
|
+
|
426
|
+
if self.use_Amod:
|
427
|
+
|
428
|
+
for zp in z_arr:
|
429
|
+
|
430
|
+
params_dict_pp = params_dict.copy()
|
431
|
+
params_dict_pp['z_pk_save_nonclass'] = [zp]
|
432
|
+
pkl_p = self.cp_pkl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0]
|
433
|
+
pknl_p = self.cp_pknl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0]
|
434
|
+
pk_ae = pkl_p + self.Amod*(pknl_p-pkl_p)
|
435
|
+
predicted_pk_spectrum_z.append(pk_ae)
|
436
|
+
|
437
|
+
else:
|
438
|
+
|
439
|
+
for zp in z_arr:
|
440
|
+
|
441
|
+
params_dict_pp = params_dict.copy()
|
442
|
+
params_dict_pp['z_pk_save_nonclass'] = [zp]
|
443
|
+
predicted_pk_spectrum_z.append(self.cp_pkl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0])
|
444
|
+
|
445
|
+
predicted_pk_spectrum = np.asarray(predicted_pk_spectrum_z)
|
446
|
+
|
447
|
+
|
448
|
+
pk = 10.**predicted_pk_spectrum
|
449
|
+
|
450
|
+
pk_re = pk*self.pk_power_fac
|
451
|
+
pk_re = np.transpose(pk_re)
|
452
|
+
|
453
|
+
self.pkl_interp = PowerSpectrumInterpolator(z_arr,k_arr,np.log(pk_re).T,logP=True)
|
454
|
+
|
455
|
+
self.cszfast_pk_grid_pk = pk_re
|
456
|
+
self.cszfast_pk_grid_pkl_flat = pk_re.flatten()
|
457
|
+
|
458
|
+
return pk_re, k_arr, z_arr
|
459
|
+
|
460
|
+
|
461
|
+
def calculate_sigma(self,
|
462
|
+
|
463
|
+
**params_values_dict):
|
464
|
+
|
465
|
+
params_values = params_values_dict.copy()
|
466
|
+
|
467
|
+
k = self.cszfast_pk_grid_k
|
468
|
+
|
469
|
+
P = self.cszfast_pk_grid_pk
|
470
|
+
|
471
|
+
var = P.copy()
|
472
|
+
|
473
|
+
dvar = P.copy()
|
474
|
+
|
475
|
+
for iz,zp in enumerate(self.cszfast_pk_grid_z):
|
476
|
+
|
477
|
+
R, var[:,iz] = TophatVar(k, lowring=True)(P[:,iz], extrap=True)
|
478
|
+
|
479
|
+
dvar[:,iz] = np.gradient(var[:,iz], R)
|
480
|
+
|
481
|
+
# print(k)
|
482
|
+
# print(R)
|
483
|
+
# print(k*R)
|
484
|
+
# exit(0)
|
485
|
+
|
486
|
+
|
487
|
+
self.cszfast_pk_grid_lnr = np.log(R)
|
488
|
+
self.cszfast_pk_grid_sigma2 = var
|
489
|
+
|
490
|
+
self.cszfast_pk_grid_sigma2_flat = var.flatten()
|
491
|
+
self.cszfast_pk_grid_lnsigma2_flat = 0.5*np.log(var.flatten())
|
492
|
+
|
493
|
+
self.cszfast_pk_grid_dsigma2 = dvar
|
494
|
+
self.cszfast_pk_grid_dsigma2_flat = dvar.flatten()
|
495
|
+
|
496
|
+
return 0
|
497
|
+
|
498
|
+
|
499
|
+
def calculate_sigma8_and_der(self,
|
500
|
+
# cosmo_model = self.cosmo_model,
|
501
|
+
**params_values_dict):
|
502
|
+
|
503
|
+
params_values = params_values_dict.copy()
|
504
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
505
|
+
|
506
|
+
|
507
|
+
params_dict = {}
|
508
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
509
|
+
params_dict[k]=[v]
|
510
|
+
|
511
|
+
if 'm_ncdm' in params_dict.keys():
|
512
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
513
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
514
|
+
|
515
|
+
self.cp_predicted_der = self.cp_der_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
516
|
+
self.sigma8 = self.cp_predicted_der[1]
|
517
|
+
self.Neff = self.cp_predicted_der[4]
|
518
|
+
return 0
|
519
|
+
|
520
|
+
|
521
|
+
def calculate_sigma8_at_z(self,
|
522
|
+
# cosmo_model = self.cosmo_model,
|
523
|
+
**params_values_dict):
|
524
|
+
params_values = params_values_dict.copy()
|
525
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
526
|
+
|
527
|
+
|
528
|
+
params_dict = {}
|
529
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
530
|
+
params_dict[k]=[v]
|
531
|
+
|
532
|
+
if 'm_ncdm' in params_dict.keys():
|
533
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
534
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
535
|
+
|
536
|
+
|
537
|
+
s8z = self.cp_s8_nn[self.cosmo_model].predictions_np(params_dict)
|
538
|
+
# print(self.s8z)
|
539
|
+
self.s8z_interp = scipy.interpolate.interp1d(
|
540
|
+
np.linspace(0.,20.,5000),
|
541
|
+
s8z[0],
|
542
|
+
kind='linear',
|
543
|
+
axis=-1,
|
544
|
+
copy=True,
|
545
|
+
bounds_error=None,
|
546
|
+
fill_value=np.nan,
|
547
|
+
assume_sorted=False)
|
548
|
+
|
549
|
+
def calculate_pknl(self,
|
550
|
+
# cosmo_model = self.cosmo_model,
|
551
|
+
**params_values_dict):
|
552
|
+
|
553
|
+
z_arr = self.cszfast_pk_grid_z
|
554
|
+
|
555
|
+
|
556
|
+
k_arr = self.cszfast_pk_grid_k
|
557
|
+
|
558
|
+
|
559
|
+
params_values = params_values_dict.copy()
|
560
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
561
|
+
|
562
|
+
|
563
|
+
params_dict = {}
|
564
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
565
|
+
params_dict[k]=[v]
|
566
|
+
|
567
|
+
if 'm_ncdm' in params_dict.keys():
|
568
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
569
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
570
|
+
|
571
|
+
|
572
|
+
predicted_pk_spectrum_z = []
|
573
|
+
|
574
|
+
for zp in z_arr:
|
575
|
+
params_dict_pp = params_dict.copy()
|
576
|
+
params_dict_pp['z_pk_save_nonclass'] = [zp]
|
577
|
+
predicted_pk_spectrum_z.append(self.cp_pknl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0])
|
578
|
+
|
579
|
+
predicted_pk_spectrum = np.asarray(predicted_pk_spectrum_z)
|
580
|
+
|
581
|
+
|
582
|
+
pk = 10.**predicted_pk_spectrum
|
583
|
+
|
584
|
+
pk_re = pk*self.pk_power_fac
|
585
|
+
pk_re = np.transpose(pk_re)
|
586
|
+
|
587
|
+
|
588
|
+
self.pknl_interp = PowerSpectrumInterpolator(z_arr,k_arr,np.log(pk_re).T,logP=True)
|
589
|
+
|
590
|
+
|
591
|
+
self.cszfast_pk_grid_pknl = pk_re
|
592
|
+
self.cszfast_pk_grid_pknl_flat = pk_re.flatten()
|
593
|
+
|
594
|
+
return pk_re, k_arr, z_arr
|
595
|
+
|
596
|
+
|
597
|
+
def calculate_pkl_at_z(self,
|
598
|
+
z_asked,
|
599
|
+
params_values_dict=None):
|
600
|
+
|
601
|
+
z_arr = self.cszfast_pk_grid_z
|
602
|
+
|
603
|
+
k_arr = self.cszfast_pk_grid_k
|
604
|
+
|
605
|
+
if params_values_dict:
|
606
|
+
|
607
|
+
params_values = params_values_dict.copy()
|
608
|
+
|
609
|
+
else:
|
610
|
+
|
611
|
+
params_values = self.params_for_emulators
|
612
|
+
|
613
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
614
|
+
|
615
|
+
|
616
|
+
params_dict = {}
|
617
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
618
|
+
params_dict[k]=[v]
|
619
|
+
|
620
|
+
if 'm_ncdm' in params_dict.keys():
|
621
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
622
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
623
|
+
|
624
|
+
|
625
|
+
predicted_pk_spectrum_z = []
|
626
|
+
|
627
|
+
z_asked = z_asked
|
628
|
+
params_dict_pp = params_dict.copy()
|
629
|
+
update_params_with_defaults(params_dict_pp, self.emulator_dict[self.cosmo_model]['default'])
|
630
|
+
|
631
|
+
params_dict_pp['z_pk_save_nonclass'] = [z_asked]
|
632
|
+
predicted_pk_spectrum_z.append(self.cp_pkl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0])
|
633
|
+
|
634
|
+
predicted_pk_spectrum = np.asarray(predicted_pk_spectrum_z)
|
635
|
+
|
636
|
+
|
637
|
+
pk = 10.**predicted_pk_spectrum
|
638
|
+
pk_re = pk*self.pk_power_fac
|
639
|
+
pk_re = np.transpose(pk_re)
|
640
|
+
|
641
|
+
|
642
|
+
return pk_re, k_arr
|
643
|
+
|
644
|
+
|
645
|
+
def calculate_pknl_at_z(self,
|
646
|
+
z_asked,
|
647
|
+
params_values_dict=None):
|
648
|
+
|
649
|
+
z_arr = self.cszfast_pk_grid_z
|
650
|
+
|
651
|
+
k_arr = self.cszfast_pk_grid_k
|
652
|
+
|
653
|
+
if params_values_dict:
|
654
|
+
|
655
|
+
params_values = params_values_dict.copy()
|
656
|
+
|
657
|
+
else:
|
658
|
+
|
659
|
+
params_values = self.params_for_emulators
|
660
|
+
|
661
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
662
|
+
|
663
|
+
|
664
|
+
params_dict = {}
|
665
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
666
|
+
params_dict[k]=[v]
|
667
|
+
|
668
|
+
if 'm_ncdm' in params_dict.keys():
|
669
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
670
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
671
|
+
|
672
|
+
|
673
|
+
predicted_pk_spectrum_z = []
|
674
|
+
|
675
|
+
z_asked = z_asked
|
676
|
+
params_dict_pp = params_dict.copy()
|
677
|
+
update_params_with_defaults(params_dict_pp, self.emulator_dict[self.cosmo_model]['default'])
|
678
|
+
|
679
|
+
params_dict_pp['z_pk_save_nonclass'] = [z_asked]
|
680
|
+
predicted_pk_spectrum_z.append(self.cp_pknl_nn[self.cosmo_model].predictions_np(params_dict_pp)[0])
|
681
|
+
|
682
|
+
predicted_pk_spectrum = np.asarray(predicted_pk_spectrum_z)
|
683
|
+
|
684
|
+
|
685
|
+
pk = 10.**predicted_pk_spectrum
|
686
|
+
pk_re = pk*self.pk_power_fac
|
687
|
+
pk_re = np.transpose(pk_re)
|
688
|
+
|
689
|
+
|
690
|
+
return pk_re, k_arr
|
691
|
+
|
692
|
+
|
693
|
+
def calculate_hubble(self,
|
694
|
+
**params_values_dict):
|
695
|
+
|
696
|
+
params_values = params_values_dict.copy()
|
697
|
+
|
698
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
699
|
+
|
700
|
+
params_dict = {}
|
701
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
702
|
+
params_dict[k]=[v]
|
703
|
+
|
704
|
+
if 'm_ncdm' in params_dict.keys():
|
705
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
706
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
707
|
+
|
708
|
+
self.cp_predicted_hubble = self.cp_h_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
709
|
+
|
710
|
+
self.hz_interp = scipy.interpolate.interp1d(
|
711
|
+
self.cp_z_interp,
|
712
|
+
self.cp_predicted_hubble,
|
713
|
+
kind='linear',
|
714
|
+
axis=-1,
|
715
|
+
copy=True,
|
716
|
+
bounds_error=None,
|
717
|
+
fill_value=np.nan,
|
718
|
+
assume_sorted=False)
|
719
|
+
|
720
|
+
def calculate_chi(self,
|
721
|
+
**params_values_dict):
|
722
|
+
|
723
|
+
params_values = params_values_dict.copy()
|
724
|
+
|
725
|
+
update_params_with_defaults(params_values, self.emulator_dict[self.cosmo_model]['default'])
|
726
|
+
|
727
|
+
params_dict = {}
|
728
|
+
|
729
|
+
for k,v in zip(params_values.keys(),params_values.values()):
|
730
|
+
|
731
|
+
params_dict[k]=[v]
|
732
|
+
|
733
|
+
if 'm_ncdm' in params_dict.keys():
|
734
|
+
if isinstance(params_dict['m_ncdm'][0],str):
|
735
|
+
params_dict['m_ncdm'] = [float(params_dict['m_ncdm'][0].split(',')[0])]
|
736
|
+
|
737
|
+
# deal with different scaling of DA in different model from emulator training
|
738
|
+
if self.cosmo_model == 'ede-v2':
|
739
|
+
|
740
|
+
self.cp_predicted_da = self.cp_da_nn[self.cosmo_model].ten_to_predictions_np(params_dict)[0]
|
741
|
+
self.cp_predicted_da = np.insert(self.cp_predicted_da, 0, 0)
|
742
|
+
|
743
|
+
else:
|
744
|
+
|
745
|
+
self.cp_predicted_da = self.cp_da_nn[self.cosmo_model].predictions_np(params_dict)[0]
|
746
|
+
|
747
|
+
|
748
|
+
self.chi_interp = scipy.interpolate.interp1d(
|
749
|
+
self.cp_z_interp,
|
750
|
+
self.cp_predicted_da*(1.+self.cp_z_interp),
|
751
|
+
kind='linear',
|
752
|
+
axis=-1,
|
753
|
+
copy=True,
|
754
|
+
bounds_error=None,
|
755
|
+
fill_value=np.nan,
|
756
|
+
assume_sorted=False)
|
757
|
+
|
758
|
+
def get_cmb_cls(self,ell_factor=True,Tcmb_uk = Tcmb_uk):
|
759
|
+
|
760
|
+
cls = {}
|
761
|
+
cls['ell'] = np.arange(self.cszfast_ldim)
|
762
|
+
cls['tt'] = np.zeros(self.cszfast_ldim)
|
763
|
+
cls['te'] = np.zeros(self.cszfast_ldim)
|
764
|
+
cls['ee'] = np.zeros(self.cszfast_ldim)
|
765
|
+
cls['pp'] = np.zeros(self.cszfast_ldim)
|
766
|
+
cls['bb'] = np.zeros(self.cszfast_ldim)
|
767
|
+
cls['tt'][2:self.cp_lmax+1] = (Tcmb_uk)**2.*self.cp_predicted_tt_spectrum.copy()
|
768
|
+
cls['te'][2:self.cp_lmax+1] = (Tcmb_uk)**2.*self.cp_predicted_te_spectrum.copy()
|
769
|
+
cls['ee'][2:self.cp_lmax+1] = (Tcmb_uk)**2.*self.cp_predicted_ee_spectrum.copy()
|
770
|
+
cls['pp'][2:self.cp_lmax+1] = self.cp_predicted_pp_spectrum.copy()/4. ## this is clkk... works for so lensinglite lkl
|
771
|
+
|
772
|
+
|
773
|
+
if ell_factor==False:
|
774
|
+
fac_l = np.zeros(self.cszfast_ldim)
|
775
|
+
fac_l[2:self.cp_lmax+1] = 1./(cls['ell'][2:self.cp_lmax+1]*(cls['ell'][2:self.cp_lmax+1]+1.)/2./np.pi)
|
776
|
+
cls['tt'][2:self.cp_lmax+1] *= fac_l[2:self.cp_lmax+1]
|
777
|
+
cls['te'][2:self.cp_lmax+1] *= fac_l[2:self.cp_lmax+1]
|
778
|
+
cls['ee'][2:self.cp_lmax+1] *= fac_l[2:self.cp_lmax+1]
|
779
|
+
# cls['bb'] = np.zeros(self.cszfast_ldim)
|
780
|
+
return cls
|
781
|
+
|
782
|
+
|
783
|
+
def get_pknl_at_k_and_z(self,k_asked,z_asked):
|
784
|
+
# def get_pkl_at_k_and_z(self,k_asked,z_asked,method = 'cloughtocher'):
|
785
|
+
# if method == 'linear':
|
786
|
+
# pk = self.pkl_linearnd_interp(z_asked,np.log(k_asked))
|
787
|
+
# elif method == 'cloughtocher':
|
788
|
+
# pk = self.pkl_cloughtocher_interp(z_asked,np.log(k_asked))
|
789
|
+
# return np.exp(pk)
|
790
|
+
return self.pknl_interp.P(z_asked,k_asked)
|
791
|
+
|
792
|
+
|
793
|
+
# def get_pkl_at_k_and_z(self,k_asked,z_asked,method = 'cloughtocher'):
|
794
|
+
def get_pkl_at_k_and_z(self,k_asked,z_asked):
|
795
|
+
# if method == 'linear':
|
796
|
+
# pk = self.pknl_linearnd_interp(z_asked,np.log(k_asked))
|
797
|
+
# elif method == 'cloughtocher':
|
798
|
+
# pk = self.pknl_cloughtocher_interp(z_asked,np.log(k_asked))
|
799
|
+
# return np.exp(pk)
|
800
|
+
return self.pkl_interp.P(z_asked,k_asked)
|
801
|
+
|
802
|
+
# function used to overwrite the classy function in fast mode.
|
803
|
+
def get_sigma_at_r_and_z(self,r_asked,z_asked):
|
804
|
+
# if method == 'linear':
|
805
|
+
# pk = self.pknl_linearnd_interp(z_asked,np.log(k_asked))
|
806
|
+
# elif method == 'cloughtocher':
|
807
|
+
# pk = self.pknl_cloughtocher_interp(z_asked,np.log(k_asked))
|
808
|
+
# return np.exp(pk)
|
809
|
+
k = self.cszfast_pk_grid_k
|
810
|
+
P_at_z = self.get_pkl_at_k_and_z(k,z_asked)
|
811
|
+
R,var = TophatVar(k, lowring=True)(P_at_z, extrap=True)
|
812
|
+
varR = CubicSpline(R, var)
|
813
|
+
sigma_at_r_and_z = np.sqrt(varR(r_asked))
|
814
|
+
return sigma_at_r_and_z
|
815
|
+
|
816
|
+
|
817
|
+
|
818
|
+
def get_hubble(self, z,units="1/Mpc"):
|
819
|
+
return np.array(self.hz_interp(z)*H_units_conv_factor[units])
|
820
|
+
|
821
|
+
def get_chi(self, z):
|
822
|
+
return np.array(self.chi_interp(z))
|
823
|
+
|
824
|
+
def get_gas_pressure_profile_x(self,z,m,x):
|
825
|
+
return 0#np.vectorize(self.csz_base.get_pressure_P_over_P_delta_at_x_M_z_b12_200c)(x,m,z)
|
826
|
+
|
827
|
+
|
828
|
+
# def get_gas_pressure_profile_x_parallel(self,index_z,param_values_array,**kwargs):
|
829
|
+
# # zp = self.cszfast_zgrid[iz]
|
830
|
+
# # x = self.get_gas_pressure_profile_x(zp,3e13,self.cszfast_gas_pressure_xgrid)
|
831
|
+
# x = 1
|
832
|
+
# return x
|
833
|
+
|
834
|
+
|
835
|
+
def tabulate_gas_pressure_profile_k(self):
|
836
|
+
z_asked,m_asked,x_asked = 0.2,3e14,np.geomspace(1e-3,1e2,500)
|
837
|
+
start = time.time()
|
838
|
+
px = self.get_gas_pressure_profile_x(z_asked,m_asked,x_asked)
|
839
|
+
end = time.time()
|
840
|
+
# print(px)
|
841
|
+
# print('end tabuulate pressure profile:',end-start)
|
842
|
+
# print('grid tabulate pressure profile')
|
843
|
+
start = time.time()
|
844
|
+
# px = self.get_gas_pressure_profile_x(self.cszfast_zgrid,self.cszfast_mgrid,self.cszfast_gas_pressure_xgrid)
|
845
|
+
# for zp in self.cszfast_zgrid:
|
846
|
+
# for mp in self.cszfast_mgrid:
|
847
|
+
# zp = mp
|
848
|
+
# # px = self.get_gas_pressure_profile_x(zp,mp,self.cszfast_gas_pressure_xgrid)
|
849
|
+
# zp,mp = 0.1,2e14
|
850
|
+
px = self.get_gas_pressure_profile_x(self.cszfast_zgrid[:,None,None],
|
851
|
+
self.cszfast_mgrid[None,:,None],
|
852
|
+
self.cszfast_gas_pressure_xgrid[None,None,:])
|
853
|
+
|
854
|
+
# fn=functools.partial(get_gas_pressure_profile_x_parallel,
|
855
|
+
# param_values_array=None)
|
856
|
+
# pool = multiprocessing.Pool()
|
857
|
+
# results = pool.map(fn,range(self.cszfast_zgrid_nz))
|
858
|
+
# pool.close()
|
859
|
+
#
|
860
|
+
# def task(iz):
|
861
|
+
# zp = self.cszfast_zgrid[iz]
|
862
|
+
# x = self.get_gas_pressure_profile_x(zp,m_asked,self.cszfast_gas_pressure_xgrid)
|
863
|
+
# processes = [Process(target=task, args=(i,)) for i in range(self.cszfast_zgrid_nz)]
|
864
|
+
# # start all processes
|
865
|
+
# for process in processes:
|
866
|
+
# process.start()
|
867
|
+
# # wait for all processes to complete
|
868
|
+
# for process in processes:
|
869
|
+
# process.join()
|
870
|
+
# # report that all tasks are completed
|
871
|
+
# print('Done', flush=True)
|
872
|
+
end = time.time()
|
873
|
+
|
874
|
+
# print(px)
|
875
|
+
# print('end grid tabuulate pressure profile:',end-start)
|
876
|
+
#
|
877
|
+
# def get_gas_pressure_profile_x_parallel(index_z,param_values_array,**kwargs):
|
878
|
+
# # zp = self.cszfast_zgrid[iz]
|
879
|
+
# # x = self.get_gas_pressure_profile_x(zp,3e13,self.cszfast_gas_pressure_xgrid)
|
880
|
+
# x = 1
|
881
|
+
# return x
|
882
|
+
|
883
|
+
|
884
|
+
def get_sigma8_at_z(self,z):
|
885
|
+
return self.s8z_interp(z)
|
886
|
+
|
887
|
+
|
888
|
+
def rs_drag(self):
|
889
|
+
try:
|
890
|
+
return self.cp_predicted_der[13]
|
891
|
+
except AttributeError:
|
892
|
+
return 0
|
893
|
+
#################################
|
894
|
+
# gives an estimation of f(z)*sigma8(z) at the scale of 8 h/Mpc, computed as (d sigma8/d ln a)
|
895
|
+
# Now used by cobaya wrapper.
|
896
|
+
def get_effective_f_sigma8(self, z, z_step=0.1,params_values_dict={}):
|
897
|
+
"""
|
898
|
+
effective_f_sigma8(z)
|
899
|
+
|
900
|
+
Returns the time derivative of sigma8(z) computed as (d sigma8/d ln a)
|
901
|
+
|
902
|
+
Parameters
|
903
|
+
----------
|
904
|
+
z : float
|
905
|
+
Desired redshift
|
906
|
+
z_step : float
|
907
|
+
Default step used for the numerical two-sided derivative. For z < z_step the step is reduced progressively down to z_step/10 while sticking to a double-sided derivative. For z< z_step/10 a single-sided derivative is used instead.
|
908
|
+
|
909
|
+
Returns
|
910
|
+
-------
|
911
|
+
(d ln sigma8/d ln a)(z) (dimensionless)
|
912
|
+
"""
|
913
|
+
|
914
|
+
s8z_interp = self.s8z_interp
|
915
|
+
# we need d sigma8/d ln a = - (d sigma8/dz)*(1+z)
|
916
|
+
|
917
|
+
# if possible, use two-sided derivative with default value of z_step
|
918
|
+
if z >= z_step:
|
919
|
+
result = (s8z_interp(z-z_step)-s8z_interp(z+z_step))/(2.*z_step)*(1+z)
|
920
|
+
# return (s8z_interp(z-z_step)-s8z_interp(z+z_step))/(2.*z_step)*(1+z)
|
921
|
+
else:
|
922
|
+
# if z is between z_step/10 and z_step, reduce z_step to z, and then stick to two-sided derivative
|
923
|
+
if (z > z_step/10.):
|
924
|
+
z_step = z
|
925
|
+
result = (s8z_interp(z-z_step)-s8z_interp(z+z_step))/(2.*z_step)*(1+z)
|
926
|
+
# return (s8z_interp(z-z_step)-s8z_interp(z+z_step))/(2.*z_step)*(1+z)
|
927
|
+
# if z is between 0 and z_step/10, use single-sided derivative with z_step/10
|
928
|
+
else:
|
929
|
+
z_step /=10
|
930
|
+
result = (s8z_interp(z)-s8z_interp(z+z_step))/z_step*(1+z)
|
931
|
+
# return (s8z_interp(z)-s8z_interp(z+z_step))/z_step*(1+z)
|
932
|
+
# print('fsigma8 result : ',result)
|
933
|
+
return result
|