classiq 0.46.0__py3-none-any.whl → 0.46.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,5 +3,5 @@ from packaging.version import Version
3
3
  # This file was generated automatically
4
4
  # Please don't track in version control (DONTTRACK)
5
5
 
6
- SEMVER_VERSION = '0.46.0'
6
+ SEMVER_VERSION = '0.46.1'
7
7
  VERSION = str(Version(SEMVER_VERSION))
@@ -12,7 +12,8 @@ def amplitude_estimation(
12
12
  ) -> None:
13
13
  """
14
14
  [Qmod Classiq-library function]
15
- Amplitude estimation function is used to estimate the probability of a state being marked by the operand `oracle` as a "good state."
15
+
16
+ Estimate the probability of a state being marked by the operand `oracle` as a "good state."
16
17
 
17
18
  The algorithm prepares the state in the `packed_vars` register and estimates the probability of this state being marked by the oracle as a "good state."
18
19
  This is done using the Quantum Phase Estimation (QPE) algorithm, where the unitary for QPE is the Grover operator, which is composed of the `oracle` and `space_transform` operators.
@@ -14,7 +14,7 @@ def unitary(
14
14
  """
15
15
  [Qmod core-library function]
16
16
 
17
- Apply a unitary matrix on a quantum state.
17
+ Applies a unitary matrix on a quantum state.
18
18
 
19
19
  Args:
20
20
  elements: A 2d array of complex numbers representing the unitary matrix. This matrix must be unitary.
@@ -51,7 +51,7 @@ def integer_xor(left: QArray[QBit], right: QArray[QBit]) -> None:
51
51
  @qfunc(external=True)
52
52
  def modular_increment(a: CInt, x: QNum) -> None:
53
53
  """
54
- Qmod Classiq-library function.
54
+ [Qmod Classiq-library function]
55
55
 
56
56
  Adds $a$ to $x$ modulo the range of $x$, assumed that $x$ is a non-negative integer and $a$ is an integer.
57
57
  Mathematically it is described as:
@@ -14,22 +14,22 @@ def _qct_pi_operator(x: QArray[QBit], q: QBit) -> None:
14
14
 
15
15
  @qfunc(external=True)
16
16
  def qct_qst_type1(x: QArray[QBit]) -> None:
17
- r"""
18
- Qmod Classiq-library function.
17
+ """
18
+ [Qmod Classiq-library function]
19
19
 
20
20
  Applies the quantum discrete cosine (DCT) and sine (DST)
21
21
  transform of type 1 to the qubit array `x`.
22
- Corresponds to the matrix (with $n\equiv$`x.len`):
22
+ Corresponds to the matrix (with $n\\equiv$`x.len`):
23
23
 
24
24
  $$
25
- \left(
25
+ \\left(
26
26
  \begin{array}{ccc|c}
27
27
  {} &{} &{} \\
28
28
  {}&{\rm DCT}^{(1)}(2^{n-1}+1) & {}& 0\\
29
29
  {} &{} &{} \\
30
- \hline
30
+ \\hline
31
31
  {} & 0 & {} & i{\rm DST}^{(1)}(2^{n-1}-1)
32
- \end{array}
32
+ \\end{array}
33
33
  \right)
34
34
  $$
35
35
 
@@ -44,20 +44,20 @@ def qct_qst_type1(x: QArray[QBit]) -> None:
44
44
 
45
45
  @qfunc(external=True)
46
46
  def qct_qst_type2(x: QArray[QBit], q: QBit) -> None:
47
- r"""
48
- Qmod Classiq-library function.
47
+ """
48
+ [Qmod Classiq-library function]
49
49
 
50
50
  Applies the quantum discrete cosine (DCT) and sine (DST)
51
51
  transform of type 2 to the qubit array `x` concatenated with `q`, with `q` being the MSB.
52
- Corresponds to the matrix (with $n\equiv$`x.len`+1):
52
+ Corresponds to the matrix (with $n\\equiv$`x.len`+1):
53
53
 
54
54
  $$
55
- \left(
55
+ \\left(
56
56
  \begin{array}{c|c}
57
57
  {\rm DCT}^{(2)}(2^{n-1}) & 0\\
58
- \hline
58
+ \\hline
59
59
  0 & -{\rm DST}^{(2)}(2^{n-1})
60
- \end{array}
60
+ \\end{array}
61
61
  \right)
62
62
  $$
63
63
 
@@ -73,8 +73,8 @@ def qct_qst_type2(x: QArray[QBit], q: QBit) -> None:
73
73
 
74
74
  @qfunc(external=True)
75
75
  def qct_type2(x: QArray[QBit]) -> None:
76
- r"""
77
- Qmod Classiq-library function.
76
+ """
77
+ [Qmod Classiq-library function]
78
78
 
79
79
  Applies the quantum discrete cosine (DCT)
80
80
  transform of type 2, ${\rm DCT}^{(2)}$, to the qubit array `x`.
@@ -90,8 +90,8 @@ def qct_type2(x: QArray[QBit]) -> None:
90
90
 
91
91
  @qfunc(external=True)
92
92
  def qst_type2(x: QArray[QBit]) -> None:
93
- r"""
94
- Qmod Classiq-library function.
93
+ """
94
+ [Qmod Classiq-library function]
95
95
 
96
96
  Applies the quantum discrete sine (DST)
97
97
  transform of type 2, ${\rm DST}^{(2)}$, to the qubit array `x`.
@@ -16,9 +16,9 @@ def single_pauli_exponent(
16
16
  qbv: QArray[QBit, Literal["get_field(pauli_string, 'len')"]],
17
17
  ) -> None:
18
18
  """
19
- [Qmod Classiq-library function]
20
- This function exponentiates a single Pauli operator.
21
- The operator may be multiplied by a coefficient.
19
+ [Qmod core-library function]
20
+
21
+ Exponentiates the specified single Pauli operator multiplied by some coefficient.
22
22
 
23
23
  Args:
24
24
  pauli_string: The Pauli operator to be exponentiated.
@@ -39,9 +39,9 @@ def suzuki_trotter(
39
39
  ],
40
40
  ) -> None:
41
41
  """
42
- [Qmod Classiq-library function]
43
- The Suzuki-Trotter decomposition is a method for approximating the exponential of a sum of operators by a product of exponentials of each operator.
44
- This function applies the Suzuki-Trotter decomposition to a Pauli operator.
42
+ [Qmod core-library function]
43
+
44
+ Applies the Suzuki-Trotter decomposition to a Pauli operator. The Suzuki-Trotter decomposition is a method for approximating the exponential of a sum of operators by a product of exponentials of each operator.
45
45
  The Suzuki-Trotter decomposition of a given order nullifies the error of the Taylor series expansion of the product of exponentials up to that order.
46
46
  The error of a Suzuki-Trotter decomposition decreases as the order and number of repetitions increase.
47
47
 
@@ -67,9 +67,9 @@ def qdrift(
67
67
  ],
68
68
  ) -> None:
69
69
  """
70
- [Qmod Classiq-library function]
71
- The QDrift method is a stochastic method based on the Trotter decomposition for approximating the exponential of a sum of operators by a product of exponentials of each operator.
72
- This function exponentiates a Pauli operator using the QDrift method.
70
+ [Qmod core-library function]
71
+
72
+ Exponentiates a Pauli operator using the QDrift method. The QDrift method is a stochastic method based on the Trotter decomposition for approximating the exponential of a sum of operators by a product of exponentials of each operator.
73
73
  The QDrift method randomizes the order of the operators in the product of exponentials to stochastically reduce the error of the approximation.
74
74
  The error of the QDrift method decreases as the number of QDrift steps increases.
75
75
 
@@ -94,8 +94,9 @@ def exponentiation_with_depth_constraint(
94
94
  ],
95
95
  ) -> None:
96
96
  """
97
- [Qmod Classiq-library function]
98
- This function exponentiates a Pauli operator via the Suzuki-Trotter decomposition with a depth constraint.
97
+ [Qmod core-library function]
98
+
99
+ Exponentiates a Pauli operator via the Suzuki-Trotter decomposition with a depth constraint.
99
100
  The Suzuki-Trotter decomposition is a method for approximating the exponential of a sum of operators by a product of exponentials of each operator.
100
101
  This function automatically determines the order and number of repetitions of the Suzuki-Trotter decomposition to minimize the error given a depth constraint.
101
102
 
@@ -10,22 +10,21 @@ from classiq.qmod.quantum_callable import QCallable
10
10
  def phase_oracle(
11
11
  predicate: QCallable[QArray[QBit], QBit], target: QArray[QBit]
12
12
  ) -> None:
13
- r"""
14
- Qmod Classiq-library function.
13
+ """
14
+ [Qmod Classiq-library function]
15
15
 
16
16
  Creates a phase oracle operator based on a predicate function.
17
- The function can be used on its own, or by other functions, such as Grover's algorithm.
18
17
 
19
18
  Applies a predicate function and marks "good" and "bad" states with a phase flip.
20
- If the predicate is marked as $\chi$, and the oracle is marked as $S_\chi$, then:
19
+ If the predicate is marked as $\\chi$, and the oracle is marked as $S_\\chi$, then:
21
20
 
22
21
 
23
22
  $$
24
- S_\chi\lvert x \rangle =
23
+ S_\\chi\\lvert x \rangle =
25
24
  \begin{cases}
26
- -\lvert x \rangle & \text{if } \chi(x) = 1 \\
27
- \phantom{-} \lvert x \rangle & \text{if } \chi(x) = 0
28
- \end{cases}
25
+ -\\lvert x \rangle & \text{if } \\chi(x) = 1 \\
26
+ \\phantom{-} \\lvert x \rangle & \text{if } \\chi(x) = 0
27
+ \\end{cases}
29
28
  $$
30
29
 
31
30
  Args:
@@ -42,16 +41,16 @@ def phase_oracle(
42
41
 
43
42
  @qfunc(external=True)
44
43
  def reflect_about_zero(packed_vars: QArray[QBit]) -> None:
45
- r"""
46
- Qmod core-library function
44
+ """
45
+ [Qmod Classiq-library function]
47
46
 
48
47
  Reflects the state about the |0> state (i.e. applies a (-1) phase to all states
49
48
  besides the |0> state). Implements the operator $S_0$:
50
49
 
51
50
  $$
52
51
  \begin{equation}
53
- S_0|{x}\rangle = (-1)^{(x\ne0)}|{x}\rangle= (2|{0}\rangle\langle{0}|-I)|{x}\rangle
54
- \end{equation}
52
+ S_0|{x}\rangle = (-1)^{(x\ne0)}|{x}\rangle= (2|{0}\rangle\\langle{0}|-I)|{x}\rangle
53
+ \\end{equation}
55
54
  $$
56
55
 
57
56
  Args:
@@ -64,16 +63,16 @@ def reflect_about_zero(packed_vars: QArray[QBit]) -> None:
64
63
  def grover_diffuser(
65
64
  space_transform: QCallable[QArray[QBit]], packed_vars: QArray[QBit]
66
65
  ) -> None:
67
- r"""
68
- Qmod core-library function
66
+ """
67
+ [Qmod Classiq-library function]
69
68
 
70
- The Grover diffuser operator reflects the given state about the A|0> state, where A
69
+ Reflects the given state about the A|0> state, where A
71
70
  is the `space_transform` parameter. It is defined as:
72
71
 
73
72
  $$
74
73
  \begin{equation}
75
- D = A S_0 A^{\dagger}
76
- \end{equation}
74
+ D = A S_0 A^{\\dagger}
75
+ \\end{equation}
77
76
  $$
78
77
 
79
78
  where $S_0$ is the reflection about the |0> state (see `reflect_about_zero`).
@@ -91,22 +90,22 @@ def grover_operator(
91
90
  space_transform: QCallable[QArray[QBit]],
92
91
  packed_vars: QArray[QBit],
93
92
  ) -> None:
94
- r"""
95
- Qmod open-library function
93
+ """
94
+ [Qmod Classiq-library function]
96
95
 
97
96
  Applies the grover operator, defined by:
98
97
 
99
98
  $$
100
- Q=S_{\psi_0}S_{\psi_1}
99
+ Q=S_{\\psi_0}S_{\\psi_1}
101
100
  $$
102
101
 
103
- where $S_{\psi_1}$ is a reflection about marked states, and $S_{\psi_0}$ is a reflection
104
- about a given state defined by $|\psi_0\rangle = A|0\rangle$.
102
+ where $S_{\\psi_1}$ is a reflection about marked states, and $S_{\\psi_0}$ is a reflection
103
+ about a given state defined by $|\\psi_0\rangle = A|0\rangle$.
105
104
 
106
105
 
107
106
  Args:
108
107
  oracle: A unitary operator which adds a phase of (-1) to marked states.
109
- space_transform: The operator which creates $|\psi_0\rangle$, the initial state, used by the diffuser to reflect about it.
108
+ space_transform: The operator which creates $|\\psi_0\rangle$, the initial state, used by the diffuser to reflect about it.
110
109
  packed_vars: The state to which to apply the grover operator.
111
110
 
112
111
 
@@ -123,8 +122,8 @@ def grover_operator(
123
122
  def grover_search(
124
123
  reps: CInt, oracle: QCallable[QArray[QBit]], packed_vars: QArray[QBit]
125
124
  ) -> None:
126
- r"""
127
- Qmod Classiq-library function.
125
+ """
126
+ [Qmod Classiq-library function]
128
127
 
129
128
  Applies Grover search algorithm.
130
129
 
@@ -144,15 +143,15 @@ def grover_search(
144
143
 
145
144
  @qfunc(external=True)
146
145
  def hadamard_transform(target: QArray[QBit]) -> None:
147
- r"""
148
- Qmod Classiq-library function.
146
+ """
147
+ [Qmod Classiq-library function]
149
148
 
150
149
  Applies Hadamard transform to the target qubits.
151
150
 
152
151
  Corresponds to the braket notation:
153
152
 
154
153
  $$
155
- H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n - 1} (-1)^{x \cdot y} |y\rangle
154
+ H^{\\otimes n} |x\rangle = \frac{1}{\\sqrt{2^n}} \\sum_{y=0}^{2^n - 1} (-1)^{x \\cdot y} |y\rangle
156
155
  $$
157
156
 
158
157
  Args:
@@ -167,7 +166,7 @@ def apply_to_all(
167
166
  gate_operand: QCallable[Annotated[QBit, "target"]], target: QArray[QBit]
168
167
  ) -> None:
169
168
  """
170
- Qmod Classiq-library function.
169
+ [Qmod Classiq-library function]
171
170
 
172
171
  Applies the single-qubit operand `gate_operand` to each qubit in the qubit
173
172
  array `target`.
@@ -22,7 +22,7 @@ def full_hea(
22
22
  x: QArray[QBit, Literal["num_qubits"]],
23
23
  ) -> None:
24
24
  """
25
- Qmod Classiq-library function.
25
+ [Qmod Classiq-library function]
26
26
 
27
27
  Implements an ansatz on a qubit array `x` with the given 1-qubit and 2-qubit operations.
28
28
 
@@ -26,8 +26,8 @@ def linear_pauli_rotations(
26
26
  x: QArray[QBit],
27
27
  q: QArray[QBit],
28
28
  ) -> None:
29
- r"""
30
- Qmod Classiq-library function.
29
+ """
30
+ [Qmod Classiq-library function]
31
31
 
32
32
  Performs a rotation on a series of $m$ target qubits,
33
33
  where the rotation angle is a linear function of an $n$-qubit
@@ -36,14 +36,14 @@ def linear_pauli_rotations(
36
36
  Corresponds to the braket notation:
37
37
 
38
38
  $$
39
- \left|x\right\rangle _{n}\left|q\right\rangle
40
- _{m}\rightarrow\left|x\right\rangle
41
- _{n}\prod_{k=1}^{m}\left(\cos\left(\frac{a_{k}}{2}x+\frac{b_{k}}{2}\right)-
42
- i\sin\left(\frac{a_{k}}{2}x+\frac{b_{k}}{2}\right)P_{k}\right)\left|q_{k}\right\rangle
39
+ \\left|x\right\rangle _{n}\\left|q\right\rangle
40
+ _{m}\rightarrow\\left|x\right\rangle
41
+ _{n}\\prod_{k=1}^{m}\\left(\\cos\\left(\frac{a_{k}}{2}x+\frac{b_{k}}{2}\right)-
42
+ i\\sin\\left(\frac{a_{k}}{2}x+\frac{b_{k}}{2}\right)P_{k}\right)\\left|q_{k}\right\rangle
43
43
  $$
44
44
 
45
- where $\left|x\right\rangle$ is the control register,
46
- $\left|q\right\rangle$ is the target register, each $P_{k}$ is one of
45
+ where $\\left|x\right\rangle$ is the control register,
46
+ $\\left|q\right\rangle$ is the target register, each $P_{k}$ is one of
47
47
  the three Pauli matrices $X$, $Y$, or $Z$, and $a_{k}$, $b_{k}$ are
48
48
  the user given slopes and offsets, respectively.
49
49
 
@@ -6,7 +6,7 @@ from classiq.qmod.qmod_variable import QArray, QBit, QNum
6
6
  @qfunc(external=True)
7
7
  def qft_no_swap(qbv: QArray[QBit]) -> None:
8
8
  """
9
- Qmod Classiq-library function.
9
+ [Qmod Classiq-library function]
10
10
 
11
11
  Applies the Quantum Fourier Transform (QFT) without the swap gates.
12
12
 
@@ -30,7 +30,7 @@ def _ctrl_x(ref: CInt, ctrl: QNum, aux: QBit) -> None:
30
30
  @qfunc(external=True)
31
31
  def qft_space_add_const(value: CInt, phi_b: QArray[QBit]) -> None:
32
32
  """
33
- Qmod Classiq-library function.
33
+ [Qmod Classiq-library function]
34
34
 
35
35
  Adds a constant to a quantum number (in the Fourier space) using the Quantum Fourier Transform (QFT) Adder algorithm.
36
36
  Assuming that the input `phi_b` has `n` qubits, the result will be $\\phi_b+=value \\mod 2^n$.
@@ -49,7 +49,7 @@ def qft_space_add_const(value: CInt, phi_b: QArray[QBit]) -> None:
49
49
  @qfunc(external=True)
50
50
  def cc_modular_add(n: CInt, a: CInt, phi_b: QArray[QBit], c1: QBit, c2: QBit) -> None:
51
51
  """
52
- Qmod Classiq-library function.
52
+ [Qmod Classiq-library function]
53
53
 
54
54
  Adds a constant `a` to a quantum number `phi_b` modulo the constant `n`, controlled by 2 qubits.
55
55
  The quantum number `phi_b` and the constant `a` are assumed to be in the QFT space.
@@ -70,7 +70,7 @@ def c_modular_multiply(
70
70
  n: CInt, a: CInt, b: QArray[QBit], x: QArray[QBit], ctrl: QBit
71
71
  ) -> None:
72
72
  """
73
- Qmod Classiq-library function.
73
+ [Qmod Classiq-library function]
74
74
 
75
75
  Performs out-of-place multiplication of a quantum number `x` by a classical number `a` modulo classical number `n`,
76
76
  controlled by a quantum bit `ctrl` and adds the result to a quantum array `b`. Applies $b += xa \\mod n$ if `ctrl=1`, and the identity otherwise.
@@ -88,10 +88,10 @@ def c_modular_multiply(
88
88
  @qfunc(external=True)
89
89
  def multiswap(x: QArray[QBit], y: QArray[QBit]) -> None:
90
90
  """
91
- Qmod Classiq-library function.
91
+ [Qmod Classiq-library function]
92
92
 
93
93
  Swaps the qubit states between two arrays.
94
- Swaps according to the indices of the shorter array.
94
+ Qubits of respective indices are swapped, and additional qubits in the longer array are left unchanged.
95
95
 
96
96
  Args:
97
97
  x: The first array
@@ -104,9 +104,9 @@ def multiswap(x: QArray[QBit], y: QArray[QBit]) -> None:
104
104
  @qfunc(external=True)
105
105
  def inplace_c_modular_multiply(n: CInt, a: CInt, x: QArray[QBit], ctrl: QBit) -> None:
106
106
  """
107
- Qmod Classiq-library function.
107
+ [Qmod Classiq-library function]
108
108
 
109
- Performs Multiplication of a quantum number `x` by a classical number `a` modulo classical number `n`,
109
+ Performs multiplication of a quantum number `x` by a classical number `a` modulo classical number `n`,
110
110
  controlled by a quantum bit `ctrl`. Applies $x=xa \\mod n$ if `ctrl=1`, and the identity otherwise.
111
111
 
112
112
  Args:
@@ -121,7 +121,7 @@ def inplace_c_modular_multiply(n: CInt, a: CInt, x: QArray[QBit], ctrl: QBit) ->
121
121
  @qfunc(external=True)
122
122
  def modular_exp(n: CInt, a: CInt, x: QArray[QBit], power: QArray[QBit]) -> None:
123
123
  """
124
- Qmod Classiq-library function.
124
+ [Qmod Classiq-library function]
125
125
 
126
126
  Raises a classical integer `a` to the power of a quantum number `x` modulo classical integer `n`
127
127
  times a quantum number `power`. Performs $power=(a^x \\mod n)*power$ in-place.
@@ -9,9 +9,9 @@ from classiq.qmod.qmod_variable import QArray, QBit
9
9
  @qfunc(external=True)
10
10
  def qaoa_mixer_layer(b: CReal, target: QArray[QBit]) -> None:
11
11
  """
12
- Qmod Classiq-library function
12
+ [Qmod Classiq-library function]
13
13
 
14
- Generates the mixer layer for the QAOA algorithm.
14
+ Applies the mixer layer for the QAOA algorithm.
15
15
  The mixer layer is a sequence of `X` gates applied to each qubit in the target quantum
16
16
  array variable.
17
17
 
@@ -30,9 +30,9 @@ def qaoa_cost_layer(
30
30
  g: CReal, hamiltonian: CArray[PauliTerm], target: QArray[QBit]
31
31
  ) -> None:
32
32
  """
33
- Qmod Classiq-library function
33
+ [Qmod Classiq-library function]
34
34
 
35
- Apply the cost layer to the QAOA model.
35
+ Applies the cost layer to the QAOA model.
36
36
 
37
37
  This function integrates the problem-specific cost function into the QAOA model's objective function.
38
38
  The cost layer represents the primary objective that the QAOA algorithm seeks to optimize, such as
@@ -52,9 +52,9 @@ def qaoa_layer(
52
52
  g: CReal, b: CReal, hamiltonian: CArray[PauliTerm], target: QArray[QBit]
53
53
  ) -> None:
54
54
  """
55
- Qmod Classiq-library function
55
+ [Qmod Classiq-library function]
56
56
 
57
- Apply the QAOA layer, which concatenates the cost layer and the mixer layer.
57
+ Applies the QAOA layer, which concatenates the cost layer and the mixer layer.
58
58
 
59
59
  The `qaoa_layer` function integrates both the cost and mixer layers, essential components of the
60
60
  Quantum Approximate Optimization Algorithm (QAOA). The cost layer encodes the problem's objective,
@@ -74,9 +74,9 @@ def qaoa_layer(
74
74
  @qfunc(external=True)
75
75
  def qaoa_init(target: QArray[QBit]) -> None:
76
76
  """
77
- Qmod Classiq-library function
77
+ [Qmod Classiq-library function]
78
78
 
79
- Initialize the QAOA circuit by applying the Hadamard gate to all qubits.
79
+ Initializes the QAOA circuit by applying the Hadamard gate to all qubits.
80
80
 
81
81
  In the Quantum Approximate Optimization Algorithm (QAOA), the initial state is a uniform superposition
82
82
  created by applying the Hadamard gate to each qubit. This function prepares the qubits for the subsequent
@@ -96,9 +96,9 @@ def qaoa_penalty(
96
96
  target: QArray[QBit, Literal["num_qubits"]],
97
97
  ) -> None:
98
98
  """
99
- Qmod Classiq-library function
99
+ [Qmod Classiq-library function]
100
100
 
101
- Apply the penalty layer to the QAOA model.
101
+ Applies the penalty layer to the QAOA model.
102
102
 
103
103
  This function adds a penalty term to the objective function of the QAOA model to
104
104
  enforce certain constraints (e.g., binary or integer variables) during the
@@ -5,7 +5,7 @@ from classiq.qmod.qmod_variable import QArray, QBit
5
5
  @qfunc(external=True)
6
6
  def qft(target: QArray[QBit]) -> None:
7
7
  """
8
- Qmod Classiq-library function.
8
+ [Qmod Classiq-library function]
9
9
 
10
10
  Performs the Quantum Fourier Transform (QFT) on `target` in-place.
11
11
  Implements the following transformation:
@@ -7,7 +7,7 @@ from classiq.qmod.quantum_callable import QCallable
7
7
  @qfunc(external=True)
8
8
  def qpe_flexible(unitary_with_power: QCallable[CInt], phase: QNum) -> None:
9
9
  """
10
- Qmod Classiq-library function.
10
+ [Qmod Classiq-library function]
11
11
 
12
12
  Implements the Quantum Phase Estimation (QPE) algorithm, which estimates the phase (eigenvalue) associated with an eigenstate of a given unitary operator $U$.
13
13
  This is a flexible version that allows the user to provide a callable that generates the unitary operator $U^k$ for a given integer $k$, offering greater flexibility in handling different quantum circuits using some powering rule.
@@ -25,7 +25,7 @@ def qpe_flexible(unitary_with_power: QCallable[CInt], phase: QNum) -> None:
25
25
  @qfunc(external=True)
26
26
  def qpe(unitary: QCallable, phase: QNum) -> None:
27
27
  """
28
- Qmod Classiq-library function.
28
+ [Qmod Classiq-library function]
29
29
 
30
30
  Implements the standard Quantum Phase Estimation (QPE) algorithm, which estimates the phase (eigenvalue) associated with an eigenstate of a given unitary operator $U$.
31
31
 
@@ -14,13 +14,13 @@ def qsvt_step(
14
14
  qvar: QArray[QBit],
15
15
  aux: QBit,
16
16
  ) -> None:
17
- r"""
18
- Qmod Classiq-library function.
17
+ """
18
+ [Qmod Classiq-library function]
19
19
 
20
20
  Applies a single QSVT step, composed of 2 projector-controlled-phase rotations, and applications of the block encoding unitary `u` and its inverse:
21
21
 
22
22
  $$
23
- \Pi_{\phi_2}U^{\dagger}\tilde{\Pi}_{\phi_{1}}U
23
+ \\Pi_{\\phi_2}U^{\\dagger}\tilde{\\Pi}_{\\phi_{1}}U
24
24
  $$
25
25
 
26
26
  Args:
@@ -47,25 +47,25 @@ def qsvt(
47
47
  qvar: QArray[QBit],
48
48
  aux: QBit,
49
49
  ) -> None:
50
- r"""
51
- Qmod Classiq-library function.
50
+ """
51
+ [Qmod Classiq-library function]
52
52
 
53
- Implements the Quantum Singular Value Transformation (QSVT) - an algorithmic framework, used to apply polynomial transformations of degree `d` on the singular values of a block encoded matrix, given as the unitary `u`. Given a unitary $U$, a list of phase angles $\phi_1, \phi_2, ..., \phi_{d+1}$ and 2 projector-controlled-not operands $C_{\Pi}NOT,C_{\tilde{\Pi}}NOT$, the QSVT sequence is as follows:
54
- Given a unitary $U$, a list of phase angles $\phi_1, \phi_2, ..., \phi_{d+1}$ and 2 projector-controlled-not operands $C_{\Pi}NOT,C_{\tilde{\Pi}}NOT$, the QSVT sequence is as follows:
53
+ Implements the Quantum Singular Value Transformation (QSVT) - an algorithmic framework, used to apply polynomial transformations of degree `d` on the singular values of a block encoded matrix, given as the unitary `u`. Given a unitary $U$, a list of phase angles $\\phi_1, \\phi_2, ..., \\phi_{d+1}$ and 2 projector-controlled-not operands $C_{\\Pi}NOT,C_{\tilde{\\Pi}}NOT$, the QSVT sequence is as follows:
54
+ Given a unitary $U$, a list of phase angles $\\phi_1, \\phi_2, ..., \\phi_{d+1}$ and 2 projector-controlled-not operands $C_{\\Pi}NOT,C_{\tilde{\\Pi}}NOT$, the QSVT sequence is as follows:
55
55
 
56
56
  $$
57
- \tilde{\Pi}_{\phi_{d+1}}U \prod_{k=1}^{(d-1)/2} (\Pi_{\phi_{d-2k}} U^{\dagger}\tilde{\Pi}_{\phi_{d - (2k+1)}}U)\Pi_{\phi_{1}}
57
+ \tilde{\\Pi}_{\\phi_{d+1}}U \\prod_{k=1}^{(d-1)/2} (\\Pi_{\\phi_{d-2k}} U^{\\dagger}\tilde{\\Pi}_{\\phi_{d - (2k+1)}}U)\\Pi_{\\phi_{1}}
58
58
  $$
59
59
 
60
60
  for odd $d$, and:
61
61
 
62
62
  $$
63
- \prod_{k=1}^{d/2} (\Pi_{\phi_{d-(2k-1)}} U^{\dagger}\tilde{\Pi}_{\phi_{d-2k}}U)\Pi_{\phi_{1}}
63
+ \\prod_{k=1}^{d/2} (\\Pi_{\\phi_{d-(2k-1)}} U^{\\dagger}\tilde{\\Pi}_{\\phi_{d-2k}}U)\\Pi_{\\phi_{1}}
64
64
  $$
65
65
 
66
66
  for even $d$.
67
67
 
68
- Each of the $\Pi$s is a projector-controlled-phase unitary, according to the given projectors.
68
+ Each of the $\\Pi$s is a projector-controlled-phase unitary, according to the given projectors.
69
69
 
70
70
  Args:
71
71
  phase_seq: A sequence of phase angles of length d+1.
@@ -88,13 +88,13 @@ def projector_controlled_phase(
88
88
  qvar: QArray[QBit],
89
89
  aux: QBit,
90
90
  ) -> None:
91
- r"""
92
- Qmod Classiq-library function.
91
+ """
92
+ [Qmod Classiq-library function]
93
93
 
94
94
  Assigns a phase to the entire subspace determined by the given projector. Corresponds to the operation:
95
95
 
96
96
  $$
97
- \Pi_{\phi} = (C_{\Pi}NOT) e^{-i\frac{\phi}{2}Z}(C_{\Pi}NOT)
97
+ \\Pi_{\\phi} = (C_{\\Pi}NOT) e^{-i\frac{\\phi}{2}Z}(C_{\\Pi}NOT)
98
98
  $$
99
99
 
100
100
  Args:
@@ -117,8 +117,8 @@ def qsvt_inversion(
117
117
  qvar: QArray[QBit],
118
118
  aux: QBit,
119
119
  ) -> None:
120
- r"""
121
- Qmod Classiq-library function.
120
+ """
121
+ [Qmod Classiq-library function]
122
122
 
123
123
  Implements matrix inversion on a given block-encoding of a square matrix, using the QSVT framework. Applies a polynomial approximation
124
124
  of the inverse of the singular values of the matrix encoded in `u`. The phases for the polynomial should be pre-calculated and passed into the function.
@@ -409,9 +409,9 @@ def CH(control: QBit, target: QBit) -> None:
409
409
  """
410
410
  [Qmod core-library function]
411
411
 
412
- Applies the controlled-Hadamard (CH) gate to the target qubit, conditioned on the control qubit.
412
+ Applies the Hadamard gate to the target qubit, conditioned on the control qubit.
413
413
 
414
- The controlled-Hadamard gate applies a Hadamard transformation to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
414
+ This operation is represented by the following matrix:
415
415
 
416
416
  $$
417
417
  CH = \\frac{1}{\\sqrt{2}} \\begin{bmatrix}
@@ -438,7 +438,7 @@ def CX(control: QBit, target: QBit) -> None:
438
438
 
439
439
  Applies the Pauli-X gate to the target qubit, conditioned on the control qubit.
440
440
 
441
- The controlled-X gate applies a Pauli-X (NOT) gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
441
+ This operation is represented by the following matrix:
442
442
 
443
443
  $$
444
444
  CX = \\begin{bmatrix}
@@ -465,7 +465,7 @@ def CY(control: QBit, target: QBit) -> None:
465
465
 
466
466
  Applies the Pauli-Y gate to the target qubit, conditioned on the control qubit.
467
467
 
468
- The controlled-Y gate applies a Pauli-Y gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
468
+ This operation is represented by the following matrix:
469
469
 
470
470
  $$
471
471
  CY = \\begin{bmatrix}
@@ -492,7 +492,7 @@ def CZ(control: QBit, target: QBit) -> None:
492
492
 
493
493
  Applies the Pauli-Z gate to the target qubit, conditioned on the control qubit.
494
494
 
495
- The controlled-Z gate applies a Pauli-Z gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
495
+ This operation is represented by the following matrix:
496
496
 
497
497
  $$
498
498
  CZ = \\begin{bmatrix}
@@ -519,7 +519,7 @@ def CRX(theta: CReal, control: QBit, target: QBit) -> None:
519
519
 
520
520
  Applies the RX gate to the target qubit, conditioned on the control qubit.
521
521
 
522
- The controlled-RX gate applies a RX gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
522
+ This operation is represented by the following matrix:
523
523
 
524
524
  $$
525
525
  CRX = \\begin{bmatrix}
@@ -547,7 +547,7 @@ def CRY(theta: CReal, control: QBit, target: QBit) -> None:
547
547
 
548
548
  Applies the RY gate to the target qubit, conditioned on the control qubit.
549
549
 
550
- The controlled-RY gate applies a RY gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
550
+ This operation is represented by the following matrix:
551
551
 
552
552
  $$
553
553
  CRY = \\begin{bmatrix}
@@ -575,7 +575,7 @@ def CRZ(theta: CReal, control: QBit, target: QBit) -> None:
575
575
 
576
576
  Applies the RZ gate to the target qubit, conditioned on the control qubit.
577
577
 
578
- The controlled-RZ gate applies a RZ gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
578
+ This operation is represented by the following matrix:
579
579
 
580
580
  $$
581
581
  CRZ = \\begin{bmatrix}
@@ -603,7 +603,7 @@ def CPHASE(theta: CReal, control: QBit, target: QBit) -> None:
603
603
 
604
604
  Applies the PHASE gate to the target qubit, conditioned on the control qubit.
605
605
 
606
- The controlled-PHASE gate applies a PHASE gate to the target qubit only if the control qubit is in the state $|1>$. This operation is represented by the following matrix:
606
+ This operation is represented by the following matrix:
607
607
 
608
608
  $$
609
609
  CPHASE = \\begin{bmatrix}
@@ -631,7 +631,7 @@ def SWAP(qbit0: QBit, qbit1: QBit) -> None:
631
631
 
632
632
  Swaps the states of two qubits.
633
633
 
634
- The SWAP gate exchanges the states of two qubits. This operation is represented by the following matrix:
634
+ This operation is represented by the following matrix:
635
635
 
636
636
  $$
637
637
  SWAP = \\begin{bmatrix}
@@ -654,7 +654,7 @@ def SWAP(qbit0: QBit, qbit1: QBit) -> None:
654
654
  @qfunc(external=True)
655
655
  def IDENTITY(target: QArray[QBit]) -> None:
656
656
  """
657
- Qmod core-library function
657
+ [Qmod core-library function]
658
658
 
659
659
  Does nothing.
660
660
 
@@ -711,9 +711,9 @@ def CCX(control: QArray[QBit, Literal[2]], target: QBit) -> None:
711
711
  """
712
712
  [Qmod core-library function]
713
713
 
714
- Toffoli (CCX) gate - applies the Pauli-X gate to the target qubit, conditioned on the control qubits.
714
+ Applies the Pauli-X gate to the target qubit, conditioned on the two control qubits (Toffoli).
715
715
 
716
- The Toffoli gate applies a Pauli-X gate to the target qubit only if both control qubits are in the state $|1>$. This operation is represented by the following matrix:
716
+ This operation is represented by the following matrix:
717
717
 
718
718
  $$
719
719
  CCX = \\begin{bmatrix}
@@ -10,7 +10,7 @@ def allocate(
10
10
  num_qubits: CInt, out: Output[QArray[QBit, Literal["num_qubits"]]]
11
11
  ) -> None:
12
12
  """
13
- Qmod core-library function.
13
+ [Qmod core-library function]
14
14
 
15
15
  Allocates the specified number of qubits to a given quantum variable and initializes
16
16
  them in the zero state:
@@ -41,8 +41,7 @@ def allocate_num(
41
41
  ],
42
42
  ) -> None:
43
43
  """
44
-
45
- Qmod Classiq-library function
44
+ [Qmod Classiq-library function]
46
45
 
47
46
  Initializes a quantum number with the given number of qubits, sign, and fractional digits.
48
47
 
@@ -60,7 +59,7 @@ def allocate_num(
60
59
  @qfunc(external=True)
61
60
  def free(in_: Input[QArray[QBit]]) -> None:
62
61
  """
63
- Qmod core-library function.
62
+ [Qmod core-library function]
64
63
 
65
64
  Releases the qubits allocated to a quantum variable, allowing them to be reused.
66
65
 
@@ -80,7 +79,7 @@ def prepare_state(
80
79
  out: Output[QArray[QBit, Literal["log(get_field(probabilities, 'len'), 2)"]]],
81
80
  ) -> None:
82
81
  """
83
- Qmod core-library function.
82
+ [Qmod core-library function]
84
83
 
85
84
  Initializes a quantum variable in a state corresponding to a given probability distribution:
86
85
 
@@ -110,7 +109,7 @@ def prepare_amplitudes(
110
109
  out: Output[QArray[QBit, Literal["log(get_field(amplitudes, 'len'), 2)"]]],
111
110
  ) -> None:
112
111
  """
113
- Qmod core-library function.
112
+ [Qmod core-library function]
114
113
 
115
114
  Initializes a quantum variable in a state corresponding to the given amplitudes:
116
115
 
@@ -140,9 +139,10 @@ def inplace_prepare_state(
140
139
  target: QArray[QBit, Literal["log(get_field(probabilities, 'len'), 2)"]],
141
140
  ) -> None:
142
141
  """
143
- Qmod core-library function.
142
+ [Qmod core-library function]
144
143
 
145
- Similar to `prepare_state`, but without the restriction that the quantum variable must be uninitialized.
144
+ Transforms a given quantum variable in the state |0> to the state per the specified probability distribution
145
+ (similar to `prepare_state` but preformed on an initialized variable).
146
146
 
147
147
  Args:
148
148
  probabilities: The probability distribution corresponding to the quantum variable state. Must be a valid probability distribution, i.e., a list of non-negative real numbers that sum to 1. Must have a valid length (a power of 2).
@@ -162,9 +162,10 @@ def inplace_prepare_amplitudes(
162
162
  target: QArray[QBit, Literal["log(get_field(amplitudes, 'len'), 2)"]],
163
163
  ) -> None:
164
164
  """
165
- Qmod core-library function.
165
+ [Qmod core-library function]
166
166
 
167
- Similar to `prepare_amplitudes`, but without the restriction that the quantum variable must be uninitialized.
167
+ Transforms a given quantum variable in the state |0> to the state per the specified amplitudes
168
+ (similar to `prepare_amplitudes` but preformed on an initialized variable).
168
169
 
169
170
  Args:
170
171
  amplitudes: The amplitudes to initialize the quantum variable. Must be a valid real quantum state vector, i.e., the sum of squares should be 1. Must have a valid length (a power of 2).
@@ -187,7 +188,7 @@ def _prepare_uniform_trimmed_state_step(
187
188
  @qfunc(external=True)
188
189
  def prepare_uniform_trimmed_state(m: CInt, q: QArray[QBit]) -> None:
189
190
  """
190
- Qmod Classiq-library function.
191
+ [Qmod Classiq-library function]
191
192
 
192
193
  Initializes a quantum variable in a uniform superposition of the first `m` computational basis states:
193
194
 
@@ -212,7 +213,7 @@ def prepare_uniform_trimmed_state(m: CInt, q: QArray[QBit]) -> None:
212
213
  @qfunc(external=True)
213
214
  def prepare_uniform_interval_state(start: CInt, end: CInt, q: QArray[QBit]) -> None:
214
215
  """
215
- Qmod Classiq-library function.
216
+ [Qmod Classiq-library function]
216
217
 
217
218
  Initializes a quantum variable in a uniform superposition of the specified interval in the computational basis states:
218
219
 
@@ -237,7 +238,7 @@ def prepare_uniform_interval_state(start: CInt, end: CInt, q: QArray[QBit]) -> N
237
238
  @qfunc(external=True)
238
239
  def prepare_ghz_state(size: CInt, q: Output[QArray[QBit]]) -> None:
239
240
  """
240
- Qmod core-library function.
241
+ [Qmod Classiq-library function]
241
242
 
242
243
  Initializes a quantum variable in a Greenberger-Horne-Zeilinger (GHZ) state. i.e., a balanced superposition of all ones and all zeros, on an arbitrary number of qubits..
243
244
 
@@ -257,7 +258,7 @@ def prepare_ghz_state(size: CInt, q: Output[QArray[QBit]]) -> None:
257
258
  def prepare_exponential_state(rate: CInt, q: QArray[QBit]) -> None:
258
259
  """
259
260
 
260
- Qmod Classiq-library function
261
+ [Qmod Classiq-library function]
261
262
 
262
263
  Prepares a quantum state with exponentially decreasing amplitudes. The state is prepared in the computational basis, with the amplitudes of the states decreasing exponentially with the index of the state:
263
264
 
@@ -277,7 +278,7 @@ def prepare_exponential_state(rate: CInt, q: QArray[QBit]) -> None:
277
278
  @qfunc(external=True)
278
279
  def prepare_bell_state(state_num: CInt, q: Output[QArray[QBit, Literal[2]]]) -> None:
279
280
  """
280
- Qmod core-library function.
281
+ [Qmod Classiq-library function]
281
282
 
282
283
  Initializes a quantum array of size 2 in one of the four Bell states.
283
284
 
@@ -323,7 +324,7 @@ def prepare_bell_state(state_num: CInt, q: Output[QArray[QBit, Literal[2]]]) ->
323
324
  @qfunc(external=True)
324
325
  def inplace_prepare_int(value: CInt, target: QArray[QBit]) -> None:
325
326
  """
326
- Qmod Classiq-library function.
327
+ [Qmod Classiq-library function]
327
328
 
328
329
  Transitions a quantum variable in the zero state $|0\\rangle$ into the computational basis state $|\\text{value}\\rangle$.
329
330
  In the general case, the function performs a bitwise-XOR, i.e. transitions the state $|\\psi\\rangle$ into $|\\psi \\oplus \\text{value}\\rangle$.
@@ -341,7 +342,7 @@ def inplace_prepare_int(value: CInt, target: QArray[QBit]) -> None:
341
342
  @qfunc(external=True)
342
343
  def prepare_int(value: CInt, out: Output[QNum]) -> None:
343
344
  """
344
- Qmod Classiq-library function.
345
+ [Qmod Classiq-library function]
345
346
 
346
347
  Initializes a quantum variable to the computational basis state $|\\text{value}\\rangle$.
347
348
  The number of allocated qubits is automatically computed from the value, and is the minimal number required for representation in the computational basis.
@@ -5,10 +5,10 @@ from classiq.qmod.qmod_variable import Output, QArray, QBit
5
5
  @qfunc(external=True)
6
6
  def swap_test(state1: QArray[QBit], state2: QArray[QBit], test: Output[QBit]) -> None:
7
7
  """
8
- Qmod Classiq-library function.
8
+ [Qmod Classiq-library function]
9
9
 
10
- A quantum algorithm primitive that tests the overlap (in terms of fidelity) of two quantum states.
11
- The fidelity of `state1` and `state2` is calculated from the probability of measuring the `test` qubit in the state 0 as follows:
10
+ Tests the overlap (in terms of fidelity) of two quantum states.
11
+ The fidelity of `state1` and `state2` is calculated from the probability of measuring `test` qubit in the state 0 as follows:
12
12
 
13
13
  $$
14
14
  |\\langle state1 | state2 \\rangle |^2 = 2*Prob(test=0)-1
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: classiq
3
- Version: 0.46.0
3
+ Version: 0.46.1
4
4
  Summary: Classiq's Python SDK for quantum computing
5
5
  Home-page: https://classiq.io
6
6
  License: Proprietary
@@ -93,7 +93,7 @@ classiq/execution/jobs.py,sha256=JX4f5LFf4Orl_-SlcIwX-Jy7gKwnQAT_WwcQtpoTrW8,506
93
93
  classiq/execution/qnn.py,sha256=qsOA2mD8Ne_4VwvyGPfuHVDTzyxVnDHwE2gfoaOMsf8,2339
94
94
  classiq/executor.py,sha256=jKD5O_tJpL2NMTC_N0NEuPJEmKZIaqsTpQrgZ88sleg,2594
95
95
  classiq/interface/__init__.py,sha256=cg7hD_XVu1_jJ1fgwmT0rMIoZHopNVeB8xtlmMx-E_A,83
96
- classiq/interface/_version.py,sha256=YkIsLmribFX92Prhz8f0kuSR84PEy5QjQ-UUTtbR1Jc,197
96
+ classiq/interface/_version.py,sha256=P8akUoU2JbjwdaYBo9AmLsJv4Xj0QMcuBfoYbHhwWJU,197
97
97
  classiq/interface/analyzer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
98
98
  classiq/interface/analyzer/analysis_params.py,sha256=043hfS-I3Ec6tkcniKMQQUiRyEC7zlNhntTBpZQB8hw,3725
99
99
  classiq/interface/analyzer/cytoscape_graph.py,sha256=_2GviubgrDMAbF57PTDMhS9W0mTCLYWdyu0HndDPh54,2116
@@ -435,26 +435,26 @@ classiq/qmod/builtins/classical_execution_primitives.py,sha256=VlA4Wam35v2wMppZ5
435
435
  classiq/qmod/builtins/classical_functions.py,sha256=sOMYm_vU24mAGgR63qmJ5eMTgpacXCRIhNEXa6pl0Q4,1914
436
436
  classiq/qmod/builtins/enums.py,sha256=JzfANJT4Z1Gy8io4JjCnez4t97mxBjT1K-ij2Cli9kQ,3417
437
437
  classiq/qmod/builtins/functions/__init__.py,sha256=xpAaTC4wrHh0WmykWsvf_5IdPPxJxWDoHror_rq20kg,5352
438
- classiq/qmod/builtins/functions/amplitude_estimation.py,sha256=cBsF1IjrZRvWO1S28Mysh9L_DX48_loezjfTj_vcohU,1602
439
- classiq/qmod/builtins/functions/arithmetic.py,sha256=SSVImJg3sxcCizSlw6hF_UA0h_RcIT7cDrnvGEsyBJI,1719
438
+ classiq/qmod/builtins/functions/amplitude_estimation.py,sha256=nO2HlzVgZw3621YUr1-4AflAWDm5xTBaTSjQ6o9yjKA,1562
439
+ classiq/qmod/builtins/functions/arithmetic.py,sha256=DtjQor_ZuJPBJzFrgMJUN2frmJatvnNgpJSYP8-1tHM,1722
440
440
  classiq/qmod/builtins/functions/benchmarking.py,sha256=TYY1VRd5DHl-mKTKeW5wF1txZgFsb3yPXM_rdgoLWCo,250
441
441
  classiq/qmod/builtins/functions/chemistry.py,sha256=Wl8ktlY0U_M-mDXozcCht44_flZtwImIiGeAMr7hs4s,2126
442
- classiq/qmod/builtins/functions/discrete_sine_cosine_transform.py,sha256=LH9PrxSiq5nlKwSIltZh3FOE4OXGnviSxUJopOW6Ms0,2799
443
- classiq/qmod/builtins/functions/exponentiation.py,sha256=-BpWGMZMyxbQnRT2Z7_J17jz5mbHdJR8tWjj_wvPi_Q,4559
442
+ classiq/qmod/builtins/functions/discrete_sine_cosine_transform.py,sha256=miT9CDKueQtA-T3NBg2sZTG5zoxxgiZ7g6GV2krTj-I,2807
443
+ classiq/qmod/builtins/functions/exponentiation.py,sha256=poR2fTvaBtVQiNvQJ7sLNzm7akp7GGuMW3vsPee3TfE,4477
444
444
  classiq/qmod/builtins/functions/finance.py,sha256=zo-UZ_R_8UMw0FCLJQsw_CEMAKV4derY00tnbAPC2yw,861
445
- classiq/qmod/builtins/functions/grover.py,sha256=NuXS4V_fRFwAEoAyFglIz6z0Ids3yfBaUpy6aiBUqVA,5064
446
- classiq/qmod/builtins/functions/hea.py,sha256=hq_fjR3OaV-lNsgGku856L9P9OVOTErmAJyIfDTzAw0,2504
447
- classiq/qmod/builtins/functions/linear_pauli_rotation.py,sha256=HFEkpplkervyNThZo0Sr3dOpSzlxvY4NZsjs2pEKs1A,2046
448
- classiq/qmod/builtins/functions/modular_exponentiation.py,sha256=duZgRuMigkGyxdl5nPULwyo7O2us0tjFazwmLjtcGvo,4159
445
+ classiq/qmod/builtins/functions/grover.py,sha256=xWPUDsSdtXnmzfZTsf_pBynHb8dfiXVs-6X3-iicj_Y,4980
446
+ classiq/qmod/builtins/functions/hea.py,sha256=oyzBFt2FqKgBA5zBiWa9VaoP_y3g6q1peyIXcYKw6C4,2505
447
+ classiq/qmod/builtins/functions/linear_pauli_rotation.py,sha256=Vs9E7Cn_BpCI4Ed531MABDJXB9Od8ZBZB0gWm6nEIzM,2058
448
+ classiq/qmod/builtins/functions/modular_exponentiation.py,sha256=1cWE2eKc6zyCytzs1GzRYgQzEy_huIjQm8_RjY3Sqjo,4217
449
449
  classiq/qmod/builtins/functions/operators.py,sha256=EyjsDy4aOrBncFcf8r9ioEB2vigOpqvYwi4n1aMj7qI,398
450
- classiq/qmod/builtins/functions/qaoa_penalty.py,sha256=gRQEyWNUthuIRjBKwmrclWfH6nlWo2k520_jrbJfU4A,4245
451
- classiq/qmod/builtins/functions/qft.py,sha256=E_7kGV4kSlnEQjvuCHVFESU6fWJUi8CmpWVx03TGO9E,686
452
- classiq/qmod/builtins/functions/qpe.py,sha256=cp34N9i2b-T-7NNAnwWMG7KTnJb44kv95NXoCzlFT_A,1982
450
+ classiq/qmod/builtins/functions/qaoa_penalty.py,sha256=AIPhMLNIMrUKSGcyxf5DkcpQmpClW62PCt_auIN40ac,4260
451
+ classiq/qmod/builtins/functions/qft.py,sha256=N8cyfZ6foBcG4pN2ui8Z3te048qrVCcqjjpu2dIhCxE,687
452
+ classiq/qmod/builtins/functions/qpe.py,sha256=zemPR03SszqGLbWlwHI8ZrdRuTqcgnXdHGRSy3-4PJ8,1984
453
453
  classiq/qmod/builtins/functions/qsvm.py,sha256=j5UbMWfl2UNtBewjSWgXq-fvHuAznpINw_b5-_XEKdU,586
454
- classiq/qmod/builtins/functions/qsvt.py,sha256=m9rHXHcdpVgAnAPSjjtShTSdqMNiaN6680C8iMNswvs,6596
455
- classiq/qmod/builtins/functions/standard_gates.py,sha256=dVqS8p6KF4Nx6ng62iDpn-bddp8eYF2iymbmUCadghk,23458
456
- classiq/qmod/builtins/functions/state_preparation.py,sha256=GDkkqbQbMeDWK2Zt-mxxvx9wSuVCOv0rRXECug02n34,15387
457
- classiq/qmod/builtins/functions/swap_test.py,sha256=WK3aK6H4ph36Dxz5H3wIfzrLzj0A7fq1J0QkTtfA8Q8,995
454
+ classiq/qmod/builtins/functions/qsvt.py,sha256=aSePhlqVql8IHfmhsGY6vMucJi3htoUNKvLJYOQvIGM,6635
455
+ classiq/qmod/builtins/functions/standard_gates.py,sha256=fsljKq_Y8aI_JYN4Gxf23jPB8FCVrDRmt3Aqj5Jb1DM,22349
456
+ classiq/qmod/builtins/functions/state_preparation.py,sha256=BJcd9ZV4CHHzXTFq4NKw3KrbR2xFO5zt_Z_9jbg7E9A,15552
457
+ classiq/qmod/builtins/functions/swap_test.py,sha256=DGWCkJNvunUGR5Q_eYxKOMO21elfD8kQkiNlQpcerOU,957
458
458
  classiq/qmod/builtins/operations.py,sha256=-2ktlfP4xlPXjby29KDQp56achnSsrpBEDOxJfkVdno,13878
459
459
  classiq/qmod/builtins/structs.py,sha256=pdjNKFAhxLNzVdz4bhONO4PwvfI_W7Z7Skjgqt47mxw,2913
460
460
  classiq/qmod/cfunc.py,sha256=quwJdgYRgqI2C13SRrRunLi-Kuf7nCAk2-O2B46QtoY,1093
@@ -495,6 +495,6 @@ classiq/qmod/utilities.py,sha256=z_VnIRmOYTWjJp2UlOcWK0rQRtMqysmP_Gr6WYY_nak,273
495
495
  classiq/qmod/write_qmod.py,sha256=SO7hdBdO31lTzyeaJ-Htyma-aJmrbBNtABNEB2llI4Q,1818
496
496
  classiq/show.py,sha256=GyxceOzWrnVC9KvsLdHJbxycD9WkcQkkhOSw45P6CPo,1428
497
497
  classiq/synthesis.py,sha256=wBk5iFCH2Bw9AvVPzGvTI96zjQXw6QpKRN9VZxc_Xl0,3350
498
- classiq-0.46.0.dist-info/METADATA,sha256=F2bvtS3922eZe4VGe-z6Lw0vo7bhzEvK_xAMBiEUTiM,3087
499
- classiq-0.46.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
500
- classiq-0.46.0.dist-info/RECORD,,
498
+ classiq-0.46.1.dist-info/METADATA,sha256=Gl4sPXRCcoQGGw1u9i1NwsaGX2vBWT2H5rFhd0uSFuw,3087
499
+ classiq-0.46.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
500
+ classiq-0.46.1.dist-info/RECORD,,