clarifai 9.8.2__py3-none-any.whl → 9.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. clarifai/client/app.py +17 -0
  2. clarifai/client/search.py +173 -0
  3. clarifai/client/workflow.py +1 -1
  4. clarifai/constants/search.py +2 -0
  5. clarifai/models/model_serving/README.md +3 -3
  6. clarifai/models/model_serving/docs/dependencies.md +5 -10
  7. clarifai/models/model_serving/examples/image_classification/age_vit/requirements.txt +1 -0
  8. clarifai/models/model_serving/examples/text_classification/xlm-roberta/requirements.txt +1 -0
  9. clarifai/models/model_serving/examples/text_to_image/sd-v1.5/requirements.txt +1 -0
  10. clarifai/models/model_serving/examples/text_to_text/bart-summarize/requirements.txt +1 -0
  11. clarifai/models/model_serving/examples/visual_detection/yolov5x/requirements.txt +1 -1
  12. clarifai/models/model_serving/examples/visual_embedding/vit-base/requirements.txt +1 -0
  13. clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/requirements.txt +1 -0
  14. clarifai/models/model_serving/pb_model_repository.py +1 -3
  15. clarifai/schema/search.py +60 -0
  16. clarifai/versions.py +1 -1
  17. clarifai/workflows/export.py +9 -8
  18. clarifai/workflows/utils.py +1 -1
  19. clarifai/workflows/validate.py +1 -1
  20. {clarifai-9.8.2.dist-info → clarifai-9.9.0.dist-info}/METADATA +1 -1
  21. {clarifai-9.8.2.dist-info → clarifai-9.9.0.dist-info}/RECORD +44 -56
  22. clarifai_utils/client/app.py +17 -0
  23. clarifai_utils/client/search.py +173 -0
  24. clarifai_utils/client/workflow.py +1 -1
  25. clarifai_utils/constants/search.py +2 -0
  26. clarifai_utils/models/model_serving/README.md +3 -3
  27. clarifai_utils/models/model_serving/docs/dependencies.md +5 -10
  28. clarifai_utils/models/model_serving/examples/image_classification/age_vit/requirements.txt +1 -0
  29. clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/requirements.txt +1 -0
  30. clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/requirements.txt +1 -0
  31. clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/requirements.txt +1 -0
  32. clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/requirements.txt +1 -1
  33. clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/requirements.txt +1 -0
  34. clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/requirements.txt +1 -0
  35. clarifai_utils/models/model_serving/pb_model_repository.py +1 -3
  36. clarifai_utils/schema/search.py +60 -0
  37. clarifai_utils/versions.py +1 -1
  38. clarifai_utils/workflows/export.py +9 -8
  39. clarifai_utils/workflows/utils.py +1 -1
  40. clarifai_utils/workflows/validate.py +1 -1
  41. clarifai/models/model_serving/envs/triton_conda-cp3.8-torch1.13.1-19f97078.yaml +0 -35
  42. clarifai/models/model_serving/envs/triton_conda-cp3.8-torch2.0.0-ce980f28.yaml +0 -51
  43. clarifai/models/model_serving/examples/image_classification/age_vit/triton_conda.yaml +0 -1
  44. clarifai/models/model_serving/examples/text_classification/xlm-roberta/triton_conda.yaml +0 -1
  45. clarifai/models/model_serving/examples/text_to_image/sd-v1.5/triton_conda.yaml +0 -1
  46. clarifai/models/model_serving/examples/text_to_text/bart-summarize/triton_conda.yaml +0 -1
  47. clarifai/models/model_serving/examples/visual_detection/yolov5x/triton_conda.yaml +0 -1
  48. clarifai/models/model_serving/examples/visual_embedding/vit-base/triton_conda.yaml +0 -1
  49. clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/triton_conda.yaml +0 -1
  50. clarifai_utils/models/model_serving/envs/triton_conda-cp3.8-torch1.13.1-19f97078.yaml +0 -35
  51. clarifai_utils/models/model_serving/envs/triton_conda-cp3.8-torch2.0.0-ce980f28.yaml +0 -51
  52. clarifai_utils/models/model_serving/examples/image_classification/age_vit/triton_conda.yaml +0 -1
  53. clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/triton_conda.yaml +0 -1
  54. clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/triton_conda.yaml +0 -1
  55. clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/triton_conda.yaml +0 -1
  56. clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/triton_conda.yaml +0 -1
  57. clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/triton_conda.yaml +0 -1
  58. clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/triton_conda.yaml +0 -1
  59. {clarifai-9.8.2.dist-info → clarifai-9.9.0.dist-info}/LICENSE +0 -0
  60. {clarifai-9.8.2.dist-info → clarifai-9.9.0.dist-info}/WHEEL +0 -0
  61. {clarifai-9.8.2.dist-info → clarifai-9.9.0.dist-info}/entry_points.txt +0 -0
  62. {clarifai-9.8.2.dist-info → clarifai-9.9.0.dist-info}/top_level.txt +0 -0
@@ -1,13 +1,13 @@
1
1
  clarifai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  clarifai/cli.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  clarifai/errors.py,sha256=F8YchDo3veKDthO0NQoPJ7_q2_QZEE0SwKZpUvcdadM,2651
4
- clarifai/versions.py,sha256=sRsMx2f3aB8Ch-6hQiLxDzm2CEAyevuvOg6_mlnKG64,185
4
+ clarifai/versions.py,sha256=AnJWsDk31S7KD1kRO4b5RWUcFiqbkQUJy12-SBr41qU,185
5
5
  clarifai/auth/__init__.py,sha256=BgCHtnkmtDDcEZZaAyFbmf1kkdu0HMU5y3lHxGE04S0,236
6
6
  clarifai/auth/helper.py,sha256=QPxmhQ3k1JaCpchA6Ef2iy7kKTC6iX5wchHCO9JpIRE,13909
7
7
  clarifai/auth/register.py,sha256=2CMdBsoVLoTfjyksE6j7BM2tiEc73WKYvxnwDDgNn1k,536
8
8
  clarifai/auth/stub.py,sha256=KIzJZ8aRB1RzXJeWHDAx19HNdBsblPPHwYLfAkgI3rY,3779
9
9
  clarifai/client/__init__.py,sha256=ztWL7MGzuq4CI73p4eI3QK2VFxIQLyTHapzD_B0yoMU,664
10
- clarifai/client/app.py,sha256=Onr2PCc5qNZd0LGL1CWDDqLZUIbJZYIm-eR75v0Jw2c,22297
10
+ clarifai/client/app.py,sha256=KC2G8WKxvrj6lLwGsqJLfXOAH_CC8i_2KLHqhszAFwM,22809
11
11
  clarifai/client/base.py,sha256=vXiKTO1qA05DJnntgAADTk3GakCbq3NYVxbKw-A6DbM,4159
12
12
  clarifai/client/dataset.py,sha256=lHCwDpOMXLJ8bfkFN0bnHg91r2Xp76i6aJNIxys1L0M,14371
13
13
  clarifai/client/input.py,sha256=p-UyJr_Ach3PXN5vN6-apKQp4-RTCIllAOH3qMl4yHk,31396
@@ -15,12 +15,14 @@ clarifai/client/lister.py,sha256=Zh1_k6-XWBVpnxIVezbqPzmZseOIEwmaV0ogcb4fEoQ,146
15
15
  clarifai/client/model.py,sha256=dVlqyguKrAa_L-ToZe1r5qYdMO4tdHgrsVJZig4zTws,12006
16
16
  clarifai/client/module.py,sha256=mZzjnOiTnd2KIF8bkDZc8IhSJYBHDGyLLLVFwR3rbgU,3380
17
17
  clarifai/client/runner.py,sha256=1JThpYSkriVreXCHykIBoOszrecdTBZeTeqvvd8g8TE,6722
18
+ clarifai/client/search.py,sha256=aV6KYibbx4oElGIIla7SderIWJ-5Xil1oAboVAfL85E,6617
18
19
  clarifai/client/user.py,sha256=P783OxFX_Z6KiGIRXoIZjH_OScXp1x2vT65l14B4VQE,8816
19
- clarifai/client/workflow.py,sha256=5CPD6hlKGmGk-8sNPrfBNq7qU2QwFst9KWkoTGFhnco,9146
20
+ clarifai/client/workflow.py,sha256=CiBKjhFtqwEv8hEcLR9omJLMf63MIUB5f4U3yzZ20Tc,9150
20
21
  clarifai/client/auth/__init__.py,sha256=7EwR0NrozkAUwpUnCsqXvE_p0wqx_SelXlSpKShKJK0,136
21
22
  clarifai/client/auth/helper.py,sha256=QPxmhQ3k1JaCpchA6Ef2iy7kKTC6iX5wchHCO9JpIRE,13909
22
23
  clarifai/client/auth/register.py,sha256=2CMdBsoVLoTfjyksE6j7BM2tiEc73WKYvxnwDDgNn1k,536
23
24
  clarifai/client/auth/stub.py,sha256=KIzJZ8aRB1RzXJeWHDAx19HNdBsblPPHwYLfAkgI3rY,3779
25
+ clarifai/constants/search.py,sha256=_g3S-JEvuygiFfMVK3cl4Ry9erZpt8Zo4ilXL2i3DAE,52
24
26
  clarifai/datasets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
27
  clarifai/datasets/export/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
28
  clarifai/datasets/export/dataset_inputs.py,sha256=agD6oJTNq4biCiqQd-HnXiAXFL6wGE4NjPsAvSHLYs8,7817
@@ -82,26 +84,23 @@ clarifai/datasets/upload/loaders/imagenet_classification.py,sha256=BPT028Q2dvKry
82
84
  clarifai/datasets/upload/loaders/xview_detection.py,sha256=J6qhd5OOI3GYBF9n8wA28nI03ft4edRDAqVpj7AMEEk,6054
83
85
  clarifai/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
84
86
  clarifai/models/api.py,sha256=fsE6eLZ0NgcvDpAQcRpT2DPataBTg0gIEOWxtoNeYXM,9555
85
- clarifai/models/model_serving/README.md,sha256=XdBYXR1n7gvONnlLU8O9sSOqkDIfHsbVuT2AnAmW9yE,8175
87
+ clarifai/models/model_serving/README.md,sha256=ykvdB4xFKVRKJRD34MgX31pUIhN-kAI9iM6jH2FT5bM,7941
86
88
  clarifai/models/model_serving/__init__.py,sha256=Nls28G-fedNw2oQZIkPQSN__TgjJXbG9RDzzuHIM0VI,575
87
89
  clarifai/models/model_serving/constants.py,sha256=KFASN7p9tq2JYSREGMCZ5YwS0x0Gy17lR8QrrL-z-9k,18
88
- clarifai/models/model_serving/pb_model_repository.py,sha256=WKn8HufFE7FX28GAk-gjimILrunCLIqybL-CzQvIHnE,3785
90
+ clarifai/models/model_serving/pb_model_repository.py,sha256=89uS4Dg4asy5EFHnLEtuQinCkv6w6DAH3ETZLopsHcM,3612
89
91
  clarifai/models/model_serving/cli/__init__.py,sha256=Nls28G-fedNw2oQZIkPQSN__TgjJXbG9RDzzuHIM0VI,575
90
92
  clarifai/models/model_serving/cli/deploy_cli.py,sha256=2U_Bq1O00Hqt_0l6bLdl84AnBiZm3I6ciXpYssVysO8,3776
91
93
  clarifai/models/model_serving/cli/model_zip.py,sha256=TVaHP_4l-WtRn9QJBkhZ7EzaSV9qyhyOUN_h2niNEeE,1866
92
94
  clarifai/models/model_serving/cli/repository.py,sha256=Piq1bo0NKItBjsmBBOK5Z7F16we9HHUkg_0g0q047Bo,2842
93
95
  clarifai/models/model_serving/docs/custom_config.md,sha256=W1mMIRCI4dVP0czvq5fxOLq1hv0PCBMFRvtZtQwz8kU,1522
94
- clarifai/models/model_serving/docs/dependencies.md,sha256=mVOi8e4Fw90YKqMC6PTVJjaSp34hr-UyK8k44hnVUXE,1027
96
+ clarifai/models/model_serving/docs/dependencies.md,sha256=R9zyE2MbW98DsvFY2ABm4fik0fMPERxrQkhMKMDKpY4,721
95
97
  clarifai/models/model_serving/docs/model_types.md,sha256=fTslyPaHMJUxvq_tNy4ME-B-xXTFxmuQnRbAEhOjx10,1027
96
98
  clarifai/models/model_serving/docs/output.md,sha256=IFpwcwhEs7zjIxSDvtYFdmwXVwWal1s5yc-3ohyJEe4,2163
97
- clarifai/models/model_serving/envs/triton_conda-cp3.8-torch1.13.1-19f97078.yaml,sha256=xZxohsyNxpeWkkpa2FbIlmQ2n4vJIvqT4wX2tlfAPcc,1030
98
- clarifai/models/model_serving/envs/triton_conda-cp3.8-torch2.0.0-ce980f28.yaml,sha256=CcsWE59sfeXbKdSeMcxDkXfRGLo13CDHPQyH77VuK10,1484
99
99
  clarifai/models/model_serving/examples/README.md,sha256=lRfvJ53QRjajO2XA6DTpKYY4Kczx4n-HDDpCMpPeaUg,623
100
100
  clarifai/models/model_serving/examples/image_classification/README.md,sha256=hJlZ5YZgA85ozcynImqCpk863ij9a738dcBW08rdego,469
101
101
  clarifai/models/model_serving/examples/image_classification/age_vit/config.pbtxt,sha256=ASkLpkp2usoLsVXWCsEHP_R5-6cIug58VNLv9zDkx78,344
102
102
  clarifai/models/model_serving/examples/image_classification/age_vit/labels.txt,sha256=Rz-TfQDxDe-uah31ssBzqGPi4nMaAf-cm-HmYea2Wag,57
103
- clarifai/models/model_serving/examples/image_classification/age_vit/requirements.txt,sha256=Cfk5j5pVqJ16HFvxrXHoM3ak9Ss6DJ3VxAxsJ22EGUA,134
104
- clarifai/models/model_serving/examples/image_classification/age_vit/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
103
+ clarifai/models/model_serving/examples/image_classification/age_vit/requirements.txt,sha256=jRtQHX2yn20Phl4mESZbT9b7N4YIKhnEasCWbUvwuWE,148
105
104
  clarifai/models/model_serving/examples/image_classification/age_vit/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
105
  clarifai/models/model_serving/examples/image_classification/age_vit/1/inference.py,sha256=Iy7B3lAxyOXD6FjmTzoE4ec94zaty-ANjVVcQMYn4eY,2251
107
106
  clarifai/models/model_serving/examples/image_classification/age_vit/1/model.py,sha256=kC2gglV8QI8G4TNwjerDOO-Xm3UHtoMGeapLRpnKP8E,1941
@@ -111,8 +110,7 @@ clarifai/models/model_serving/examples/image_classification/age_vit/1/vit-age-cl
111
110
  clarifai/models/model_serving/examples/text_classification/README.md,sha256=5ydYOxqxzX6nTcVjJx1kgBPN8k4QXHtB4CU4qDTiids,556
112
111
  clarifai/models/model_serving/examples/text_classification/xlm-roberta/config.pbtxt,sha256=lql9vDtJJm0tWJMrWctgOhzluOuALnvOGjz6iQVlSH0,326
113
112
  clarifai/models/model_serving/examples/text_classification/xlm-roberta/labels.txt,sha256=FYuCvooWVAzsLBJ9ZrdQuvPWZACP70DPceR7za_aQ9k,26
114
- clarifai/models/model_serving/examples/text_classification/xlm-roberta/requirements.txt,sha256=Cfk5j5pVqJ16HFvxrXHoM3ak9Ss6DJ3VxAxsJ22EGUA,134
115
- clarifai/models/model_serving/examples/text_classification/xlm-roberta/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
113
+ clarifai/models/model_serving/examples/text_classification/xlm-roberta/requirements.txt,sha256=jRtQHX2yn20Phl4mESZbT9b7N4YIKhnEasCWbUvwuWE,148
116
114
  clarifai/models/model_serving/examples/text_classification/xlm-roberta/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
115
  clarifai/models/model_serving/examples/text_classification/xlm-roberta/1/inference.py,sha256=jzdWLJQ8K6h-CFrmZju-DTuQNPSRXhJTS3zXdNaiA7A,2173
118
116
  clarifai/models/model_serving/examples/text_classification/xlm-roberta/1/model.py,sha256=kC2gglV8QI8G4TNwjerDOO-Xm3UHtoMGeapLRpnKP8E,1941
@@ -122,37 +120,32 @@ clarifai/models/model_serving/examples/text_classification/xlm-roberta/1/twitter
122
120
  clarifai/models/model_serving/examples/text_embedding/README.md,sha256=MOcC3NXCmTx3-pfHT_Y4u13KhSXtApnIgcs0wN3hf5Q,476
123
121
  clarifai/models/model_serving/examples/text_to_image/README.md,sha256=fPz8NJYQBNwiqz25j_QaSJWm6nptZVpra6u_Mu2cuN0,463
124
122
  clarifai/models/model_serving/examples/text_to_image/sd-v1.5/config.pbtxt,sha256=XPod_q-5EgkSYL6AIAjcgNKf9y0SOrFUci4ezuyXArs,299
125
- clarifai/models/model_serving/examples/text_to_image/sd-v1.5/requirements.txt,sha256=1N0N5Z_Rdu7vOzXP0t-fgP04MA1QA7Y_83vmMa1R0qk,87
126
- clarifai/models/model_serving/examples/text_to_image/sd-v1.5/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
123
+ clarifai/models/model_serving/examples/text_to_image/sd-v1.5/requirements.txt,sha256=KoiR_eJhEfRtdybQghtM8NmGgTPNsgDf0z8-iWHdtD4,101
127
124
  clarifai/models/model_serving/examples/text_to_image/sd-v1.5/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
128
125
  clarifai/models/model_serving/examples/text_to_image/sd-v1.5/1/inference.py,sha256=ICVrU25goQonqQqeVM1q0FgJAoQQkhaFbyqExXC3IDY,1945
129
126
  clarifai/models/model_serving/examples/text_to_image/sd-v1.5/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
130
127
  clarifai/models/model_serving/examples/text_to_text/README.md,sha256=pKsUbV4Y8631YYkxLso7R7S4ZFUhrLMOjH80ry31BzI,831
131
128
  clarifai/models/model_serving/examples/text_to_text/bart-summarize/config.pbtxt,sha256=2Hjku9zefBJdQf7j8Eaf4r0mIznrYO6mOc9cO5YcJFI,284
132
- clarifai/models/model_serving/examples/text_to_text/bart-summarize/requirements.txt,sha256=Xg6N5JMDS2x1hdIJPNR_uH5Dgz5z1z20nDYrzXILEvc,54
133
- clarifai/models/model_serving/examples/text_to_text/bart-summarize/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
129
+ clarifai/models/model_serving/examples/text_to_text/bart-summarize/requirements.txt,sha256=-zgX5gRiqwFPx2r9KsmpNmou4aQ9lpLsWzWxpVT7zL4,68
134
130
  clarifai/models/model_serving/examples/text_to_text/bart-summarize/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
135
131
  clarifai/models/model_serving/examples/text_to_text/bart-summarize/1/inference.py,sha256=ekHKG926K3JOKUvFPdL0wuhPyTCpkCYsiY39YhchKaA,1847
136
132
  clarifai/models/model_serving/examples/text_to_text/bart-summarize/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
137
133
  clarifai/models/model_serving/examples/visual_detection/README.md,sha256=DXCdZIaA2Efw1A7kS_w995akWcvhgRPHAuWizyQYF9Q,521
138
134
  clarifai/models/model_serving/examples/visual_detection/yolov5x/config.pbtxt,sha256=51IL1nLzq-A5D053QQoxlcp14QHLqV1z85h-36tHEqA,520
139
135
  clarifai/models/model_serving/examples/visual_detection/yolov5x/labels.txt,sha256=rKdtMr4IEIfx8xzCj9315gNEh2NrZqWrLBn6JJApv3g,621
140
- clarifai/models/model_serving/examples/visual_detection/yolov5x/requirements.txt,sha256=esPt3gD-Qt38YV9812vz7BNSv6IuygUnUrWF2zMC29k,281
141
- clarifai/models/model_serving/examples/visual_detection/yolov5x/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
136
+ clarifai/models/model_serving/examples/visual_detection/yolov5x/requirements.txt,sha256=MklRHZ8VOab-pLbmY_ifLUynqwf9891_8K6p4x7ffRk,286
142
137
  clarifai/models/model_serving/examples/visual_detection/yolov5x/1/inference.py,sha256=bF-hhNBIZTq5Fci182OkWnToAQMJz4W2tzRf9D4oIsQ,2906
143
138
  clarifai/models/model_serving/examples/visual_detection/yolov5x/1/model.py,sha256=kC2gglV8QI8G4TNwjerDOO-Xm3UHtoMGeapLRpnKP8E,1941
144
139
  clarifai/models/model_serving/examples/visual_embedding/README.md,sha256=RIYM4T9yY6cOgDc3P_VyId3nuR9XJVNIS_bEAwjkLHM,445
145
140
  clarifai/models/model_serving/examples/visual_embedding/vit-base/config.pbtxt,sha256=9bNKQ0n0etMZ5lQB4Psoezn80PPQwPhZDrUy7HvTP9s,305
146
- clarifai/models/model_serving/examples/visual_embedding/vit-base/requirements.txt,sha256=xROiuSdvOA8h7TJ2YxGo2hCJCOzH6h_IkaH-wBrfg7g,69
147
- clarifai/models/model_serving/examples/visual_embedding/vit-base/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
141
+ clarifai/models/model_serving/examples/visual_embedding/vit-base/requirements.txt,sha256=dqvnIN60PvExFAcv9QoBq1siPYpl6GuXwQ-8VaruThs,83
148
142
  clarifai/models/model_serving/examples/visual_embedding/vit-base/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
149
143
  clarifai/models/model_serving/examples/visual_embedding/vit-base/1/inference.py,sha256=P1JLU-N7IzYRzAjRlJjiqat0CF8M7Fzl_U6sfOBa2jM,1971
150
144
  clarifai/models/model_serving/examples/visual_embedding/vit-base/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
151
145
  clarifai/models/model_serving/examples/visual_segmentation/README.md,sha256=o_2hD1SL8yBaxpSZOfOrKIXCUhwKfCxns_JTJRYra5I,467
152
146
  clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/config.pbtxt,sha256=qzavRmtEsjAATer8xn8iuZgA4UcRsaSQ0D7jyAZMnR4,356
153
147
  clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/labels.txt,sha256=pvh3a6LoIabfklJeb9d_W19MsD2vpaMxWXBC4cWDZyI,140
154
- clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/requirements.txt,sha256=xROiuSdvOA8h7TJ2YxGo2hCJCOzH6h_IkaH-wBrfg7g,69
155
- clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
148
+ clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/requirements.txt,sha256=QR1T3Hcz_V4_nokb3ZfWOt_x0qp5g1IqaIbe_DEpQXA,83
156
149
  clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
157
150
  clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/1/inference.py,sha256=Det16IapShTKwD6eEOFm7zczNF73ctoJ3sEb9EIY9nU,2119
158
151
  clarifai/models/model_serving/examples/visual_segmentation/segformer-b2/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
@@ -181,24 +174,25 @@ clarifai/modules/pages.py,sha256=iOoM3RNRMgXlV0qBqcdQofxoXo2RuRQh0h9c9BIS0-I,138
181
174
  clarifai/modules/style.css,sha256=j7FNPZVhLPj35vvBksAJ90RuX5sLuqzDR5iM2WIEhiA,6073
182
175
  clarifai/runners/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
183
176
  clarifai/runners/example.py,sha256=7pEzNjP7qnJsXWmGC3KMxM4xIJoN50MKa1uBDq5o1SE,1005
177
+ clarifai/schema/search.py,sha256=OX0mQWzDvf_CoVc_pL-y9MIr3RJ_NYhKKGY0CLX8BcM,1962
184
178
  clarifai/urls/helper.py,sha256=vFzGfV0GKc272pArQgEAGuPWTzxN1v9mp34sWSaErZ0,4208
185
179
  clarifai/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
186
180
  clarifai/utils/logging.py,sha256=LE7mLIJGdPAHQQP-oEHannYgjP_0BjXTG5YzuY3vTco,2911
187
181
  clarifai/utils/misc.py,sha256=YBYFGaGdGeBVLwYi1vfJsg4gCjt-S6MDswj4wiqChLw,732
188
182
  clarifai/workflows/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
189
- clarifai/workflows/export.py,sha256=CoNJynOqSrroikOLCZexs1y_UKUvVtW5mbzr28aeEkk,1884
190
- clarifai/workflows/utils.py,sha256=_pPcABzmsGN5hXuBU0QM29mFXDm9y6-NzjLZh0784_s,1864
191
- clarifai/workflows/validate.py,sha256=BBnwZ1N1PzDOlqu9pUSFZi3pTg2i6KrjMUOY3lljA2g,2535
183
+ clarifai/workflows/export.py,sha256=vICRhIreqDSShxLKjHNM2JwzKsf1B4fdXB0ciMcA70k,1945
184
+ clarifai/workflows/utils.py,sha256=nGeB_yjVgUO9kOeKTg4OBBaBz-AwXI3m-huSVj-9W18,1924
185
+ clarifai/workflows/validate.py,sha256=iCEKBTtB-57uE3LVU7D4AI9BRHxIxahk3U1Ro08HP-o,2535
192
186
  clarifai_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
193
187
  clarifai_utils/cli.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
194
188
  clarifai_utils/errors.py,sha256=F8YchDo3veKDthO0NQoPJ7_q2_QZEE0SwKZpUvcdadM,2651
195
- clarifai_utils/versions.py,sha256=sRsMx2f3aB8Ch-6hQiLxDzm2CEAyevuvOg6_mlnKG64,185
189
+ clarifai_utils/versions.py,sha256=AnJWsDk31S7KD1kRO4b5RWUcFiqbkQUJy12-SBr41qU,185
196
190
  clarifai_utils/auth/__init__.py,sha256=BgCHtnkmtDDcEZZaAyFbmf1kkdu0HMU5y3lHxGE04S0,236
197
191
  clarifai_utils/auth/helper.py,sha256=QPxmhQ3k1JaCpchA6Ef2iy7kKTC6iX5wchHCO9JpIRE,13909
198
192
  clarifai_utils/auth/register.py,sha256=2CMdBsoVLoTfjyksE6j7BM2tiEc73WKYvxnwDDgNn1k,536
199
193
  clarifai_utils/auth/stub.py,sha256=KIzJZ8aRB1RzXJeWHDAx19HNdBsblPPHwYLfAkgI3rY,3779
200
194
  clarifai_utils/client/__init__.py,sha256=ztWL7MGzuq4CI73p4eI3QK2VFxIQLyTHapzD_B0yoMU,664
201
- clarifai_utils/client/app.py,sha256=Onr2PCc5qNZd0LGL1CWDDqLZUIbJZYIm-eR75v0Jw2c,22297
195
+ clarifai_utils/client/app.py,sha256=KC2G8WKxvrj6lLwGsqJLfXOAH_CC8i_2KLHqhszAFwM,22809
202
196
  clarifai_utils/client/base.py,sha256=vXiKTO1qA05DJnntgAADTk3GakCbq3NYVxbKw-A6DbM,4159
203
197
  clarifai_utils/client/dataset.py,sha256=lHCwDpOMXLJ8bfkFN0bnHg91r2Xp76i6aJNIxys1L0M,14371
204
198
  clarifai_utils/client/input.py,sha256=p-UyJr_Ach3PXN5vN6-apKQp4-RTCIllAOH3qMl4yHk,31396
@@ -206,12 +200,14 @@ clarifai_utils/client/lister.py,sha256=Zh1_k6-XWBVpnxIVezbqPzmZseOIEwmaV0ogcb4fE
206
200
  clarifai_utils/client/model.py,sha256=dVlqyguKrAa_L-ToZe1r5qYdMO4tdHgrsVJZig4zTws,12006
207
201
  clarifai_utils/client/module.py,sha256=mZzjnOiTnd2KIF8bkDZc8IhSJYBHDGyLLLVFwR3rbgU,3380
208
202
  clarifai_utils/client/runner.py,sha256=1JThpYSkriVreXCHykIBoOszrecdTBZeTeqvvd8g8TE,6722
203
+ clarifai_utils/client/search.py,sha256=aV6KYibbx4oElGIIla7SderIWJ-5Xil1oAboVAfL85E,6617
209
204
  clarifai_utils/client/user.py,sha256=P783OxFX_Z6KiGIRXoIZjH_OScXp1x2vT65l14B4VQE,8816
210
- clarifai_utils/client/workflow.py,sha256=5CPD6hlKGmGk-8sNPrfBNq7qU2QwFst9KWkoTGFhnco,9146
205
+ clarifai_utils/client/workflow.py,sha256=CiBKjhFtqwEv8hEcLR9omJLMf63MIUB5f4U3yzZ20Tc,9150
211
206
  clarifai_utils/client/auth/__init__.py,sha256=7EwR0NrozkAUwpUnCsqXvE_p0wqx_SelXlSpKShKJK0,136
212
207
  clarifai_utils/client/auth/helper.py,sha256=QPxmhQ3k1JaCpchA6Ef2iy7kKTC6iX5wchHCO9JpIRE,13909
213
208
  clarifai_utils/client/auth/register.py,sha256=2CMdBsoVLoTfjyksE6j7BM2tiEc73WKYvxnwDDgNn1k,536
214
209
  clarifai_utils/client/auth/stub.py,sha256=KIzJZ8aRB1RzXJeWHDAx19HNdBsblPPHwYLfAkgI3rY,3779
210
+ clarifai_utils/constants/search.py,sha256=_g3S-JEvuygiFfMVK3cl4Ry9erZpt8Zo4ilXL2i3DAE,52
215
211
  clarifai_utils/datasets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
216
212
  clarifai_utils/datasets/export/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
217
213
  clarifai_utils/datasets/export/dataset_inputs.py,sha256=agD6oJTNq4biCiqQd-HnXiAXFL6wGE4NjPsAvSHLYs8,7817
@@ -273,26 +269,23 @@ clarifai_utils/datasets/upload/loaders/imagenet_classification.py,sha256=BPT028Q
273
269
  clarifai_utils/datasets/upload/loaders/xview_detection.py,sha256=J6qhd5OOI3GYBF9n8wA28nI03ft4edRDAqVpj7AMEEk,6054
274
270
  clarifai_utils/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
275
271
  clarifai_utils/models/api.py,sha256=fsE6eLZ0NgcvDpAQcRpT2DPataBTg0gIEOWxtoNeYXM,9555
276
- clarifai_utils/models/model_serving/README.md,sha256=XdBYXR1n7gvONnlLU8O9sSOqkDIfHsbVuT2AnAmW9yE,8175
272
+ clarifai_utils/models/model_serving/README.md,sha256=ykvdB4xFKVRKJRD34MgX31pUIhN-kAI9iM6jH2FT5bM,7941
277
273
  clarifai_utils/models/model_serving/__init__.py,sha256=Nls28G-fedNw2oQZIkPQSN__TgjJXbG9RDzzuHIM0VI,575
278
274
  clarifai_utils/models/model_serving/constants.py,sha256=KFASN7p9tq2JYSREGMCZ5YwS0x0Gy17lR8QrrL-z-9k,18
279
- clarifai_utils/models/model_serving/pb_model_repository.py,sha256=WKn8HufFE7FX28GAk-gjimILrunCLIqybL-CzQvIHnE,3785
275
+ clarifai_utils/models/model_serving/pb_model_repository.py,sha256=89uS4Dg4asy5EFHnLEtuQinCkv6w6DAH3ETZLopsHcM,3612
280
276
  clarifai_utils/models/model_serving/cli/__init__.py,sha256=Nls28G-fedNw2oQZIkPQSN__TgjJXbG9RDzzuHIM0VI,575
281
277
  clarifai_utils/models/model_serving/cli/deploy_cli.py,sha256=2U_Bq1O00Hqt_0l6bLdl84AnBiZm3I6ciXpYssVysO8,3776
282
278
  clarifai_utils/models/model_serving/cli/model_zip.py,sha256=TVaHP_4l-WtRn9QJBkhZ7EzaSV9qyhyOUN_h2niNEeE,1866
283
279
  clarifai_utils/models/model_serving/cli/repository.py,sha256=Piq1bo0NKItBjsmBBOK5Z7F16we9HHUkg_0g0q047Bo,2842
284
280
  clarifai_utils/models/model_serving/docs/custom_config.md,sha256=W1mMIRCI4dVP0czvq5fxOLq1hv0PCBMFRvtZtQwz8kU,1522
285
- clarifai_utils/models/model_serving/docs/dependencies.md,sha256=mVOi8e4Fw90YKqMC6PTVJjaSp34hr-UyK8k44hnVUXE,1027
281
+ clarifai_utils/models/model_serving/docs/dependencies.md,sha256=R9zyE2MbW98DsvFY2ABm4fik0fMPERxrQkhMKMDKpY4,721
286
282
  clarifai_utils/models/model_serving/docs/model_types.md,sha256=fTslyPaHMJUxvq_tNy4ME-B-xXTFxmuQnRbAEhOjx10,1027
287
283
  clarifai_utils/models/model_serving/docs/output.md,sha256=IFpwcwhEs7zjIxSDvtYFdmwXVwWal1s5yc-3ohyJEe4,2163
288
- clarifai_utils/models/model_serving/envs/triton_conda-cp3.8-torch1.13.1-19f97078.yaml,sha256=xZxohsyNxpeWkkpa2FbIlmQ2n4vJIvqT4wX2tlfAPcc,1030
289
- clarifai_utils/models/model_serving/envs/triton_conda-cp3.8-torch2.0.0-ce980f28.yaml,sha256=CcsWE59sfeXbKdSeMcxDkXfRGLo13CDHPQyH77VuK10,1484
290
284
  clarifai_utils/models/model_serving/examples/README.md,sha256=lRfvJ53QRjajO2XA6DTpKYY4Kczx4n-HDDpCMpPeaUg,623
291
285
  clarifai_utils/models/model_serving/examples/image_classification/README.md,sha256=hJlZ5YZgA85ozcynImqCpk863ij9a738dcBW08rdego,469
292
286
  clarifai_utils/models/model_serving/examples/image_classification/age_vit/config.pbtxt,sha256=ASkLpkp2usoLsVXWCsEHP_R5-6cIug58VNLv9zDkx78,344
293
287
  clarifai_utils/models/model_serving/examples/image_classification/age_vit/labels.txt,sha256=Rz-TfQDxDe-uah31ssBzqGPi4nMaAf-cm-HmYea2Wag,57
294
- clarifai_utils/models/model_serving/examples/image_classification/age_vit/requirements.txt,sha256=Cfk5j5pVqJ16HFvxrXHoM3ak9Ss6DJ3VxAxsJ22EGUA,134
295
- clarifai_utils/models/model_serving/examples/image_classification/age_vit/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
288
+ clarifai_utils/models/model_serving/examples/image_classification/age_vit/requirements.txt,sha256=jRtQHX2yn20Phl4mESZbT9b7N4YIKhnEasCWbUvwuWE,148
296
289
  clarifai_utils/models/model_serving/examples/image_classification/age_vit/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
297
290
  clarifai_utils/models/model_serving/examples/image_classification/age_vit/1/inference.py,sha256=Iy7B3lAxyOXD6FjmTzoE4ec94zaty-ANjVVcQMYn4eY,2251
298
291
  clarifai_utils/models/model_serving/examples/image_classification/age_vit/1/model.py,sha256=kC2gglV8QI8G4TNwjerDOO-Xm3UHtoMGeapLRpnKP8E,1941
@@ -302,8 +295,7 @@ clarifai_utils/models/model_serving/examples/image_classification/age_vit/1/vit-
302
295
  clarifai_utils/models/model_serving/examples/text_classification/README.md,sha256=5ydYOxqxzX6nTcVjJx1kgBPN8k4QXHtB4CU4qDTiids,556
303
296
  clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/config.pbtxt,sha256=lql9vDtJJm0tWJMrWctgOhzluOuALnvOGjz6iQVlSH0,326
304
297
  clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/labels.txt,sha256=FYuCvooWVAzsLBJ9ZrdQuvPWZACP70DPceR7za_aQ9k,26
305
- clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/requirements.txt,sha256=Cfk5j5pVqJ16HFvxrXHoM3ak9Ss6DJ3VxAxsJ22EGUA,134
306
- clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
298
+ clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/requirements.txt,sha256=jRtQHX2yn20Phl4mESZbT9b7N4YIKhnEasCWbUvwuWE,148
307
299
  clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
308
300
  clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/1/inference.py,sha256=jzdWLJQ8K6h-CFrmZju-DTuQNPSRXhJTS3zXdNaiA7A,2173
309
301
  clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/1/model.py,sha256=kC2gglV8QI8G4TNwjerDOO-Xm3UHtoMGeapLRpnKP8E,1941
@@ -313,37 +305,32 @@ clarifai_utils/models/model_serving/examples/text_classification/xlm-roberta/1/t
313
305
  clarifai_utils/models/model_serving/examples/text_embedding/README.md,sha256=MOcC3NXCmTx3-pfHT_Y4u13KhSXtApnIgcs0wN3hf5Q,476
314
306
  clarifai_utils/models/model_serving/examples/text_to_image/README.md,sha256=fPz8NJYQBNwiqz25j_QaSJWm6nptZVpra6u_Mu2cuN0,463
315
307
  clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/config.pbtxt,sha256=XPod_q-5EgkSYL6AIAjcgNKf9y0SOrFUci4ezuyXArs,299
316
- clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/requirements.txt,sha256=1N0N5Z_Rdu7vOzXP0t-fgP04MA1QA7Y_83vmMa1R0qk,87
317
- clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
308
+ clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/requirements.txt,sha256=KoiR_eJhEfRtdybQghtM8NmGgTPNsgDf0z8-iWHdtD4,101
318
309
  clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
319
310
  clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/1/inference.py,sha256=ICVrU25goQonqQqeVM1q0FgJAoQQkhaFbyqExXC3IDY,1945
320
311
  clarifai_utils/models/model_serving/examples/text_to_image/sd-v1.5/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
321
312
  clarifai_utils/models/model_serving/examples/text_to_text/README.md,sha256=pKsUbV4Y8631YYkxLso7R7S4ZFUhrLMOjH80ry31BzI,831
322
313
  clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/config.pbtxt,sha256=2Hjku9zefBJdQf7j8Eaf4r0mIznrYO6mOc9cO5YcJFI,284
323
- clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/requirements.txt,sha256=Xg6N5JMDS2x1hdIJPNR_uH5Dgz5z1z20nDYrzXILEvc,54
324
- clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
314
+ clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/requirements.txt,sha256=-zgX5gRiqwFPx2r9KsmpNmou4aQ9lpLsWzWxpVT7zL4,68
325
315
  clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
326
316
  clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/1/inference.py,sha256=ekHKG926K3JOKUvFPdL0wuhPyTCpkCYsiY39YhchKaA,1847
327
317
  clarifai_utils/models/model_serving/examples/text_to_text/bart-summarize/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
328
318
  clarifai_utils/models/model_serving/examples/visual_detection/README.md,sha256=DXCdZIaA2Efw1A7kS_w995akWcvhgRPHAuWizyQYF9Q,521
329
319
  clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/config.pbtxt,sha256=51IL1nLzq-A5D053QQoxlcp14QHLqV1z85h-36tHEqA,520
330
320
  clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/labels.txt,sha256=rKdtMr4IEIfx8xzCj9315gNEh2NrZqWrLBn6JJApv3g,621
331
- clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/requirements.txt,sha256=esPt3gD-Qt38YV9812vz7BNSv6IuygUnUrWF2zMC29k,281
332
- clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
321
+ clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/requirements.txt,sha256=MklRHZ8VOab-pLbmY_ifLUynqwf9891_8K6p4x7ffRk,286
333
322
  clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/1/inference.py,sha256=bF-hhNBIZTq5Fci182OkWnToAQMJz4W2tzRf9D4oIsQ,2906
334
323
  clarifai_utils/models/model_serving/examples/visual_detection/yolov5x/1/model.py,sha256=kC2gglV8QI8G4TNwjerDOO-Xm3UHtoMGeapLRpnKP8E,1941
335
324
  clarifai_utils/models/model_serving/examples/visual_embedding/README.md,sha256=RIYM4T9yY6cOgDc3P_VyId3nuR9XJVNIS_bEAwjkLHM,445
336
325
  clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/config.pbtxt,sha256=9bNKQ0n0etMZ5lQB4Psoezn80PPQwPhZDrUy7HvTP9s,305
337
- clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/requirements.txt,sha256=xROiuSdvOA8h7TJ2YxGo2hCJCOzH6h_IkaH-wBrfg7g,69
338
- clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
326
+ clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/requirements.txt,sha256=dqvnIN60PvExFAcv9QoBq1siPYpl6GuXwQ-8VaruThs,83
339
327
  clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
328
  clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/1/inference.py,sha256=P1JLU-N7IzYRzAjRlJjiqat0CF8M7Fzl_U6sfOBa2jM,1971
341
329
  clarifai_utils/models/model_serving/examples/visual_embedding/vit-base/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
342
330
  clarifai_utils/models/model_serving/examples/visual_segmentation/README.md,sha256=o_2hD1SL8yBaxpSZOfOrKIXCUhwKfCxns_JTJRYra5I,467
343
331
  clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/config.pbtxt,sha256=qzavRmtEsjAATer8xn8iuZgA4UcRsaSQ0D7jyAZMnR4,356
344
332
  clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/labels.txt,sha256=pvh3a6LoIabfklJeb9d_W19MsD2vpaMxWXBC4cWDZyI,140
345
- clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/requirements.txt,sha256=xROiuSdvOA8h7TJ2YxGo2hCJCOzH6h_IkaH-wBrfg7g,69
346
- clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/triton_conda.yaml,sha256=ieqLJd4bIPzdQKO5RHKMj8DJ4x0yEcyyEGEWM_u6cqU,46
333
+ clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/requirements.txt,sha256=QR1T3Hcz_V4_nokb3ZfWOt_x0qp5g1IqaIbe_DEpQXA,83
347
334
  clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
348
335
  clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/1/inference.py,sha256=Det16IapShTKwD6eEOFm7zczNF73ctoJ3sEb9EIY9nU,2119
349
336
  clarifai_utils/models/model_serving/examples/visual_segmentation/segformer-b2/1/model.py,sha256=gLIP0dNXLD9lfBQmXEnGgjDo39QnCcu0PiFB37Wqxgg,1863
@@ -372,17 +359,18 @@ clarifai_utils/modules/pages.py,sha256=iOoM3RNRMgXlV0qBqcdQofxoXo2RuRQh0h9c9BIS0
372
359
  clarifai_utils/modules/style.css,sha256=j7FNPZVhLPj35vvBksAJ90RuX5sLuqzDR5iM2WIEhiA,6073
373
360
  clarifai_utils/runners/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
374
361
  clarifai_utils/runners/example.py,sha256=7pEzNjP7qnJsXWmGC3KMxM4xIJoN50MKa1uBDq5o1SE,1005
362
+ clarifai_utils/schema/search.py,sha256=OX0mQWzDvf_CoVc_pL-y9MIr3RJ_NYhKKGY0CLX8BcM,1962
375
363
  clarifai_utils/urls/helper.py,sha256=vFzGfV0GKc272pArQgEAGuPWTzxN1v9mp34sWSaErZ0,4208
376
364
  clarifai_utils/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
377
365
  clarifai_utils/utils/logging.py,sha256=LE7mLIJGdPAHQQP-oEHannYgjP_0BjXTG5YzuY3vTco,2911
378
366
  clarifai_utils/utils/misc.py,sha256=YBYFGaGdGeBVLwYi1vfJsg4gCjt-S6MDswj4wiqChLw,732
379
367
  clarifai_utils/workflows/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
380
- clarifai_utils/workflows/export.py,sha256=CoNJynOqSrroikOLCZexs1y_UKUvVtW5mbzr28aeEkk,1884
381
- clarifai_utils/workflows/utils.py,sha256=_pPcABzmsGN5hXuBU0QM29mFXDm9y6-NzjLZh0784_s,1864
382
- clarifai_utils/workflows/validate.py,sha256=BBnwZ1N1PzDOlqu9pUSFZi3pTg2i6KrjMUOY3lljA2g,2535
383
- clarifai-9.8.2.dist-info/LICENSE,sha256=mUqF_d12-qE2n41g7C5_sq-BMLOcj6CNN-jevr15YHU,555
384
- clarifai-9.8.2.dist-info/METADATA,sha256=r-eT2Pqo5jkuX_qSQYhCbk6sqh6lwdRSHGfUhLfy6r0,8339
385
- clarifai-9.8.2.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
386
- clarifai-9.8.2.dist-info/entry_points.txt,sha256=cna1vVlFIZZZlxHy1AbhooFGy-dw1W2xRfbOVRSWSKg,255
387
- clarifai-9.8.2.dist-info/top_level.txt,sha256=w3e8wx1HuK3_huGQosppv1_FSoNjBUd09KBKMK3wR-U,24
388
- clarifai-9.8.2.dist-info/RECORD,,
368
+ clarifai_utils/workflows/export.py,sha256=vICRhIreqDSShxLKjHNM2JwzKsf1B4fdXB0ciMcA70k,1945
369
+ clarifai_utils/workflows/utils.py,sha256=nGeB_yjVgUO9kOeKTg4OBBaBz-AwXI3m-huSVj-9W18,1924
370
+ clarifai_utils/workflows/validate.py,sha256=iCEKBTtB-57uE3LVU7D4AI9BRHxIxahk3U1Ro08HP-o,2535
371
+ clarifai-9.9.0.dist-info/LICENSE,sha256=mUqF_d12-qE2n41g7C5_sq-BMLOcj6CNN-jevr15YHU,555
372
+ clarifai-9.9.0.dist-info/METADATA,sha256=JILbZ86iNrkdJIpnpXb1RcsNwIpQ8sx7JOWv4xsI7KM,8339
373
+ clarifai-9.9.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
374
+ clarifai-9.9.0.dist-info/entry_points.txt,sha256=cna1vVlFIZZZlxHy1AbhooFGy-dw1W2xRfbOVRSWSKg,255
375
+ clarifai-9.9.0.dist-info/top_level.txt,sha256=w3e8wx1HuK3_huGQosppv1_FSoNjBUd09KBKMK3wR-U,24
376
+ clarifai-9.9.0.dist-info/RECORD,,
@@ -13,6 +13,7 @@ from clarifai.client.input import Inputs
13
13
  from clarifai.client.lister import Lister
14
14
  from clarifai.client.model import Model
15
15
  from clarifai.client.module import Module
16
+ from clarifai.client.search import Search
16
17
  from clarifai.client.workflow import Workflow
17
18
  from clarifai.errors import UserError
18
19
  from clarifai.urls.helper import ClarifaiUrlHelper
@@ -555,6 +556,22 @@ class App(Lister, BaseClient):
555
556
  raise Exception(response.status)
556
557
  self.logger.info("\nModule Deleted\n%s", response.status)
557
558
 
559
+ def search(self, **kwargs) -> Model:
560
+ """Returns a Search object for the user and app ID.
561
+
562
+ Args:
563
+ see the Search class in clarifai.client.search for kwargs.
564
+
565
+ Returns:
566
+ Search: A Search object for the user and app ID.
567
+
568
+ Example:
569
+ >>> from clarifai.client.app import App
570
+ >>> app = App(app_id="app_id", user_id="user_id")
571
+ >>> search_client = app.search(top_k=12, metric="euclidean")
572
+ """
573
+ return Search(**kwargs)
574
+
558
575
  def __getattr__(self, name):
559
576
  return getattr(self.app_info, name)
560
577
 
@@ -0,0 +1,173 @@
1
+ from typing import Any, Callable, Dict, Generator
2
+
3
+ from clarifai_grpc.grpc.api import resources_pb2, service_pb2
4
+ from clarifai_grpc.grpc.api.status import status_code_pb2
5
+ from google.protobuf.json_format import MessageToDict
6
+ from google.protobuf.struct_pb2 import Struct
7
+ from schema import SchemaError
8
+
9
+ from clarifai.client.base import BaseClient
10
+ from clarifai.client.input import Inputs
11
+ from clarifai.client.lister import Lister
12
+ from clarifai.constants.search import DEFAULT_SEARCH_METRIC, DEFAULT_TOP_K
13
+ from clarifai.errors import UserError
14
+ from clarifai.schema.search import get_schema
15
+
16
+
17
+ class Search(Lister, BaseClient):
18
+
19
+ def __init__(self,
20
+ user_id,
21
+ app_id,
22
+ top_k: int = DEFAULT_TOP_K,
23
+ metric: str = DEFAULT_SEARCH_METRIC):
24
+ """Initialize the Search object.
25
+
26
+ Args:
27
+ user_id (str): User ID.
28
+ app_id (str): App ID.
29
+ top_k (int, optional): Top K results to retrieve. Defaults to 10.
30
+ metric (str, optional): Similarity metric (either 'cosine' or 'euclidean'). Defaults to 'cosine'.
31
+
32
+ Raises:
33
+ UserError: If the metric is not 'cosine' or 'euclidean'.
34
+ """
35
+ if metric not in ["cosine", "euclidean"]:
36
+ raise UserError("Metric should be either cosine or euclidean")
37
+
38
+ self.user_id = user_id
39
+ self.app_id = app_id
40
+ self.metric_distance = dict(cosine="COSINE_DISTANCE", euclidean="EUCLIDEAN_DISTANCE")[metric]
41
+ self.data_proto = resources_pb2.Data()
42
+
43
+ self.inputs = Inputs(user_id=self.user_id, app_id=self.app_id)
44
+ self.rank_filter_schema = get_schema()
45
+ BaseClient.__init__(self, user_id=self.user_id, app_id=self.app_id)
46
+ Lister.__init__(self, page_size=top_k)
47
+
48
+ def _get_annot_proto(self, **kwargs):
49
+ """Get an Annotation proto message based on keyword arguments.
50
+
51
+ Args:
52
+ **kwargs: Keyword arguments specifying the resource.
53
+
54
+ Returns:
55
+ resources_pb2.Annotation: An Annotation proto message.
56
+ """
57
+ if not kwargs:
58
+ return resources_pb2.Annotation()
59
+
60
+ self.data_proto = resources_pb2.Data()
61
+ for key, value in kwargs.items():
62
+ if key == "image_bytes":
63
+ image_proto = self.inputs.get_input_from_bytes("", image_bytes=value).data.image
64
+ self.data_proto.image.CopyFrom(image_proto)
65
+
66
+ elif key == "image_url":
67
+ image_proto = self.inputs.get_input_from_url("", image_url=value).data.image
68
+ self.data_proto.image.CopyFrom(image_proto)
69
+
70
+ elif key == "concepts":
71
+ for concept in value:
72
+ concept_proto = resources_pb2.Concept(**concept)
73
+ self.data_proto.concepts.add().CopyFrom(concept_proto)
74
+
75
+ elif key == "text_raw":
76
+ text_proto = self.inputs.get_input_from_bytes(
77
+ "", text_bytes=bytes(value, 'utf-8')).data.text
78
+ self.data_proto.text.CopyFrom(text_proto)
79
+
80
+ elif key == "metadata":
81
+ metadata_struct = Struct()
82
+ metadata_struct.update(value)
83
+ self.data_proto.metadata.CopyFrom(metadata_struct)
84
+
85
+ elif key == "geo_point":
86
+ geo_point_proto = self._get_geo_point_proto(value["longitude"], value["latitude"],
87
+ value["geo_limit"])
88
+ self.data_proto.geo.CopyFrom(geo_point_proto)
89
+
90
+ else:
91
+ raise UserError(f"kwargs contain key that is not supported: {key}")
92
+ return resources_pb2.Annotation(data=self.data_proto)
93
+
94
+ def _get_geo_point_proto(self, longitude: float, latitude: float,
95
+ geo_limit: float) -> resources_pb2.Geo:
96
+ """Get a GeoPoint proto message based on geographical data.
97
+
98
+ Args:
99
+ longitude (float): Longitude coordinate.
100
+ latitude (float): Latitude coordinate.
101
+ geo_limit (float): Geographical limit.
102
+
103
+ Returns:
104
+ resources_pb2.Geo: A Geo proto message.
105
+ """
106
+ return resources_pb2.Geo(
107
+ geo_point=resources_pb2.GeoPoint(longitude=longitude, latitude=latitude),
108
+ geo_limit=resources_pb2.GeoLimit(type="withinKilometers", value=geo_limit))
109
+
110
+ def list_all_pages_generator(
111
+ self, endpoint: Callable[..., Any], proto_message: Any,
112
+ request_data: Dict[str, Any]) -> Generator[Dict[str, Any], None, None]:
113
+ """Lists all pages of a resource.
114
+
115
+ Args:
116
+ endpoint (Callable): The endpoint to call.
117
+ proto_message (Any): The proto message to use.
118
+ request_data (dict): The request data to use.
119
+
120
+ Yields:
121
+ response_dict: The next item in the listing.
122
+ """
123
+ page = 1
124
+ request_data['pagination'] = service_pb2.Pagination(page=page, per_page=self.default_page_size)
125
+ while True:
126
+ request_data['pagination'].page = page
127
+ response = self._grpc_request(endpoint, proto_message(**request_data))
128
+ dict_response = MessageToDict(response, preserving_proto_field_name=True)
129
+ if response.status.code != status_code_pb2.SUCCESS:
130
+ raise Exception(f"Listing failed with response {response!r}")
131
+
132
+ if 'hits' not in list(dict_response.keys()):
133
+ break
134
+ page += 1
135
+ yield response
136
+
137
+ def query(self, ranks=[{}], filters=[{}]):
138
+ """Perform a query with rank and filters.
139
+
140
+ Args:
141
+ ranks (List[Dict], optional): List of rank parameters. Defaults to [{}].
142
+ filters (List[Dict], optional): List of filter parameters. Defaults to [{}].
143
+
144
+ Returns:
145
+ Generator[Dict[str, Any], None, None]: A generator of query results.
146
+ """
147
+ try:
148
+ self.rank_filter_schema.validate(ranks)
149
+ self.rank_filter_schema.validate(filters)
150
+ except SchemaError as err:
151
+ raise UserError(f"Invalid rank or filter input: {err}")
152
+
153
+ rank_annot_proto, filters_annot_proto = [], []
154
+ for rank_dict in ranks:
155
+ rank_annot_proto.append(self._get_annot_proto(**rank_dict))
156
+ for filter_dict in filters:
157
+ filters_annot_proto.append(self._get_annot_proto(**filter_dict))
158
+
159
+ all_ranks = [resources_pb2.Rank(annotation=rank_annot) for rank_annot in rank_annot_proto]
160
+ all_filters = [
161
+ resources_pb2.Filter(annotation=filter_annot) for filter_annot in filters_annot_proto
162
+ ]
163
+
164
+ request_data = dict(
165
+ user_app_id=self.user_app_id,
166
+ searches=[
167
+ resources_pb2.Search(
168
+ query=resources_pb2.Query(ranks=all_ranks, filters=all_filters),
169
+ metric=self.metric_distance)
170
+ ])
171
+
172
+ return self.list_all_pages_generator(self.STUB.PostAnnotationsSearches,
173
+ service_pb2.PostAnnotationsSearchesRequest, request_data)
@@ -194,7 +194,7 @@ class Workflow(Lister, BaseClient):
194
194
  Example:
195
195
  >>> from clarifai.client.workflow import Workflow
196
196
  >>> workflow = Workflow("https://clarifai.com/clarifai/main/workflows/Demographics")
197
- >>> workflow.export('out_path')
197
+ >>> workflow.export('out_path.yml')
198
198
  """
199
199
  request = service_pb2.GetWorkflowRequest(user_app_id=self.user_app_id, workflow_id=self.id)
200
200
  response = self._grpc_request(self.STUB.GetWorkflow, request)
@@ -0,0 +1,2 @@
1
+ DEFAULT_TOP_K = 10
2
+ DEFAULT_SEARCH_METRIC = "cosine"
@@ -16,10 +16,10 @@ $ clarifai-model-upload-init --model_name <Your model name> \
16
16
  3. Add your model loading and inference code inside `inference.py` script of the generated model repository under the `setup()` and `predict()` functions respectively. Refer to The [Inference Script section]() for a description of this file.
17
17
  4. Testing your implementation locally by running `<your_triton_folder>/1/test.py` with basic predefined tests.
18
18
  To avoid missing dependencies when deploying, recommend to use conda to create clean environment from [Clarifai base envs](./envs/). Then install everything in `requirements.txt`. Follow instruction inside [test.py](./models/test.py) for implementing custom tests.
19
- * Create conda env: The base envs are attached in [./envs](./envs/), these are yaml file named as `triton_conda-python_version-torch_version-xxxx.yaml` format. Make sure base env that you're about to create is matched the one in your_triton_folder/triton_conda.yaml. To create conda env and install requirements run:
19
+ * Create conda env and install requirements:
20
20
  ```bash
21
- # create env
22
- conda env create -n <your_env> -f <base env name>.yaml
21
+ # create env (note: only python version 3.8 is supported currently)
22
+ conda create -n <your_env> python=3.8
23
23
  # activate it
24
24
  conda activate <your_env>
25
25
  # install dependencies
@@ -3,14 +3,9 @@
3
3
  Each model built for inference with triton requires certain dependencies & dependency versions be installed for successful inference execution.
4
4
  An execution environment is created for each model to be deployed on Clarifai and all necessary dependencies as listed in the `requirements.txt` file are installed there.
5
5
 
6
- Pre-configured base environments with certain dependencies pre-installed are provided for users to build on top of as presented in the `triton_conda.yaml` file.
6
+ ## Supported python and torch versions
7
7
 
8
- ## Available pre-configured environments.
9
-
10
- 1. ```yaml
11
- name: triton_conda-cp3.8-torch1.13.1-19f97078
12
- ```
13
- All dependencies in this environment can be [found here](../envs/triton_conda.yaml).
14
-
15
- By default all `triton_conda.yaml` files in the generated model repository use the environment above as its currently the only one available.
16
- Dependencies specified in the `requirements.txt` file are prioritized in case there's a difference in versions with those pre-installed in the base pre-configured environment.
8
+ Currently, models must use python 3.8 (any 3.8.x). Supported torch versions are 1.13.1 and 2.0.1.
9
+ If your model depends on torch, torch must be listed in your requirements.txt file (even if it is
10
+ already a dependency of another package). An appropriate supported torch version will be selected
11
+ based on your requirements.txt.
@@ -1,5 +1,6 @@
1
1
  clarifai>9.5.3 # for model upload features
2
2
  tritonclient[all]
3
+ torch==1.13.1
3
4
  transformers==4.30.2
4
5
  scipy==1.10.1
5
6
  sentencepiece==0.1.99
@@ -1,5 +1,6 @@
1
1
  clarifai>9.5.3 # for model upload features
2
2
  tritonclient[all]
3
+ torch==1.13.1
3
4
  transformers==4.30.2
4
5
  scipy==1.10.1
5
6
  sentencepiece==0.1.99
@@ -1,5 +1,6 @@
1
1
  clarifai>9.5.3
2
2
  tritonclient[all]
3
+ torch==1.13.1
3
4
  transformers==4.30.2
4
5
  Pillow==10.0.0
5
6
  diffusers==0.19.0
@@ -1,3 +1,4 @@
1
1
  clarifai>9.5.3
2
2
  tritonclient[all]
3
+ torch==1.13.1
3
4
  transformers==4.30.2
@@ -5,7 +5,7 @@ matplotlib>=3.2.2
5
5
  opencv-python>=4.1.1
6
6
  Pillow>=7.1.2
7
7
  PyYAML>=5.3.1
8
- torch>=1.7.0
8
+ torch>=1.7.0,<2.0
9
9
  torchvision>=0.8.1
10
10
  protobuf<4.21.3 # https://github.com/ultralytics/yolov5/issues/8012
11
11
  pandas>=1.1.4
@@ -1,4 +1,5 @@
1
1
  clarifai>9.5.3
2
2
  tritonclient[all]
3
+ torch==1.13.1
3
4
  transformers==4.30.2
4
5
  Pillow==10.0.0
@@ -1,3 +1,4 @@
1
+ torch==1.13.1
1
2
  clarifai>9.5.3
2
3
  tritonclient[all]
3
4
  transformers==4.30.2
@@ -78,11 +78,9 @@ class TritonModelRepository:
78
78
  pass
79
79
  else:
80
80
  continue
81
- # gen requirements & conda yaml
81
+ # gen requirements
82
82
  with open(os.path.join(repository_path, "requirements.txt"), "w") as f:
83
83
  f.write("clarifai>9.5.3\ntritonclient[all]") # for model upload utils
84
- with open(os.path.join(repository_path, "triton_conda.yaml"), "w") as conda_env:
85
- conda_env.write("name: triton_conda-cp3.8-torch1.13.1-19f97078")
86
84
 
87
85
  if not os.path.isdir(model_version_path):
88
86
  os.mkdir(model_version_path)