clarifai 11.1.7rc3__py3-none-any.whl → 11.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (154) hide show
  1. clarifai/__init__.py +1 -1
  2. clarifai/cli/base.py +16 -3
  3. clarifai/cli/model.py +0 -25
  4. clarifai/client/model.py +393 -157
  5. clarifai/runners/__init__.py +7 -2
  6. clarifai/runners/models/model_builder.py +12 -80
  7. clarifai/runners/models/model_class.py +28 -279
  8. clarifai/runners/models/model_run_locally.py +80 -15
  9. clarifai/runners/models/model_runner.py +0 -2
  10. clarifai/runners/models/model_servicer.py +2 -11
  11. clarifai/runners/utils/data_handler.py +210 -271
  12. {clarifai-11.1.7rc3.dist-info → clarifai-11.2.0.dist-info}/METADATA +16 -4
  13. clarifai-11.2.0.dist-info/RECORD +101 -0
  14. {clarifai-11.1.7rc3.dist-info → clarifai-11.2.0.dist-info}/WHEEL +1 -1
  15. clarifai/__pycache__/__init__.cpython-310.pyc +0 -0
  16. clarifai/__pycache__/__init__.cpython-39.pyc +0 -0
  17. clarifai/__pycache__/errors.cpython-310.pyc +0 -0
  18. clarifai/__pycache__/versions.cpython-310.pyc +0 -0
  19. clarifai/cli/__pycache__/__init__.cpython-310.pyc +0 -0
  20. clarifai/cli/__pycache__/base.cpython-310.pyc +0 -0
  21. clarifai/cli/__pycache__/base_cli.cpython-310.pyc +0 -0
  22. clarifai/cli/__pycache__/compute_cluster.cpython-310.pyc +0 -0
  23. clarifai/cli/__pycache__/deployment.cpython-310.pyc +0 -0
  24. clarifai/cli/__pycache__/model.cpython-310.pyc +0 -0
  25. clarifai/cli/__pycache__/model_cli.cpython-310.pyc +0 -0
  26. clarifai/cli/__pycache__/nodepool.cpython-310.pyc +0 -0
  27. clarifai/client/__pycache__/__init__.cpython-310.pyc +0 -0
  28. clarifai/client/__pycache__/__init__.cpython-39.pyc +0 -0
  29. clarifai/client/__pycache__/app.cpython-310.pyc +0 -0
  30. clarifai/client/__pycache__/app.cpython-39.pyc +0 -0
  31. clarifai/client/__pycache__/base.cpython-310.pyc +0 -0
  32. clarifai/client/__pycache__/compute_cluster.cpython-310.pyc +0 -0
  33. clarifai/client/__pycache__/dataset.cpython-310.pyc +0 -0
  34. clarifai/client/__pycache__/deployment.cpython-310.pyc +0 -0
  35. clarifai/client/__pycache__/input.cpython-310.pyc +0 -0
  36. clarifai/client/__pycache__/lister.cpython-310.pyc +0 -0
  37. clarifai/client/__pycache__/model.cpython-310.pyc +0 -0
  38. clarifai/client/__pycache__/module.cpython-310.pyc +0 -0
  39. clarifai/client/__pycache__/nodepool.cpython-310.pyc +0 -0
  40. clarifai/client/__pycache__/search.cpython-310.pyc +0 -0
  41. clarifai/client/__pycache__/user.cpython-310.pyc +0 -0
  42. clarifai/client/__pycache__/workflow.cpython-310.pyc +0 -0
  43. clarifai/client/auth/__pycache__/__init__.cpython-310.pyc +0 -0
  44. clarifai/client/auth/__pycache__/helper.cpython-310.pyc +0 -0
  45. clarifai/client/auth/__pycache__/register.cpython-310.pyc +0 -0
  46. clarifai/client/auth/__pycache__/stub.cpython-310.pyc +0 -0
  47. clarifai/client/cli/__init__.py +0 -0
  48. clarifai/client/cli/__pycache__/__init__.cpython-310.pyc +0 -0
  49. clarifai/client/cli/__pycache__/base_cli.cpython-310.pyc +0 -0
  50. clarifai/client/cli/__pycache__/model_cli.cpython-310.pyc +0 -0
  51. clarifai/client/cli/base_cli.py +0 -88
  52. clarifai/client/cli/model_cli.py +0 -29
  53. clarifai/client/model_client.py +0 -448
  54. clarifai/constants/__pycache__/base.cpython-310.pyc +0 -0
  55. clarifai/constants/__pycache__/dataset.cpython-310.pyc +0 -0
  56. clarifai/constants/__pycache__/input.cpython-310.pyc +0 -0
  57. clarifai/constants/__pycache__/model.cpython-310.pyc +0 -0
  58. clarifai/constants/__pycache__/rag.cpython-310.pyc +0 -0
  59. clarifai/constants/__pycache__/search.cpython-310.pyc +0 -0
  60. clarifai/constants/__pycache__/workflow.cpython-310.pyc +0 -0
  61. clarifai/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
  62. clarifai/datasets/__pycache__/__init__.cpython-39.pyc +0 -0
  63. clarifai/datasets/export/__pycache__/__init__.cpython-310.pyc +0 -0
  64. clarifai/datasets/export/__pycache__/__init__.cpython-39.pyc +0 -0
  65. clarifai/datasets/export/__pycache__/inputs_annotations.cpython-310.pyc +0 -0
  66. clarifai/datasets/upload/__pycache__/__init__.cpython-310.pyc +0 -0
  67. clarifai/datasets/upload/__pycache__/__init__.cpython-39.pyc +0 -0
  68. clarifai/datasets/upload/__pycache__/base.cpython-310.pyc +0 -0
  69. clarifai/datasets/upload/__pycache__/features.cpython-310.pyc +0 -0
  70. clarifai/datasets/upload/__pycache__/image.cpython-310.pyc +0 -0
  71. clarifai/datasets/upload/__pycache__/multimodal.cpython-310.pyc +0 -0
  72. clarifai/datasets/upload/__pycache__/text.cpython-310.pyc +0 -0
  73. clarifai/datasets/upload/__pycache__/utils.cpython-310.pyc +0 -0
  74. clarifai/datasets/upload/loaders/__pycache__/__init__.cpython-39.pyc +0 -0
  75. clarifai/models/__pycache__/__init__.cpython-39.pyc +0 -0
  76. clarifai/modules/__pycache__/__init__.cpython-39.pyc +0 -0
  77. clarifai/rag/__pycache__/__init__.cpython-310.pyc +0 -0
  78. clarifai/rag/__pycache__/__init__.cpython-39.pyc +0 -0
  79. clarifai/rag/__pycache__/rag.cpython-310.pyc +0 -0
  80. clarifai/rag/__pycache__/rag.cpython-39.pyc +0 -0
  81. clarifai/rag/__pycache__/utils.cpython-310.pyc +0 -0
  82. clarifai/runners/__pycache__/__init__.cpython-310.pyc +0 -0
  83. clarifai/runners/__pycache__/__init__.cpython-39.pyc +0 -0
  84. clarifai/runners/dockerfile_template/Dockerfile.cpu.template +0 -31
  85. clarifai/runners/dockerfile_template/Dockerfile.cuda.template +0 -42
  86. clarifai/runners/dockerfile_template/Dockerfile.nim +0 -71
  87. clarifai/runners/models/__pycache__/__init__.cpython-310.pyc +0 -0
  88. clarifai/runners/models/__pycache__/__init__.cpython-39.pyc +0 -0
  89. clarifai/runners/models/__pycache__/base_typed_model.cpython-310.pyc +0 -0
  90. clarifai/runners/models/__pycache__/base_typed_model.cpython-39.pyc +0 -0
  91. clarifai/runners/models/__pycache__/model_class.cpython-310.pyc +0 -0
  92. clarifai/runners/models/__pycache__/model_run_locally.cpython-310-pytest-7.1.2.pyc +0 -0
  93. clarifai/runners/models/__pycache__/model_run_locally.cpython-310.pyc +0 -0
  94. clarifai/runners/models/__pycache__/model_runner.cpython-310.pyc +0 -0
  95. clarifai/runners/models/__pycache__/model_upload.cpython-310.pyc +0 -0
  96. clarifai/runners/models/model_class_refract.py +0 -80
  97. clarifai/runners/models/model_upload.py +0 -607
  98. clarifai/runners/models/temp.py +0 -25
  99. clarifai/runners/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  100. clarifai/runners/utils/__pycache__/__init__.cpython-38.pyc +0 -0
  101. clarifai/runners/utils/__pycache__/__init__.cpython-39.pyc +0 -0
  102. clarifai/runners/utils/__pycache__/buffered_stream.cpython-310.pyc +0 -0
  103. clarifai/runners/utils/__pycache__/buffered_stream.cpython-38.pyc +0 -0
  104. clarifai/runners/utils/__pycache__/buffered_stream.cpython-39.pyc +0 -0
  105. clarifai/runners/utils/__pycache__/const.cpython-310.pyc +0 -0
  106. clarifai/runners/utils/__pycache__/constants.cpython-310.pyc +0 -0
  107. clarifai/runners/utils/__pycache__/constants.cpython-38.pyc +0 -0
  108. clarifai/runners/utils/__pycache__/constants.cpython-39.pyc +0 -0
  109. clarifai/runners/utils/__pycache__/data_handler.cpython-310.pyc +0 -0
  110. clarifai/runners/utils/__pycache__/data_handler.cpython-38.pyc +0 -0
  111. clarifai/runners/utils/__pycache__/data_handler.cpython-39.pyc +0 -0
  112. clarifai/runners/utils/__pycache__/data_utils.cpython-310.pyc +0 -0
  113. clarifai/runners/utils/__pycache__/data_utils.cpython-38.pyc +0 -0
  114. clarifai/runners/utils/__pycache__/data_utils.cpython-39.pyc +0 -0
  115. clarifai/runners/utils/__pycache__/grpc_server.cpython-310.pyc +0 -0
  116. clarifai/runners/utils/__pycache__/grpc_server.cpython-38.pyc +0 -0
  117. clarifai/runners/utils/__pycache__/grpc_server.cpython-39.pyc +0 -0
  118. clarifai/runners/utils/__pycache__/health.cpython-310.pyc +0 -0
  119. clarifai/runners/utils/__pycache__/health.cpython-38.pyc +0 -0
  120. clarifai/runners/utils/__pycache__/health.cpython-39.pyc +0 -0
  121. clarifai/runners/utils/__pycache__/loader.cpython-310.pyc +0 -0
  122. clarifai/runners/utils/__pycache__/logging.cpython-310.pyc +0 -0
  123. clarifai/runners/utils/__pycache__/logging.cpython-38.pyc +0 -0
  124. clarifai/runners/utils/__pycache__/logging.cpython-39.pyc +0 -0
  125. clarifai/runners/utils/__pycache__/stream_source.cpython-310.pyc +0 -0
  126. clarifai/runners/utils/__pycache__/stream_source.cpython-39.pyc +0 -0
  127. clarifai/runners/utils/__pycache__/url_fetcher.cpython-310.pyc +0 -0
  128. clarifai/runners/utils/__pycache__/url_fetcher.cpython-38.pyc +0 -0
  129. clarifai/runners/utils/__pycache__/url_fetcher.cpython-39.pyc +0 -0
  130. clarifai/runners/utils/data_handler_refract.py +0 -213
  131. clarifai/runners/utils/data_types.py +0 -427
  132. clarifai/runners/utils/logger.py +0 -0
  133. clarifai/runners/utils/method_signatures.py +0 -477
  134. clarifai/runners/utils/serializers.py +0 -222
  135. clarifai/schema/__pycache__/search.cpython-310.pyc +0 -0
  136. clarifai/urls/__pycache__/helper.cpython-310.pyc +0 -0
  137. clarifai/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  138. clarifai/utils/__pycache__/__init__.cpython-39.pyc +0 -0
  139. clarifai/utils/__pycache__/cli.cpython-310.pyc +0 -0
  140. clarifai/utils/__pycache__/constants.cpython-310.pyc +0 -0
  141. clarifai/utils/__pycache__/logging.cpython-310.pyc +0 -0
  142. clarifai/utils/__pycache__/misc.cpython-310.pyc +0 -0
  143. clarifai/utils/__pycache__/model_train.cpython-310.pyc +0 -0
  144. clarifai/utils/evaluation/__pycache__/__init__.cpython-39.pyc +0 -0
  145. clarifai/utils/evaluation/__pycache__/main.cpython-39.pyc +0 -0
  146. clarifai/workflows/__pycache__/__init__.cpython-310.pyc +0 -0
  147. clarifai/workflows/__pycache__/__init__.cpython-39.pyc +0 -0
  148. clarifai/workflows/__pycache__/export.cpython-310.pyc +0 -0
  149. clarifai/workflows/__pycache__/utils.cpython-310.pyc +0 -0
  150. clarifai/workflows/__pycache__/validate.cpython-310.pyc +0 -0
  151. clarifai-11.1.7rc3.dist-info/RECORD +0 -237
  152. {clarifai-11.1.7rc3.dist-info → clarifai-11.2.0.dist-info}/entry_points.txt +0 -0
  153. {clarifai-11.1.7rc3.dist-info → clarifai-11.2.0.dist-info/licenses}/LICENSE +0 -0
  154. {clarifai-11.1.7rc3.dist-info → clarifai-11.2.0.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,14 @@
1
+ from .models.base_typed_model import AnyAnyModel, TextInputModel, VisualInputModel
1
2
  from .models.model_builder import ModelBuilder
2
- from .models.model_class import ModelClass
3
3
  from .models.model_runner import ModelRunner
4
+ from .utils.data_handler import InputDataHandler, OutputDataHandler
4
5
 
5
6
  __all__ = [
6
7
  "ModelRunner",
7
8
  "ModelBuilder",
8
- "ModelClass",
9
+ "InputDataHandler",
10
+ "OutputDataHandler",
11
+ "AnyAnyModel",
12
+ "TextInputModel",
13
+ "VisualInputModel",
9
14
  ]
@@ -1,4 +1,3 @@
1
- import builtins
2
1
  import importlib
3
2
  import inspect
4
3
  import os
@@ -7,7 +6,6 @@ import sys
7
6
  import tarfile
8
7
  import time
9
8
  from string import Template
10
- from unittest.mock import MagicMock
11
9
 
12
10
  import yaml
13
11
  from clarifai_grpc.grpc.api import resources_pb2, service_pb2
@@ -16,14 +14,13 @@ from google.protobuf import json_format
16
14
  from rich import print
17
15
  from rich.markup import escape
18
16
 
19
- from clarifai.client.base import BaseClient
17
+ from clarifai.client import BaseClient
20
18
  from clarifai.runners.models.model_class import ModelClass
21
19
  from clarifai.runners.utils.const import (
22
20
  AVAILABLE_PYTHON_IMAGES, AVAILABLE_TORCH_IMAGES, CONCEPTS_REQUIRED_MODEL_TYPE,
23
21
  DEFAULT_DOWNLOAD_CHECKPOINT_WHEN, DEFAULT_PYTHON_VERSION, DEFAULT_RUNTIME_DOWNLOAD_PATH,
24
22
  PYTHON_BASE_IMAGE, TORCH_BASE_IMAGE)
25
23
  from clarifai.runners.utils.loader import HuggingFaceLoader
26
- from clarifai.runners.utils.method_signatures import signatures_to_yaml
27
24
  from clarifai.urls.helper import ClarifaiUrlHelper
28
25
  from clarifai.utils.logging import logger
29
26
  from clarifai.versions import CLIENT_VERSION
@@ -72,18 +69,6 @@ class ModelBuilder:
72
69
  """
73
70
  Create an instance of the model class, as specified in the config file.
74
71
  """
75
- model_class = self.load_model_class()
76
-
77
- # initialize the model
78
- model = model_class()
79
- if load_model:
80
- model.load_model()
81
- return model
82
-
83
- def load_model_class(self):
84
- """
85
- Import the model class from the model.py file, dynamically handling missing dependencies
86
- """
87
72
  # look for default model.py file location
88
73
  for loc in ["model.py", "1/model.py"]:
89
74
  model_file = os.path.join(self.folder, loc)
@@ -97,29 +82,7 @@ class ModelBuilder:
97
82
  spec = importlib.util.spec_from_file_location(module_name, model_file)
98
83
  module = importlib.util.module_from_spec(spec)
99
84
  sys.modules[module_name] = module
100
-
101
- original_import = builtins.__import__
102
-
103
- def custom_import(name, globals=None, locals=None, fromlist=(), level=0):
104
-
105
- # Allow standard libraries and clarifai
106
- if self._is_standard_or_clarifai(name):
107
- return original_import(name, globals, locals, fromlist, level)
108
-
109
- # Mock all third-party imports to avoid ImportErrors or other issues
110
- return MagicMock()
111
-
112
- # Replace the built-in __import__ function with our custom one
113
- builtins.__import__ = custom_import
114
-
115
- try:
116
- spec.loader.exec_module(module)
117
- except Exception as e:
118
- logger.error(f"Error loading model.py: {e}")
119
- raise
120
- finally:
121
- # Restore the original __import__ function
122
- builtins.__import__ = original_import
85
+ spec.loader.exec_module(module)
123
86
 
124
87
  # Find all classes in the model.py file that are subclasses of ModelClass
125
88
  classes = [
@@ -144,24 +107,12 @@ class ModelBuilder:
144
107
  "Could not determine model class. There should be exactly one model inheriting from ModelClass defined in the model.py"
145
108
  )
146
109
  model_class = classes[0]
147
- return model_class
148
-
149
- def _is_standard_or_clarifai(self, name):
150
- """Check if import is from standard library or clarifai"""
151
- if name.startswith("clarifai"):
152
- return True
153
-
154
- # Handle Python <3.10 compatibility
155
- stdlib_names = getattr(sys, "stdlib_module_names", sys.builtin_module_names)
156
- if name in stdlib_names:
157
- return True
158
110
 
159
- # Handle submodules (e.g., os.path)
160
- parts = name.split(".")
161
- for i in range(1, len(parts)):
162
- if ".".join(parts[:i]) in stdlib_names:
163
- return True
164
- return False
111
+ # initialize the model
112
+ model = model_class()
113
+ if load_model:
114
+ model.load_model()
115
+ return model
165
116
 
166
117
  def _validate_folder(self, folder):
167
118
  if folder == ".":
@@ -281,7 +232,7 @@ class ModelBuilder:
281
232
  f"`num_threads` must be an integer greater than or equal to 1. Received type {type(num_threads)} with value {num_threads}."
282
233
  )
283
234
  else:
284
- num_threads = int(os.environ.get("CLARIFAI_NUM_THREADS", 1))
235
+ num_threads = int(os.environ.get("CLARIFAI_NUM_THREADS", 16))
285
236
  self.config["num_threads"] = num_threads
286
237
 
287
238
  @staticmethod
@@ -302,24 +253,6 @@ class ModelBuilder:
302
253
  total_size += member.size
303
254
  return total_size
304
255
 
305
- def method_signatures_yaml(self):
306
- """
307
- Returns the method signatures for the model class in YAML format.
308
- """
309
- model_class = self.load_model_class()
310
- method_info = model_class._get_method_info()
311
- signatures = {name: m.signature for name, m in method_info.values()}
312
- return signatures_to_yaml(signatures)
313
-
314
- def get_method_signatures(self):
315
- """
316
- Returns the method signatures for the model class.
317
- """
318
- model_class = self.load_model_class()
319
- method_info = model_class._get_method_info()
320
- signatures = [method.signature for method in method_info.values()]
321
- return signatures
322
-
323
256
  @property
324
257
  def client(self):
325
258
  if self._client is None:
@@ -353,8 +286,9 @@ class ModelBuilder:
353
286
 
354
287
  assert "model_type_id" in model, "model_type_id not found in the config file"
355
288
  assert "id" in model, "model_id not found in the config file"
356
- assert "user_id" in model, "user_id not found in the config file"
357
- assert "app_id" in model, "app_id not found in the config file"
289
+ if not self.download_validation_only:
290
+ assert "user_id" in model, "user_id not found in the config file"
291
+ assert "app_id" in model, "app_id not found in the config file"
358
292
 
359
293
  model_proto = json_format.ParseDict(model, resources_pb2.Model())
360
294
 
@@ -598,11 +532,10 @@ class ModelBuilder:
598
532
  logger.info(f"Updated config.yaml with {len(concepts)} concepts.")
599
533
 
600
534
  def get_model_version_proto(self):
601
- signatures = self.get_method_signatures()
535
+
602
536
  model_version_proto = resources_pb2.ModelVersion(
603
537
  pretrained_model_config=resources_pb2.PretrainedModelConfig(),
604
538
  inference_compute_info=self.inference_compute_info,
605
- method_signatures=signatures,
606
539
  )
607
540
 
608
541
  model_type_id = self.config.get('model').get('model_type_id')
@@ -790,7 +723,6 @@ class ModelBuilder:
790
723
  model_id=self.model_proto.id,
791
724
  version_id=self.model_version_id,
792
725
  ))
793
-
794
726
  status_code = resp.model_version.status.code
795
727
  logs = self.get_model_build_logs()
796
728
  for log_entry in logs.log_entries:
@@ -1,292 +1,41 @@
1
- import inspect
2
- import itertools
3
- import logging
4
- import os
5
- import traceback
6
- from abc import ABC
7
- from typing import Any, Dict, Iterator, List
1
+ from abc import ABC, abstractmethod
2
+ from typing import Iterator
8
3
 
9
- from clarifai_grpc.grpc.api import resources_pb2, service_pb2
10
- from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
11
- from google.protobuf import json_format
12
-
13
- from clarifai.runners.utils import data_types
14
- from clarifai.runners.utils.method_signatures import (build_function_signature, deserialize,
15
- get_stream_from_signature, serialize,
16
- signatures_to_json)
17
-
18
- _METHOD_INFO_ATTR = '_cf_method_info'
19
-
20
- _RAISE_EXCEPTIONS = os.getenv("RAISE_EXCEPTIONS", "false").lower() in ("true", "1")
4
+ from clarifai_grpc.grpc.api import service_pb2
21
5
 
22
6
 
23
7
  class ModelClass(ABC):
24
- '''
25
- Base class for model classes that can be run as a service.
26
-
27
- Define predict, generate, or stream methods using the @ModelClass.method decorator.
28
-
29
- Example:
30
-
31
- from clarifai.runners.model_class import ModelClass
32
- from clarifai.runners.utils.data_types import NamedFields, Stream
33
-
34
- class MyModel(ModelClass):
35
-
36
- @ModelClass.method
37
- def predict(self, x: str, y: int) -> List[str]:
38
- return [x] * y
39
-
40
- @ModelClass.method
41
- def generate(self, x: str, y: int) -> Stream[str]:
42
- for i in range(y):
43
- yield x + str(i)
44
-
45
- @ModelClass.method
46
- def stream(self, input_stream: Stream[NamedFields(x=str, y=int)]) -> Stream[str]:
47
- for item in input_stream:
48
- yield item.x + ' ' + str(item.y)
49
- '''
50
-
51
- @staticmethod
52
- def method(func):
53
- setattr(func, _METHOD_INFO_ATTR, _MethodInfo(func))
54
- return func
55
-
56
- def load_model(self):
57
- """Load the model."""
58
-
59
- def _handle_get_signatures_request(self) -> service_pb2.MultiOutputResponse:
60
- methods = self._get_method_info()
61
- signatures = {method.name: method.signature for method in methods.values()}
62
- resp = service_pb2.MultiOutputResponse(status=status_pb2.Status(code=status_code_pb2.SUCCESS))
63
- output = resp.outputs.add()
64
- output.status.code = status_code_pb2.SUCCESS
65
- output.data.text.raw = signatures_to_json(signatures)
66
- return resp
67
-
68
- def _batch_predict(self, method, inputs: List[Dict[str, Any]]) -> List[Any]:
69
- """Batch predict method for multiple inputs."""
70
- outputs = []
71
- for input in inputs:
72
- output = method(**input)
73
- outputs.append(output)
74
- return outputs
75
-
76
- def _batch_generate(self, method, inputs: List[Dict[str, Any]]) -> Iterator[List[Any]]:
77
- """Batch generate method for multiple inputs."""
78
- generators = [method(**input) for input in inputs]
79
- for outputs in itertools.zip_longest(*generators):
80
- yield outputs
81
8
 
82
9
  def predict_wrapper(
83
10
  self, request: service_pb2.PostModelOutputsRequest) -> service_pb2.MultiOutputResponse:
84
- outputs = []
85
- try:
86
- # TODO add method name field to proto
87
- method_name = 'predict'
88
- inference_params = get_inference_params(request)
89
- if len(request.inputs) > 0 and '_method_name' in request.inputs[0].data.metadata:
90
- method_name = request.inputs[0].data.metadata['_method_name']
91
- if method_name == '_GET_SIGNATURES': # special case to fetch signatures, TODO add endpoint for this
92
- return self._handle_get_signatures_request()
93
- if method_name not in self._get_method_info():
94
- raise ValueError(f"Method {method_name} not found in model class")
95
- method = getattr(self, method_name)
96
- method_info = method._cf_method_info
97
- signature = method_info.signature
98
- python_param_types = method_info.python_param_types
99
- inputs = self._convert_input_protos_to_python(request.inputs, inference_params,
100
- signature.input_fields, python_param_types)
101
- if len(inputs) == 1:
102
- inputs = inputs[0]
103
- output = method(**inputs)
104
- outputs.append(self._convert_output_to_proto(output, signature.output_fields))
105
- else:
106
- outputs = self._batch_predict(method, inputs)
107
- outputs = [
108
- self._convert_output_to_proto(output, signature.output_fields) for output in outputs
109
- ]
110
-
111
- return service_pb2.MultiOutputResponse(
112
- outputs=outputs, status=status_pb2.Status(code=status_code_pb2.SUCCESS))
113
- except Exception as e:
114
- if _RAISE_EXCEPTIONS:
115
- raise
116
- logging.exception("Error in predict")
117
- return service_pb2.MultiOutputResponse(status=status_pb2.Status(
118
- code=status_code_pb2.FAILURE,
119
- details=str(e),
120
- stack_trace=traceback.format_exc().split('\n')))
11
+ """This method is used for input/output proto data conversion"""
12
+ return self.predict(request)
121
13
 
122
14
  def generate_wrapper(self, request: service_pb2.PostModelOutputsRequest
123
15
  ) -> Iterator[service_pb2.MultiOutputResponse]:
124
- try:
125
- method_name = 'generate'
126
- inference_params = get_inference_params(request)
127
- if len(request.inputs) > 0 and '_method_name' in request.inputs[0].data.metadata:
128
- method_name = request.inputs[0].data.metadata['_method_name']
129
- method = getattr(self, method_name)
130
- method_info = method._cf_method_info
131
- signature = method_info.signature
132
- python_param_types = method_info.python_param_types
16
+ """This method is used for input/output proto data conversion and yield outcome"""
17
+ return self.generate(request)
133
18
 
134
- inputs = self._convert_input_protos_to_python(request.inputs, inference_params,
135
- signature.input_fields, python_param_types)
136
- if len(inputs) == 1:
137
- inputs = inputs[0]
138
- for output in method(**inputs):
139
- resp = service_pb2.MultiOutputResponse()
140
- self._convert_output_to_proto(output, signature.output_fields, proto=resp.outputs.add())
141
- resp.status.code = status_code_pb2.SUCCESS
142
- yield resp
143
- else:
144
- for outputs in self._batch_generate(method, inputs):
145
- resp = service_pb2.MultiOutputResponse()
146
- for output in outputs:
147
- self._convert_output_to_proto(
148
- output, signature.output_fields, proto=resp.outputs.add())
149
- resp.status.code = status_code_pb2.SUCCESS
150
- yield resp
151
- except Exception as e:
152
- if _RAISE_EXCEPTIONS:
153
- raise
154
- logging.exception("Error in generate")
155
- yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
156
- code=status_code_pb2.FAILURE,
157
- details=str(e),
158
- stack_trace=traceback.format_exc().split('\n')))
159
-
160
- def stream_wrapper(self, request_iterator: Iterator[service_pb2.PostModelOutputsRequest]
19
+ def stream_wrapper(self, request: service_pb2.PostModelOutputsRequest
161
20
  ) -> Iterator[service_pb2.MultiOutputResponse]:
162
- try:
163
- request = next(request_iterator) # get first request to determine method
164
- assert len(request.inputs) == 1, "Streaming requires exactly one input"
165
-
166
- method_name = 'generate'
167
- inference_params = get_inference_params(request)
168
- if len(request.inputs) > 0 and '_method_name' in request.inputs[0].data.metadata:
169
- method_name = request.inputs[0].data.metadata['_method_name']
170
- method = getattr(self, method_name)
171
- method_info = method._cf_method_info
172
- signature = method_info.signature
173
- python_param_types = method_info.python_param_types
174
-
175
- # find the streaming vars in the signature
176
- stream_sig = get_stream_from_signature(signature.input_fields)
177
- if stream_sig is None:
178
- raise ValueError("Streaming method must have a Stream input")
179
- stream_argname = stream_sig.name
180
-
181
- # convert all inputs for the first request, including the first stream value
182
- inputs = self._convert_input_protos_to_python(request.inputs, inference_params,
183
- signature.input_fields, python_param_types)
184
- kwargs = inputs[0]
185
-
186
- # first streaming item
187
- first_item = kwargs.pop(stream_argname)
188
-
189
- # streaming generator
190
- def InputStream():
191
- yield first_item
192
- # subsequent streaming items contain only the streaming input
193
- for request in request_iterator:
194
- item = self._convert_input_protos_to_python(request.inputs, inference_params,
195
- [stream_sig], python_param_types)
196
- item = item[0][stream_argname]
197
- yield item
198
-
199
- # add stream generator back to the input kwargs
200
- kwargs[stream_argname] = InputStream()
201
-
202
- for output in method(**kwargs):
203
- resp = service_pb2.MultiOutputResponse()
204
- self._convert_output_to_proto(output, signature.output_fields, proto=resp.outputs.add())
205
- resp.status.code = status_code_pb2.SUCCESS
206
- yield resp
207
- except Exception as e:
208
- if _RAISE_EXCEPTIONS:
209
- raise
210
- logging.exception("Error in stream")
211
- yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
212
- code=status_code_pb2.FAILURE,
213
- details=str(e),
214
- stack_trace=traceback.format_exc().split('\n')))
215
-
216
- def _convert_input_protos_to_python(self, inputs: List[resources_pb2.Input],
217
- inference_params: dict,
218
- variables_signature: List[resources_pb2.ModelTypeField],
219
- python_param_types) -> List[Dict[str, Any]]:
220
- result = []
221
- for input in inputs:
222
- kwargs = deserialize(input.data, variables_signature, inference_params)
223
- # dynamic cast to annotated types
224
- for k, v in kwargs.items():
225
- if k not in python_param_types:
226
- continue
227
- kwargs[k] = data_types.cast(v, python_param_types[k])
228
- result.append(kwargs)
229
- return result
21
+ """This method is used for input/output proto data conversion and yield outcome"""
22
+ return self.stream(request)
230
23
 
231
- def _convert_output_to_proto(self,
232
- output: Any,
233
- variables_signature: List[resources_pb2.ModelTypeField],
234
- proto=None) -> resources_pb2.Output:
235
- if proto is None:
236
- proto = resources_pb2.Output()
237
- serialize({'return': output}, variables_signature, proto.data, is_output=True)
238
- proto.status.code = status_code_pb2.SUCCESS
239
- return proto
240
-
241
- @classmethod
242
- def _register_model_methods(cls):
243
- # go up the class hierarchy to find all decorated methods, and add to registry of current class
244
- methods = {}
245
- for base in reversed(cls.__mro__):
246
- for name, method in base.__dict__.items():
247
- method_info = getattr(method, _METHOD_INFO_ATTR, None)
248
- if not method_info: # regular function, not a model method
249
- continue
250
- methods[name] = method_info
251
- # check for generic predict(request) -> response, etc. methods
252
- #for name in ('predict', 'generate', 'stream'):
253
- # if hasattr(cls, name):
254
- # method = getattr(cls, name)
255
- # if not hasattr(method, _METHOD_INFO_ATTR): # not already put in registry
256
- # methods[name] = _MethodInfo(method)
257
- # set method table for this class in the registry
258
- return methods
259
-
260
- @classmethod
261
- def _get_method_info(cls, func_name=None):
262
- if not hasattr(cls, _METHOD_INFO_ATTR):
263
- setattr(cls, _METHOD_INFO_ATTR, cls._register_model_methods())
264
- method_info = getattr(cls, _METHOD_INFO_ATTR)
265
- if func_name:
266
- return method_info[func_name]
267
- return method_info
268
-
269
-
270
- # Helper function to get the inference params
271
- def get_inference_params(request) -> dict:
272
- """Get the inference params from the request."""
273
- inference_params = {}
274
- if request.model.model_version.id != "":
275
- output_info = request.model.model_version.output_info
276
- output_info = json_format.MessageToDict(output_info, preserving_proto_field_name=True)
277
- if "params" in output_info:
278
- inference_params = output_info["params"]
279
- return inference_params
280
-
281
-
282
- class _MethodInfo:
283
-
284
- def __init__(self, method):
285
- self.name = method.__name__
286
- self.signature = build_function_signature(method)
287
- self.python_param_types = {
288
- p.name: p.annotation
289
- for p in inspect.signature(method).parameters.values()
290
- if p.annotation != inspect.Parameter.empty
291
- }
292
- self.python_param_types.pop('self', None)
24
+ @abstractmethod
25
+ def load_model(self):
26
+ raise NotImplementedError("load_model() not implemented")
27
+
28
+ @abstractmethod
29
+ def predict(self,
30
+ request: service_pb2.PostModelOutputsRequest) -> service_pb2.MultiOutputResponse:
31
+ raise NotImplementedError("run_input() not implemented")
32
+
33
+ @abstractmethod
34
+ def generate(self, request: service_pb2.PostModelOutputsRequest
35
+ ) -> Iterator[service_pb2.MultiOutputResponse]:
36
+ raise NotImplementedError("generate() not implemented")
37
+
38
+ @abstractmethod
39
+ def stream(self, request_iterator: Iterator[service_pb2.PostModelOutputsRequest]
40
+ ) -> Iterator[service_pb2.MultiOutputResponse]:
41
+ raise NotImplementedError("stream() not implemented")
@@ -7,11 +7,14 @@ import subprocess
7
7
  import sys
8
8
  import tempfile
9
9
  import time
10
+ import traceback
10
11
  import venv
11
12
 
12
13
  from clarifai_grpc.grpc.api import resources_pb2, service_pb2
14
+ from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
13
15
 
14
16
  from clarifai.runners.models.model_builder import ModelBuilder
17
+ from clarifai.runners.utils.url_fetcher import ensure_urls_downloaded
15
18
  from clarifai.utils.logging import logger
16
19
 
17
20
 
@@ -108,13 +111,85 @@ class ModelRunLocally:
108
111
  for i in range(1):
109
112
  yield request
110
113
 
114
+ def _run_model_inference(self, model):
115
+ """Perform inference using the model."""
116
+ request = self._build_request()
117
+ stream_request = self._build_stream_request()
118
+
119
+ ensure_urls_downloaded(request)
120
+ predict_response = None
121
+ generate_response = None
122
+ stream_response = None
123
+ try:
124
+ predict_response = model.predict(request)
125
+ except NotImplementedError:
126
+ logger.info("Model does not implement predict() method.")
127
+ except Exception as e:
128
+ logger.error(f"Model Prediction failed: {e}")
129
+ traceback.print_exc()
130
+ predict_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
131
+ code=status_code_pb2.MODEL_PREDICTION_FAILED,
132
+ description="Prediction failed",
133
+ details="",
134
+ internal_details=str(e),
135
+ ))
136
+
137
+ if predict_response:
138
+ if predict_response.outputs[0].status.code != status_code_pb2.SUCCESS:
139
+ logger.error(f"Moddel Prediction failed: {predict_response}")
140
+ else:
141
+ logger.info(f"Model Prediction succeeded: {predict_response}")
142
+
143
+ try:
144
+ generate_response = model.generate(request)
145
+ except NotImplementedError:
146
+ logger.info("Model does not implement generate() method.")
147
+ except Exception as e:
148
+ logger.error(f"Model Generation failed: {e}")
149
+ traceback.print_exc()
150
+ generate_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
151
+ code=status_code_pb2.MODEL_GENERATION_FAILED,
152
+ description="Generation failed",
153
+ details="",
154
+ internal_details=str(e),
155
+ ))
156
+
157
+ if generate_response:
158
+ generate_first_res = next(generate_response)
159
+ if generate_first_res.outputs[0].status.code != status_code_pb2.SUCCESS:
160
+ logger.error(f"Moddel Prediction failed: {generate_first_res}")
161
+ else:
162
+ logger.info(
163
+ f"Model Prediction succeeded for generate and first response: {generate_first_res}")
164
+
165
+ try:
166
+ stream_response = model.stream(stream_request)
167
+ except NotImplementedError:
168
+ logger.info("Model does not implement stream() method.")
169
+ except Exception as e:
170
+ logger.error(f"Model Stream failed: {e}")
171
+ traceback.print_exc()
172
+ stream_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
173
+ code=status_code_pb2.MODEL_STREAM_FAILED,
174
+ description="Stream failed",
175
+ details="",
176
+ internal_details=str(e),
177
+ ))
178
+
179
+ if stream_response:
180
+ stream_first_res = next(stream_response)
181
+ if stream_first_res.outputs[0].status.code != status_code_pb2.SUCCESS:
182
+ logger.error(f"Moddel Prediction failed: {stream_first_res}")
183
+ else:
184
+ logger.info(
185
+ f"Model Prediction succeeded for stream and first response: {stream_first_res}")
186
+
111
187
  def _run_test(self):
112
188
  """Test the model locally by making a prediction."""
113
189
  # Create the model
114
190
  model = self.builder.create_model_instance()
115
- # call its test method, if it has one
116
- if hasattr(model, "test"):
117
- model.test()
191
+ # send an inference.
192
+ self._run_model_inference(model)
118
193
 
119
194
  def test_model(self):
120
195
  """Test the model by running it locally in the virtual environment."""
@@ -400,11 +475,6 @@ def main(model_path,
400
475
  keep_env=False,
401
476
  keep_image=False):
402
477
 
403
- if not os.environ.get("CLARIFAI_PAT", None):
404
- logger.error(
405
- "CLARIFAI_PAT environment variable is not set! Please set your PAT in the 'CLARIFAI_PAT' environment variable."
406
- )
407
- sys.exit(1)
408
478
  manager = ModelRunLocally(model_path)
409
479
  # get whatever stage is in config.yaml to force download now
410
480
  # also always write to where upload/build wants to, not the /tmp folder that runtime stage uses
@@ -421,16 +491,11 @@ def main(model_path,
421
491
  if not manager.docker_image_exists(image_name):
422
492
  manager.build_docker_image(image_name=image_name)
423
493
  try:
424
- envs = {
425
- 'CLARIFAI_PAT': os.environ['CLARIFAI_PAT'],
426
- 'CLARIFAI_API_BASE': os.environ.get('CLARIFAI_API_BASE', 'https://api.clarifai.com')
427
- }
428
494
  if run_model_server:
429
495
  manager.run_docker_container(
430
- image_name=image_name, container_name=container_name, port=port, env_vars=envs)
496
+ image_name=image_name, container_name=container_name, port=port)
431
497
  else:
432
- manager.test_model_container(
433
- image_name=image_name, container_name=container_name, env_vars=envs)
498
+ manager.test_model_container(image_name=image_name, container_name=container_name)
434
499
  finally:
435
500
  if manager.container_exists(container_name):
436
501
  manager.stop_docker_container(container_name)
@@ -82,8 +82,6 @@ class ModelRunner(BaseRunner, HealthProbeRequestHandler):
82
82
  ensure_urls_downloaded(request)
83
83
 
84
84
  resp = self.model.predict_wrapper(request)
85
- if resp.status.code != status_code_pb2.SUCCESS:
86
- return service_pb2.RunnerItemOutput(multi_output_response=resp)
87
85
  successes = [o.status.code == status_code_pb2.SUCCESS for o in resp.outputs]
88
86
  if all(successes):
89
87
  status = status_pb2.Status(