clarifai 11.1.7__py3-none-any.whl → 11.1.7rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- clarifai/__init__.py +1 -1
- clarifai/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/__pycache__/errors.cpython-310.pyc +0 -0
- clarifai/__pycache__/versions.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/base_cli.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/compute_cluster.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/deployment.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/model.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/model_cli.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/nodepool.cpython-310.pyc +0 -0
- clarifai/cli/model.py +25 -0
- clarifai/client/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/client/__pycache__/app.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/app.cpython-39.pyc +0 -0
- clarifai/client/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/compute_cluster.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/dataset.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/deployment.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/input.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/lister.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/model.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/module.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/nodepool.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/search.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/user.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/workflow.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/helper.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/register.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/stub.cpython-310.pyc +0 -0
- clarifai/client/cli/__init__.py +0 -0
- clarifai/client/cli/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/client/cli/__pycache__/base_cli.cpython-310.pyc +0 -0
- clarifai/client/cli/__pycache__/model_cli.cpython-310.pyc +0 -0
- clarifai/client/cli/base_cli.py +88 -0
- clarifai/client/cli/model_cli.py +29 -0
- clarifai/client/model.py +157 -393
- clarifai/client/model_client.py +447 -0
- clarifai/constants/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/dataset.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/input.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/model.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/rag.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/search.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/workflow.cpython-310.pyc +0 -0
- clarifai/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/datasets/export/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/export/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/datasets/export/__pycache__/inputs_annotations.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/datasets/upload/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/features.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/image.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/multimodal.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/text.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/utils.cpython-310.pyc +0 -0
- clarifai/datasets/upload/loaders/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/models/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/modules/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/rag/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/rag/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/rag/__pycache__/rag.cpython-310.pyc +0 -0
- clarifai/rag/__pycache__/rag.cpython-39.pyc +0 -0
- clarifai/rag/__pycache__/utils.cpython-310.pyc +0 -0
- clarifai/runners/__init__.py +2 -7
- clarifai/runners/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/runners/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/runners/dockerfile_template/Dockerfile.cpu.template +31 -0
- clarifai/runners/dockerfile_template/Dockerfile.cuda.template +42 -0
- clarifai/runners/dockerfile_template/Dockerfile.nim +71 -0
- clarifai/runners/dockerfile_template/Dockerfile.template +3 -0
- clarifai/runners/models/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/runners/models/__pycache__/base_typed_model.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/base_typed_model.cpython-39.pyc +0 -0
- clarifai/runners/models/__pycache__/model_class.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_run_locally.cpython-310-pytest-7.1.2.pyc +0 -0
- clarifai/runners/models/__pycache__/model_run_locally.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_runner.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_upload.cpython-310.pyc +0 -0
- clarifai/runners/models/model_builder.py +35 -7
- clarifai/runners/models/model_class.py +262 -28
- clarifai/runners/models/model_class_refract.py +80 -0
- clarifai/runners/models/model_run_locally.py +3 -78
- clarifai/runners/models/model_runner.py +2 -0
- clarifai/runners/models/model_servicer.py +11 -2
- clarifai/runners/models/model_upload.py +607 -0
- clarifai/runners/models/temp.py +25 -0
- clarifai/runners/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/__init__.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/buffered_stream.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/buffered_stream.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/buffered_stream.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/const.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/constants.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/constants.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/constants.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_handler.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_handler.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_handler.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_utils.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_utils.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_utils.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/grpc_server.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/grpc_server.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/grpc_server.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/health.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/health.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/health.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/loader.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/logging.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/logging.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/logging.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/stream_source.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/stream_source.cpython-39.pyc +0 -0
- clarifai/runners/utils/__pycache__/url_fetcher.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/url_fetcher.cpython-38.pyc +0 -0
- clarifai/runners/utils/__pycache__/url_fetcher.cpython-39.pyc +0 -0
- clarifai/runners/utils/data_handler.py +271 -210
- clarifai/runners/utils/data_handler_refract.py +213 -0
- clarifai/runners/utils/data_types.py +427 -0
- clarifai/runners/utils/logger.py +0 -0
- clarifai/runners/utils/method_signatures.py +472 -0
- clarifai/runners/utils/serializers.py +222 -0
- clarifai/schema/__pycache__/search.cpython-310.pyc +0 -0
- clarifai/urls/__pycache__/helper.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/utils/__pycache__/cli.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/constants.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/logging.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/misc.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/model_train.cpython-310.pyc +0 -0
- clarifai/utils/evaluation/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/utils/evaluation/__pycache__/main.cpython-39.pyc +0 -0
- clarifai/workflows/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/__init__.cpython-39.pyc +0 -0
- clarifai/workflows/__pycache__/export.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/utils.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/validate.cpython-310.pyc +0 -0
- {clarifai-11.1.7.dist-info → clarifai-11.1.7rc2.dist-info}/METADATA +3 -13
- clarifai-11.1.7rc2.dist-info/RECORD +237 -0
- {clarifai-11.1.7.dist-info → clarifai-11.1.7rc2.dist-info}/WHEEL +1 -1
- clarifai-11.1.7.dist-info/RECORD +0 -101
- {clarifai-11.1.7.dist-info → clarifai-11.1.7rc2.dist-info}/LICENSE +0 -0
- {clarifai-11.1.7.dist-info → clarifai-11.1.7rc2.dist-info}/entry_points.txt +0 -0
- {clarifai-11.1.7.dist-info → clarifai-11.1.7rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,71 @@
|
|
1
|
+
FROM nvcr.io/nim/meta/llama-3.1-8b-instruct:1.1.2 as build
|
2
|
+
|
3
|
+
FROM gcr.io/distroless/python3-debian12:debug
|
4
|
+
|
5
|
+
|
6
|
+
COPY --from=build /bin/bash /bin/rbash
|
7
|
+
COPY --from=build /bin/sh /bin/sh
|
8
|
+
COPY --from=build /bin/rsh /bin/rsh
|
9
|
+
|
10
|
+
# we have to overwrite the python3 binary that the distroless image uses
|
11
|
+
COPY --from=build /opt/nim/llm/.venv/bin/python3.10 /usr/bin/python3
|
12
|
+
COPY --from=build /opt/nim/llm/.venv/bin/python3.10 /usr/local/bin/python3.10
|
13
|
+
|
14
|
+
# also copy in all the lib files for it.
|
15
|
+
COPY --from=build /lib /lib
|
16
|
+
COPY --from=build /lib64 /lib64
|
17
|
+
COPY --from=build /usr/lib/ /usr/lib/
|
18
|
+
COPY --from=build /usr/local/lib/ /usr/local/lib/
|
19
|
+
# ldconfig is needed to update the shared library cache so system libraries (like CUDA) can be found
|
20
|
+
COPY --from=build /usr/sbin/ldconfig /sbin/ldconfig
|
21
|
+
COPY --from=build /usr/sbin/ldconfig.real /sbin/ldconfig.real
|
22
|
+
COPY --from=build /etc/ld.so.conf /etc/ld.so.conf
|
23
|
+
COPY --from=build /etc/ld.so.cache /etc/ld.so.cache
|
24
|
+
COPY --from=build /etc/ld.so.conf.d/ /etc/ld.so.conf.d/
|
25
|
+
|
26
|
+
# COPY NIM files
|
27
|
+
COPY --from=build /opt /opt
|
28
|
+
COPY --from=build /etc/nim /etc/nim
|
29
|
+
|
30
|
+
# Set environment variables to use the nim libraries and python
|
31
|
+
ENV PYTHONPATH=${PYTHONPATH}:/opt/nim/llm/.venv/lib/python3.10/site-packages:/opt/nim/llm
|
32
|
+
ENV PATH="/opt/nim/llm/.venv/bin:/opt/hpcx/ucc/bin:/opt/hpcx/ucx/bin:/opt/hpcx/ompi/bin:$PATH"
|
33
|
+
|
34
|
+
ENV LD_LIBRARY_PATH="/opt/hpcx/ucc/lib/ucc:/opt/hpcx/ucc/lib:/opt/hpcx/ucx/lib/ucx:/opt/hpcx/ucx/lib:/opt/hpcx/ompi/lib:/opt/hpcx/ompi/lib/openmpi:/opt/nim/llm/.venv/lib/python3.10/site-packages/tensorrt_llm/libs:/opt/nim/llm/.venv/lib/python3.10/site-packages/nvidia/cublas/lib:/opt/nim/llm/.venv/lib/python3.10/site-packages/tensorrt_libs:/opt/nim/llm/.venv/lib/python3.10/site-packages/nvidia/nccl/lib:$LD_LIBRARY_PATH"
|
35
|
+
|
36
|
+
ENV LIBRARY_PATH=/opt/hpcx/ucc/lib:/opt/hpcx/ucx/lib:/opt/hpcx/ompi/lib:$LIBRARY_PATH
|
37
|
+
|
38
|
+
ENV CPATH=/opt/hpcx/ompi/include:/opt/hpcx/ucc/include:/opt/hpcx/ucx/include:$CPATH
|
39
|
+
ENV LLM_PROJECT_DIR=/opt/nim/llm
|
40
|
+
|
41
|
+
# Set environment variables for MPI
|
42
|
+
ENV OMPI_HOME=/opt/hpcx/ompi
|
43
|
+
ENV HPCX_MPI_DIR=/opt/hpcx/ompi
|
44
|
+
ENV MPIf_HOME=/opt/hpcx/ompi
|
45
|
+
ENV OPAL_PREFIX=/opt/hpcx/ompi
|
46
|
+
|
47
|
+
# Set environment variables for UCC
|
48
|
+
ENV UCC_DIR=/opt/hpcx/ucc/lib/cmake/ucc
|
49
|
+
ENV UCC_HOME=/opt/hpcx/ucc
|
50
|
+
ENV HPCX_UCC_DIR=/opt/hpcx/ucc
|
51
|
+
ENV USE_UCC=1
|
52
|
+
ENV USE_SYSTEM_UCC=1
|
53
|
+
|
54
|
+
# Set environment variables for HPC-X
|
55
|
+
ENV HPCX_DIR=/opt/hpcx
|
56
|
+
ENV HPCX_UCX_DIR=/opt/hpcx/ucx
|
57
|
+
ENV HPCX_MPI_DIR=/opt/hpcx/ompi
|
58
|
+
|
59
|
+
# Set environment variables for UCX
|
60
|
+
ENV UCX_DIR=/opt/hpcx/ucx/lib/cmake/ucx
|
61
|
+
ENV UCX_HOME=/opt/hpcx/ucx
|
62
|
+
|
63
|
+
ENV HOME=/opt/nim/llm
|
64
|
+
|
65
|
+
# ln is needed to create symbolic links (needed by nvidia-container-runtime)
|
66
|
+
COPY --from=build /usr/bin/ln /usr/bin/ln
|
67
|
+
|
68
|
+
# Run ldconfig in the build stage to update the library cache else CUDA libraries won't be found
|
69
|
+
RUN ldconfig -v
|
70
|
+
|
71
|
+
SHELL ["/bin/rbash", "-c"]
|
@@ -44,6 +44,9 @@ ENV PYTHONPATH=${PYTHONPATH}:/home/nonroot/main \
|
|
44
44
|
CLARIFAI_COMPUTE_CLUSTER_ID=${CLARIFAI_COMPUTE_CLUSTER_ID} \
|
45
45
|
CLARIFAI_API_BASE=${CLARIFAI_API_BASE:-https://api.clarifai.com}
|
46
46
|
|
47
|
+
# # Write out the model function signatures
|
48
|
+
# RUN ["python", "-m", "clarifai.cli", "model", "signatures", "--model_path", "/home/nonroot/main", "--out_path", "/home/nonroot/main/signatures.yaml"]
|
49
|
+
|
47
50
|
# Finally run the clarifai entrypoint to start the runner loop and local dev server.
|
48
51
|
# Note(zeiler): we may want to make this a clarifai CLI call.
|
49
52
|
ENTRYPOINT ["python", "-m", "clarifai.runners.server"]
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -14,13 +14,14 @@ from google.protobuf import json_format
|
|
14
14
|
from rich import print
|
15
15
|
from rich.markup import escape
|
16
16
|
|
17
|
-
from clarifai.client import BaseClient
|
17
|
+
from clarifai.client.base import BaseClient
|
18
18
|
from clarifai.runners.models.model_class import ModelClass
|
19
19
|
from clarifai.runners.utils.const import (
|
20
20
|
AVAILABLE_PYTHON_IMAGES, AVAILABLE_TORCH_IMAGES, CONCEPTS_REQUIRED_MODEL_TYPE,
|
21
21
|
DEFAULT_DOWNLOAD_CHECKPOINT_WHEN, DEFAULT_PYTHON_VERSION, DEFAULT_RUNTIME_DOWNLOAD_PATH,
|
22
22
|
PYTHON_BASE_IMAGE, TORCH_BASE_IMAGE)
|
23
23
|
from clarifai.runners.utils.loader import HuggingFaceLoader
|
24
|
+
from clarifai.runners.utils.method_signatures import signatures_to_yaml
|
24
25
|
from clarifai.urls.helper import ClarifaiUrlHelper
|
25
26
|
from clarifai.utils.logging import logger
|
26
27
|
from clarifai.versions import CLIENT_VERSION
|
@@ -69,6 +70,18 @@ class ModelBuilder:
|
|
69
70
|
"""
|
70
71
|
Create an instance of the model class, as specified in the config file.
|
71
72
|
"""
|
73
|
+
model_class = self.load_model_class()
|
74
|
+
|
75
|
+
# initialize the model
|
76
|
+
model = model_class()
|
77
|
+
if load_model:
|
78
|
+
model.load_model()
|
79
|
+
return model
|
80
|
+
|
81
|
+
def load_model_class(self):
|
82
|
+
"""
|
83
|
+
Import the model class from the model.py file.
|
84
|
+
"""
|
72
85
|
# look for default model.py file location
|
73
86
|
for loc in ["model.py", "1/model.py"]:
|
74
87
|
model_file = os.path.join(self.folder, loc)
|
@@ -107,12 +120,7 @@ class ModelBuilder:
|
|
107
120
|
"Could not determine model class. There should be exactly one model inheriting from ModelClass defined in the model.py"
|
108
121
|
)
|
109
122
|
model_class = classes[0]
|
110
|
-
|
111
|
-
# initialize the model
|
112
|
-
model = model_class()
|
113
|
-
if load_model:
|
114
|
-
model.load_model()
|
115
|
-
return model
|
123
|
+
return model_class
|
116
124
|
|
117
125
|
def _validate_folder(self, folder):
|
118
126
|
if folder == ".":
|
@@ -253,6 +261,24 @@ class ModelBuilder:
|
|
253
261
|
total_size += member.size
|
254
262
|
return total_size
|
255
263
|
|
264
|
+
def method_signatures_yaml(self):
|
265
|
+
"""
|
266
|
+
Returns the method signatures for the model class in YAML format.
|
267
|
+
"""
|
268
|
+
model_class = self.load_model_class()
|
269
|
+
method_info = model_class._get_method_info()
|
270
|
+
signatures = {name: m.signature for name, m in method_info.values()}
|
271
|
+
return signatures_to_yaml(signatures)
|
272
|
+
|
273
|
+
def get_method_signatures(self):
|
274
|
+
"""
|
275
|
+
Returns the method signatures for the model class.
|
276
|
+
"""
|
277
|
+
model_class = self.load_model_class()
|
278
|
+
method_info = model_class._get_method_info()
|
279
|
+
signatures = [method.signature for method in method_info.values()]
|
280
|
+
return signatures
|
281
|
+
|
256
282
|
@property
|
257
283
|
def client(self):
|
258
284
|
if self._client is None:
|
@@ -536,6 +562,8 @@ class ModelBuilder:
|
|
536
562
|
pretrained_model_config=resources_pb2.PretrainedModelConfig(),
|
537
563
|
inference_compute_info=self.inference_compute_info,
|
538
564
|
)
|
565
|
+
# TODO: update this to `model_signatures` field when it's available in the API
|
566
|
+
model_version_proto.model_signature.extend(self.get_method_signatures())
|
539
567
|
|
540
568
|
model_type_id = self.config.get('model').get('model_type_id')
|
541
569
|
if model_type_id in CONCEPTS_REQUIRED_MODEL_TYPE:
|
@@ -1,41 +1,275 @@
|
|
1
|
-
|
2
|
-
|
1
|
+
import inspect
|
2
|
+
import itertools
|
3
|
+
import logging
|
4
|
+
import os
|
5
|
+
import traceback
|
6
|
+
from abc import ABC
|
7
|
+
from typing import Any, Dict, Iterator, List
|
3
8
|
|
4
|
-
from clarifai_grpc.grpc.api import service_pb2
|
9
|
+
from clarifai_grpc.grpc.api import resources_pb2, service_pb2
|
10
|
+
from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
|
11
|
+
|
12
|
+
from clarifai.runners.utils import data_types
|
13
|
+
from clarifai.runners.utils.method_signatures import (build_function_signature, deserialize,
|
14
|
+
get_stream_from_signature, serialize,
|
15
|
+
signatures_to_json)
|
16
|
+
|
17
|
+
_METHOD_INFO_ATTR = '_cf_method_info'
|
18
|
+
|
19
|
+
_RAISE_EXCEPTIONS = os.getenv("RAISE_EXCEPTIONS", "false").lower() in ("true", "1")
|
5
20
|
|
6
21
|
|
7
22
|
class ModelClass(ABC):
|
23
|
+
'''
|
24
|
+
Base class for model classes that can be run as a service.
|
25
|
+
|
26
|
+
Define predict, generate, or stream methods using the @ModelClass.method decorator.
|
27
|
+
|
28
|
+
Example:
|
29
|
+
|
30
|
+
from clarifai.runners.model_class import ModelClass
|
31
|
+
from clarifai.runners.utils.data_types import NamedFields, Stream
|
32
|
+
|
33
|
+
class MyModel(ModelClass):
|
34
|
+
|
35
|
+
@ModelClass.method
|
36
|
+
def predict(self, x: str, y: int) -> List[str]:
|
37
|
+
return [x] * y
|
38
|
+
|
39
|
+
@ModelClass.method
|
40
|
+
def generate(self, x: str, y: int) -> Stream[str]:
|
41
|
+
for i in range(y):
|
42
|
+
yield x + str(i)
|
43
|
+
|
44
|
+
@ModelClass.method
|
45
|
+
def stream(self, input_stream: Stream[NamedFields(x=str, y=int)]) -> Stream[str]:
|
46
|
+
for item in input_stream:
|
47
|
+
yield item.x + ' ' + str(item.y)
|
48
|
+
'''
|
49
|
+
|
50
|
+
@staticmethod
|
51
|
+
def method(func):
|
52
|
+
setattr(func, _METHOD_INFO_ATTR, _MethodInfo(func))
|
53
|
+
return func
|
54
|
+
|
55
|
+
def load_model(self):
|
56
|
+
"""Load the model."""
|
57
|
+
|
58
|
+
def _handle_get_signatures_request(self) -> service_pb2.MultiOutputResponse:
|
59
|
+
methods = self._get_method_info()
|
60
|
+
signatures = {method.name: method.signature for method in methods.values()}
|
61
|
+
resp = service_pb2.MultiOutputResponse(status=status_pb2.Status(code=status_code_pb2.SUCCESS))
|
62
|
+
output = resp.outputs.add()
|
63
|
+
output.status.code = status_code_pb2.SUCCESS
|
64
|
+
output.data.text.raw = signatures_to_json(signatures)
|
65
|
+
return resp
|
66
|
+
|
67
|
+
def _batch_predict(self, method, inputs: List[Dict[str, Any]]) -> List[Any]:
|
68
|
+
"""Batch predict method for multiple inputs."""
|
69
|
+
outputs = []
|
70
|
+
for input in inputs:
|
71
|
+
output = method(**input)
|
72
|
+
outputs.append(output)
|
73
|
+
return outputs
|
74
|
+
|
75
|
+
def _batch_generate(self, method, inputs: List[Dict[str, Any]]) -> Iterator[List[Any]]:
|
76
|
+
"""Batch generate method for multiple inputs."""
|
77
|
+
generators = [method(**input) for input in inputs]
|
78
|
+
for outputs in itertools.zip_longest(*generators):
|
79
|
+
yield outputs
|
8
80
|
|
9
81
|
def predict_wrapper(
|
10
82
|
self, request: service_pb2.PostModelOutputsRequest) -> service_pb2.MultiOutputResponse:
|
11
|
-
|
12
|
-
|
83
|
+
outputs = []
|
84
|
+
try:
|
85
|
+
# TODO add method name field to proto
|
86
|
+
method_name = 'predict'
|
87
|
+
if len(request.inputs) > 0 and '_method_name' in request.inputs[0].data.metadata:
|
88
|
+
method_name = request.inputs[0].data.metadata['_method_name']
|
89
|
+
if method_name == '_GET_SIGNATURES': # special case to fetch signatures, TODO add endpoint for this
|
90
|
+
return self._handle_get_signatures_request()
|
91
|
+
if method_name not in self._get_method_info():
|
92
|
+
raise ValueError(f"Method {method_name} not found in model class")
|
93
|
+
method = getattr(self, method_name)
|
94
|
+
method_info = method._cf_method_info
|
95
|
+
signature = method_info.signature
|
96
|
+
python_param_types = method_info.python_param_types
|
97
|
+
inputs = self._convert_input_protos_to_python(request.inputs, signature.input_fields,
|
98
|
+
python_param_types)
|
99
|
+
if len(inputs) == 1:
|
100
|
+
inputs = inputs[0]
|
101
|
+
output = method(**inputs)
|
102
|
+
outputs.append(self._convert_output_to_proto(output, signature.output_fields))
|
103
|
+
else:
|
104
|
+
outputs = self._batch_predict(method, inputs)
|
105
|
+
outputs = [
|
106
|
+
self._convert_output_to_proto(output, signature.output_fields) for output in outputs
|
107
|
+
]
|
108
|
+
|
109
|
+
return service_pb2.MultiOutputResponse(
|
110
|
+
outputs=outputs, status=status_pb2.Status(code=status_code_pb2.SUCCESS))
|
111
|
+
except Exception as e:
|
112
|
+
if _RAISE_EXCEPTIONS:
|
113
|
+
raise
|
114
|
+
logging.exception("Error in predict")
|
115
|
+
return service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
116
|
+
code=status_code_pb2.FAILURE,
|
117
|
+
details=str(e),
|
118
|
+
stack_trace=traceback.format_exc().split('\n')))
|
13
119
|
|
14
120
|
def generate_wrapper(self, request: service_pb2.PostModelOutputsRequest
|
15
121
|
) -> Iterator[service_pb2.MultiOutputResponse]:
|
16
|
-
|
17
|
-
|
122
|
+
try:
|
123
|
+
method_name = 'generate'
|
124
|
+
if len(request.inputs) > 0 and '_method_name' in request.inputs[0].data.metadata:
|
125
|
+
method_name = request.inputs[0].data.metadata['_method_name']
|
126
|
+
method = getattr(self, method_name)
|
127
|
+
method_info = method._cf_method_info
|
128
|
+
signature = method_info.signature
|
129
|
+
python_param_types = method_info.python_param_types
|
130
|
+
|
131
|
+
inputs = self._convert_input_protos_to_python(request.inputs, signature.input_fields,
|
132
|
+
python_param_types)
|
133
|
+
if len(inputs) == 1:
|
134
|
+
inputs = inputs[0]
|
135
|
+
for output in method(**inputs):
|
136
|
+
resp = service_pb2.MultiOutputResponse()
|
137
|
+
self._convert_output_to_proto(output, signature.output_fields, proto=resp.outputs.add())
|
138
|
+
resp.status.code = status_code_pb2.SUCCESS
|
139
|
+
yield resp
|
140
|
+
else:
|
141
|
+
for outputs in self._batch_generate(method, inputs):
|
142
|
+
resp = service_pb2.MultiOutputResponse()
|
143
|
+
for output in outputs:
|
144
|
+
self._convert_output_to_proto(
|
145
|
+
output, signature.output_fields, proto=resp.outputs.add())
|
146
|
+
resp.status.code = status_code_pb2.SUCCESS
|
147
|
+
yield resp
|
148
|
+
except Exception as e:
|
149
|
+
if _RAISE_EXCEPTIONS:
|
150
|
+
raise
|
151
|
+
logging.exception("Error in generate")
|
152
|
+
yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
153
|
+
code=status_code_pb2.FAILURE,
|
154
|
+
details=str(e),
|
155
|
+
stack_trace=traceback.format_exc().split('\n')))
|
18
156
|
|
19
|
-
def stream_wrapper(self,
|
157
|
+
def stream_wrapper(self, request_iterator: Iterator[service_pb2.PostModelOutputsRequest]
|
20
158
|
) -> Iterator[service_pb2.MultiOutputResponse]:
|
21
|
-
|
22
|
-
|
159
|
+
try:
|
160
|
+
request = next(request_iterator) # get first request to determine method
|
161
|
+
assert len(request.inputs) == 1, "Streaming requires exactly one input"
|
23
162
|
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
163
|
+
method_name = 'generate'
|
164
|
+
if len(request.inputs) > 0 and '_method_name' in request.inputs[0].data.metadata:
|
165
|
+
method_name = request.inputs[0].data.metadata['_method_name']
|
166
|
+
method = getattr(self, method_name)
|
167
|
+
method_info = method._cf_method_info
|
168
|
+
signature = method_info.signature
|
169
|
+
python_param_types = method_info.python_param_types
|
170
|
+
|
171
|
+
# find the streaming vars in the signature
|
172
|
+
stream_sig = get_stream_from_signature(signature.input_fields)
|
173
|
+
if stream_sig is None:
|
174
|
+
raise ValueError("Streaming method must have a Stream input")
|
175
|
+
stream_argname = stream_sig.name
|
176
|
+
|
177
|
+
# convert all inputs for the first request, including the first stream value
|
178
|
+
inputs = self._convert_input_protos_to_python(request.inputs, signature.input_fields,
|
179
|
+
python_param_types)
|
180
|
+
kwargs = inputs[0]
|
181
|
+
|
182
|
+
# first streaming item
|
183
|
+
first_item = kwargs.pop(stream_argname)
|
184
|
+
|
185
|
+
# streaming generator
|
186
|
+
def InputStream():
|
187
|
+
yield first_item
|
188
|
+
# subsequent streaming items contain only the streaming input
|
189
|
+
for request in request_iterator:
|
190
|
+
item = self._convert_input_protos_to_python(request.inputs, [stream_sig],
|
191
|
+
python_param_types)
|
192
|
+
item = item[0][stream_argname]
|
193
|
+
yield item
|
194
|
+
|
195
|
+
# add stream generator back to the input kwargs
|
196
|
+
kwargs[stream_argname] = InputStream()
|
197
|
+
|
198
|
+
for output in method(**kwargs):
|
199
|
+
resp = service_pb2.MultiOutputResponse()
|
200
|
+
self._convert_output_to_proto(output, signature.output_fields, proto=resp.outputs.add())
|
201
|
+
resp.status.code = status_code_pb2.SUCCESS
|
202
|
+
yield resp
|
203
|
+
except Exception as e:
|
204
|
+
if _RAISE_EXCEPTIONS:
|
205
|
+
raise
|
206
|
+
logging.exception("Error in stream")
|
207
|
+
yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
208
|
+
code=status_code_pb2.FAILURE,
|
209
|
+
details=str(e),
|
210
|
+
stack_trace=traceback.format_exc().split('\n')))
|
211
|
+
|
212
|
+
def _convert_input_protos_to_python(self, inputs: List[resources_pb2.Input],
|
213
|
+
variables_signature: List[resources_pb2.ModelTypeField],
|
214
|
+
python_param_types) -> List[Dict[str, Any]]:
|
215
|
+
result = []
|
216
|
+
for input in inputs:
|
217
|
+
kwargs = deserialize(input.data, variables_signature)
|
218
|
+
# dynamic cast to annotated types
|
219
|
+
for k, v in kwargs.items():
|
220
|
+
if k not in python_param_types:
|
221
|
+
continue
|
222
|
+
kwargs[k] = data_types.cast(v, python_param_types[k])
|
223
|
+
result.append(kwargs)
|
224
|
+
return result
|
225
|
+
|
226
|
+
def _convert_output_to_proto(self,
|
227
|
+
output: Any,
|
228
|
+
variables_signature: List[resources_pb2.ModelTypeField],
|
229
|
+
proto=None) -> resources_pb2.Output:
|
230
|
+
if proto is None:
|
231
|
+
proto = resources_pb2.Output()
|
232
|
+
serialize({'return': output}, variables_signature, proto.data, is_output=True)
|
233
|
+
proto.status.code = status_code_pb2.SUCCESS
|
234
|
+
return proto
|
235
|
+
|
236
|
+
@classmethod
|
237
|
+
def _register_model_methods(cls):
|
238
|
+
# go up the class hierarchy to find all decorated methods, and add to registry of current class
|
239
|
+
methods = {}
|
240
|
+
for base in reversed(cls.__mro__):
|
241
|
+
for name, method in base.__dict__.items():
|
242
|
+
method_info = getattr(method, _METHOD_INFO_ATTR, None)
|
243
|
+
if not method_info: # regular function, not a model method
|
244
|
+
continue
|
245
|
+
methods[name] = method_info
|
246
|
+
# check for generic predict(request) -> response, etc. methods
|
247
|
+
#for name in ('predict', 'generate', 'stream'):
|
248
|
+
# if hasattr(cls, name):
|
249
|
+
# method = getattr(cls, name)
|
250
|
+
# if not hasattr(method, _METHOD_INFO_ATTR): # not already put in registry
|
251
|
+
# methods[name] = _MethodInfo(method)
|
252
|
+
# set method table for this class in the registry
|
253
|
+
return methods
|
254
|
+
|
255
|
+
@classmethod
|
256
|
+
def _get_method_info(cls, func_name=None):
|
257
|
+
if not hasattr(cls, _METHOD_INFO_ATTR):
|
258
|
+
setattr(cls, _METHOD_INFO_ATTR, cls._register_model_methods())
|
259
|
+
method_info = getattr(cls, _METHOD_INFO_ATTR)
|
260
|
+
if func_name:
|
261
|
+
return method_info[func_name]
|
262
|
+
return method_info
|
263
|
+
|
264
|
+
|
265
|
+
class _MethodInfo:
|
266
|
+
|
267
|
+
def __init__(self, method):
|
268
|
+
self.name = method.__name__
|
269
|
+
self.signature = build_function_signature(method)
|
270
|
+
self.python_param_types = {
|
271
|
+
p.name: p.annotation
|
272
|
+
for p in inspect.signature(method).parameters.values()
|
273
|
+
if p.annotation != inspect.Parameter.empty
|
274
|
+
}
|
275
|
+
self.python_param_types.pop('self', None)
|
@@ -0,0 +1,80 @@
|
|
1
|
+
import inspect
|
2
|
+
from abc import ABC, abstractmethod
|
3
|
+
from concurrent.futures import ThreadPoolExecutor
|
4
|
+
from typing import Any, Dict, Iterator, List, get_type_hints
|
5
|
+
|
6
|
+
from clarifai_grpc.grpc.api import resources_pb2, service_pb2
|
7
|
+
|
8
|
+
from clarifai.runners.utils.data_handler import Output, kwargs_to_proto, proto_to_kwargs
|
9
|
+
|
10
|
+
|
11
|
+
class ModelClass(ABC):
|
12
|
+
|
13
|
+
@abstractmethod
|
14
|
+
def load_model(self):
|
15
|
+
raise NotImplementedError("load_model() not implemented")
|
16
|
+
|
17
|
+
@abstractmethod
|
18
|
+
def predict(self, *args, **kwargs) -> Output:
|
19
|
+
raise NotImplementedError("predict() not implemented")
|
20
|
+
|
21
|
+
@abstractmethod
|
22
|
+
def generate(self, *args, **kwargs) -> Iterator[Output]:
|
23
|
+
raise NotImplementedError("generate() not implemented")
|
24
|
+
|
25
|
+
@abstractmethod
|
26
|
+
def stream(self, *args, **kwargs) -> Iterator[Output]:
|
27
|
+
raise NotImplementedError("stream() not implemented")
|
28
|
+
|
29
|
+
def batch_predict(self, inputs: List[Dict[str, Any]]) -> List[Output]:
|
30
|
+
with ThreadPoolExecutor() as executor:
|
31
|
+
return list(executor.map(lambda x: self.predict(**x), inputs))
|
32
|
+
|
33
|
+
def _process_request(self, request, process_func, is_stream=False):
|
34
|
+
inputs = self._convert_proto_to_python(request.inputs)
|
35
|
+
if len(inputs) == 1:
|
36
|
+
result = process_func(**inputs[0])
|
37
|
+
if is_stream:
|
38
|
+
return (self._convert_output_to_proto(output) for output in result)
|
39
|
+
else:
|
40
|
+
return [self._convert_output_to_proto(result)]
|
41
|
+
else:
|
42
|
+
results = self.batch_predict(inputs) if not is_stream else []
|
43
|
+
return [self._convert_output_to_proto(output) for output in results]
|
44
|
+
|
45
|
+
def predict_wrapper(
|
46
|
+
self, request: service_pb2.PostModelOutputsRequest) -> service_pb2.MultiOutputResponse:
|
47
|
+
outputs = self._process_request(request, self.predict)
|
48
|
+
return service_pb2.MultiOutputResponse(outputs=outputs)
|
49
|
+
|
50
|
+
def generate_wrapper(self, request: service_pb2.PostModelOutputsRequest
|
51
|
+
) -> Iterator[service_pb2.MultiOutputResponse]:
|
52
|
+
outputs = self._process_request(request, self.generate, is_stream=True)
|
53
|
+
for output in outputs:
|
54
|
+
yield service_pb2.MultiOutputResponse(outputs=[output])
|
55
|
+
|
56
|
+
def stream_wrapper(self, requests: Iterator[service_pb2.PostModelOutputsRequest]
|
57
|
+
) -> Iterator[service_pb2.MultiOutputResponse]:
|
58
|
+
for request in requests:
|
59
|
+
outputs = self._process_request(request, self.stream, is_stream=True)
|
60
|
+
yield service_pb2.MultiOutputResponse(outputs=outputs)
|
61
|
+
|
62
|
+
def _convert_proto_to_python(self, inputs: List[resources_pb2.Input]) -> List[Dict[str, Any]]:
|
63
|
+
get_type_hints(self.predict)
|
64
|
+
required_params = [
|
65
|
+
name for name, param in inspect.signature(self.predict).parameters.items()
|
66
|
+
if param.default == inspect.Parameter.empty
|
67
|
+
]
|
68
|
+
kwargs_list = []
|
69
|
+
for input_proto in inputs:
|
70
|
+
kwargs = proto_to_kwargs(input_proto.data)
|
71
|
+
missing = [name for name in required_params if name not in kwargs]
|
72
|
+
if missing:
|
73
|
+
raise ValueError(f"Missing required parameters: {missing}")
|
74
|
+
kwargs_list.append(kwargs)
|
75
|
+
return kwargs_list
|
76
|
+
|
77
|
+
def _convert_output_to_proto(self, output: Any) -> resources_pb2.Output:
|
78
|
+
if isinstance(output, Output):
|
79
|
+
return output.to_proto()
|
80
|
+
return kwargs_to_proto(**output).outputs.add()
|
@@ -7,14 +7,11 @@ import subprocess
|
|
7
7
|
import sys
|
8
8
|
import tempfile
|
9
9
|
import time
|
10
|
-
import traceback
|
11
10
|
import venv
|
12
11
|
|
13
12
|
from clarifai_grpc.grpc.api import resources_pb2, service_pb2
|
14
|
-
from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
|
15
13
|
|
16
14
|
from clarifai.runners.models.model_builder import ModelBuilder
|
17
|
-
from clarifai.runners.utils.url_fetcher import ensure_urls_downloaded
|
18
15
|
from clarifai.utils.logging import logger
|
19
16
|
|
20
17
|
|
@@ -111,85 +108,13 @@ class ModelRunLocally:
|
|
111
108
|
for i in range(1):
|
112
109
|
yield request
|
113
110
|
|
114
|
-
def _run_model_inference(self, model):
|
115
|
-
"""Perform inference using the model."""
|
116
|
-
request = self._build_request()
|
117
|
-
stream_request = self._build_stream_request()
|
118
|
-
|
119
|
-
ensure_urls_downloaded(request)
|
120
|
-
predict_response = None
|
121
|
-
generate_response = None
|
122
|
-
stream_response = None
|
123
|
-
try:
|
124
|
-
predict_response = model.predict(request)
|
125
|
-
except NotImplementedError:
|
126
|
-
logger.info("Model does not implement predict() method.")
|
127
|
-
except Exception as e:
|
128
|
-
logger.error(f"Model Prediction failed: {e}")
|
129
|
-
traceback.print_exc()
|
130
|
-
predict_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
131
|
-
code=status_code_pb2.MODEL_PREDICTION_FAILED,
|
132
|
-
description="Prediction failed",
|
133
|
-
details="",
|
134
|
-
internal_details=str(e),
|
135
|
-
))
|
136
|
-
|
137
|
-
if predict_response:
|
138
|
-
if predict_response.outputs[0].status.code != status_code_pb2.SUCCESS:
|
139
|
-
logger.error(f"Moddel Prediction failed: {predict_response}")
|
140
|
-
else:
|
141
|
-
logger.info(f"Model Prediction succeeded: {predict_response}")
|
142
|
-
|
143
|
-
try:
|
144
|
-
generate_response = model.generate(request)
|
145
|
-
except NotImplementedError:
|
146
|
-
logger.info("Model does not implement generate() method.")
|
147
|
-
except Exception as e:
|
148
|
-
logger.error(f"Model Generation failed: {e}")
|
149
|
-
traceback.print_exc()
|
150
|
-
generate_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
151
|
-
code=status_code_pb2.MODEL_GENERATION_FAILED,
|
152
|
-
description="Generation failed",
|
153
|
-
details="",
|
154
|
-
internal_details=str(e),
|
155
|
-
))
|
156
|
-
|
157
|
-
if generate_response:
|
158
|
-
generate_first_res = next(generate_response)
|
159
|
-
if generate_first_res.outputs[0].status.code != status_code_pb2.SUCCESS:
|
160
|
-
logger.error(f"Moddel Prediction failed: {generate_first_res}")
|
161
|
-
else:
|
162
|
-
logger.info(
|
163
|
-
f"Model Prediction succeeded for generate and first response: {generate_first_res}")
|
164
|
-
|
165
|
-
try:
|
166
|
-
stream_response = model.stream(stream_request)
|
167
|
-
except NotImplementedError:
|
168
|
-
logger.info("Model does not implement stream() method.")
|
169
|
-
except Exception as e:
|
170
|
-
logger.error(f"Model Stream failed: {e}")
|
171
|
-
traceback.print_exc()
|
172
|
-
stream_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
173
|
-
code=status_code_pb2.MODEL_STREAM_FAILED,
|
174
|
-
description="Stream failed",
|
175
|
-
details="",
|
176
|
-
internal_details=str(e),
|
177
|
-
))
|
178
|
-
|
179
|
-
if stream_response:
|
180
|
-
stream_first_res = next(stream_response)
|
181
|
-
if stream_first_res.outputs[0].status.code != status_code_pb2.SUCCESS:
|
182
|
-
logger.error(f"Moddel Prediction failed: {stream_first_res}")
|
183
|
-
else:
|
184
|
-
logger.info(
|
185
|
-
f"Model Prediction succeeded for stream and first response: {stream_first_res}")
|
186
|
-
|
187
111
|
def _run_test(self):
|
188
112
|
"""Test the model locally by making a prediction."""
|
189
113
|
# Create the model
|
190
114
|
model = self.builder.create_model_instance()
|
191
|
-
#
|
192
|
-
|
115
|
+
# call its test method, if it has one
|
116
|
+
if hasattr(model, "test"):
|
117
|
+
model.test()
|
193
118
|
|
194
119
|
def test_model(self):
|
195
120
|
"""Test the model by running it locally in the virtual environment."""
|