clarifai 11.1.5__py3-none-any.whl → 11.1.5rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- clarifai/__init__.py +1 -1
- clarifai/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/__pycache__/errors.cpython-310.pyc +0 -0
- clarifai/__pycache__/versions.cpython-310.pyc +0 -0
- clarifai/cli/__main__.py~ +4 -0
- clarifai/cli/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/__main__.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/compute_cluster.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/deployment.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/model.cpython-310.pyc +0 -0
- clarifai/cli/__pycache__/nodepool.cpython-310.pyc +0 -0
- clarifai/cli/model.py +25 -0
- clarifai/client/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/app.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/dataset.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/input.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/lister.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/model.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/module.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/runner.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/search.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/user.cpython-310.pyc +0 -0
- clarifai/client/__pycache__/workflow.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/helper.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/register.cpython-310.pyc +0 -0
- clarifai/client/auth/__pycache__/stub.cpython-310.pyc +0 -0
- clarifai/client/model.py +89 -365
- clarifai/client/model_client.py +422 -0
- clarifai/constants/__pycache__/dataset.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/model.cpython-310.pyc +0 -0
- clarifai/constants/__pycache__/search.cpython-310.pyc +0 -0
- clarifai/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/export/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/export/__pycache__/inputs_annotations.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/features.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/image.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/text.cpython-310.pyc +0 -0
- clarifai/datasets/upload/__pycache__/utils.cpython-310.pyc +0 -0
- clarifai/datasets/upload/loaders/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/datasets/upload/loaders/__pycache__/coco_detection.cpython-310.pyc +0 -0
- clarifai/models/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/models/model_serving/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/models/model_serving/__pycache__/constants.cpython-310.pyc +0 -0
- clarifai/models/model_serving/cli/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/models/model_serving/cli/__pycache__/_utils.cpython-310.pyc +0 -0
- clarifai/models/model_serving/cli/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/models/model_serving/cli/__pycache__/build.cpython-310.pyc +0 -0
- clarifai/models/model_serving/cli/__pycache__/create.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/__pycache__/base.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/__pycache__/config.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/__pycache__/inference_parameter.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/__pycache__/output.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/triton/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/triton/__pycache__/serializer.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/triton/__pycache__/triton_config.cpython-310.pyc +0 -0
- clarifai/models/model_serving/model_config/triton/__pycache__/wrappers.cpython-310.pyc +0 -0
- clarifai/models/model_serving/repo_build/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/models/model_serving/repo_build/__pycache__/build.cpython-310.pyc +0 -0
- clarifai/models/model_serving/repo_build/static_files/__pycache__/base_test.cpython-310-pytest-7.2.0.pyc +0 -0
- clarifai/rag/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/rag/__pycache__/rag.cpython-310.pyc +0 -0
- clarifai/rag/__pycache__/utils.cpython-310.pyc +0 -0
- clarifai/runners/__init__.py +2 -7
- clarifai/runners/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/runners/__pycache__/server.cpython-310.pyc +0 -0
- clarifai/runners/dockerfile_template/Dockerfile.debug +11 -0
- clarifai/runners/dockerfile_template/Dockerfile.debug~ +9 -0
- clarifai/runners/dockerfile_template/Dockerfile.template +3 -0
- clarifai/runners/models/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/base_typed_model.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_builder.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_class.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_run_locally.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_runner.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_servicer.cpython-310.pyc +0 -0
- clarifai/runners/models/__pycache__/model_upload.cpython-310.pyc +0 -0
- clarifai/runners/models/model_builder.py +33 -7
- clarifai/runners/models/model_class.py +269 -28
- clarifai/runners/models/model_run_locally.py +3 -78
- clarifai/runners/models/model_runner.py +2 -0
- clarifai/runners/models/model_servicer.py +11 -2
- clarifai/runners/server.py +5 -1
- clarifai/runners/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/const.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_handler.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_types.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/data_utils.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/loader.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/logging.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/method_signatures.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/serializers.cpython-310.pyc +0 -0
- clarifai/runners/utils/__pycache__/url_fetcher.cpython-310.pyc +0 -0
- clarifai/runners/utils/data_handler.py +308 -205
- clarifai/runners/utils/data_types.py +334 -0
- clarifai/runners/utils/method_signatures.py +452 -0
- clarifai/runners/utils/serializers.py +132 -0
- clarifai/schema/__pycache__/search.cpython-310.pyc +0 -0
- clarifai/urls/__pycache__/helper.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/logging.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/misc.cpython-310.pyc +0 -0
- clarifai/utils/__pycache__/model_train.cpython-310.pyc +0 -0
- clarifai/utils/evaluation/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/utils/evaluation/__pycache__/helpers.cpython-310.pyc +0 -0
- clarifai/utils/evaluation/__pycache__/main.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/__init__.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/export.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/utils.cpython-310.pyc +0 -0
- clarifai/workflows/__pycache__/validate.cpython-310.pyc +0 -0
- {clarifai-11.1.5.dist-info → clarifai-11.1.5rc2.dist-info}/METADATA +16 -26
- clarifai-11.1.5rc2.dist-info/RECORD +203 -0
- {clarifai-11.1.5.dist-info → clarifai-11.1.5rc2.dist-info}/WHEEL +1 -1
- clarifai/runners/models/base_typed_model.py +0 -238
- clarifai-11.1.5.dist-info/RECORD +0 -101
- {clarifai-11.1.5.dist-info → clarifai-11.1.5rc2.dist-info}/LICENSE +0 -0
- {clarifai-11.1.5.dist-info → clarifai-11.1.5rc2.dist-info}/entry_points.txt +0 -0
- {clarifai-11.1.5.dist-info → clarifai-11.1.5rc2.dist-info}/top_level.txt +0 -0
@@ -14,13 +14,14 @@ from google.protobuf import json_format
|
|
14
14
|
from rich import print
|
15
15
|
from rich.markup import escape
|
16
16
|
|
17
|
-
from clarifai.client import BaseClient
|
17
|
+
from clarifai.client.base import BaseClient
|
18
18
|
from clarifai.runners.models.model_class import ModelClass
|
19
19
|
from clarifai.runners.utils.const import (
|
20
20
|
AVAILABLE_PYTHON_IMAGES, AVAILABLE_TORCH_IMAGES, CONCEPTS_REQUIRED_MODEL_TYPE,
|
21
21
|
DEFAULT_DOWNLOAD_CHECKPOINT_WHEN, DEFAULT_PYTHON_VERSION, DEFAULT_RUNTIME_DOWNLOAD_PATH,
|
22
22
|
PYTHON_BASE_IMAGE, TORCH_BASE_IMAGE)
|
23
23
|
from clarifai.runners.utils.loader import HuggingFaceLoader
|
24
|
+
from clarifai.runners.utils.method_signatures import signatures_to_yaml
|
24
25
|
from clarifai.urls.helper import ClarifaiUrlHelper
|
25
26
|
from clarifai.utils.logging import logger
|
26
27
|
from clarifai.versions import CLIENT_VERSION
|
@@ -69,6 +70,18 @@ class ModelBuilder:
|
|
69
70
|
"""
|
70
71
|
Create an instance of the model class, as specified in the config file.
|
71
72
|
"""
|
73
|
+
model_class = self.load_model_class()
|
74
|
+
|
75
|
+
# initialize the model
|
76
|
+
model = model_class()
|
77
|
+
if load_model:
|
78
|
+
model.load_model()
|
79
|
+
return model
|
80
|
+
|
81
|
+
def load_model_class(self):
|
82
|
+
"""
|
83
|
+
Import the model class from the model.py file.
|
84
|
+
"""
|
72
85
|
# look for default model.py file location
|
73
86
|
for loc in ["model.py", "1/model.py"]:
|
74
87
|
model_file = os.path.join(self.folder, loc)
|
@@ -107,12 +120,7 @@ class ModelBuilder:
|
|
107
120
|
"Could not determine model class. There should be exactly one model inheriting from ModelClass defined in the model.py"
|
108
121
|
)
|
109
122
|
model_class = classes[0]
|
110
|
-
|
111
|
-
# initialize the model
|
112
|
-
model = model_class()
|
113
|
-
if load_model:
|
114
|
-
model.load_model()
|
115
|
-
return model
|
123
|
+
return model_class
|
116
124
|
|
117
125
|
def _validate_folder(self, folder):
|
118
126
|
if folder == ".":
|
@@ -226,6 +234,15 @@ class ModelBuilder:
|
|
226
234
|
)
|
227
235
|
logger.info("Continuing without Hugging Face token")
|
228
236
|
|
237
|
+
num_threads = self.config.get("num_threads")
|
238
|
+
if num_threads or num_threads == 0:
|
239
|
+
assert isinstance(num_threads, int) and num_threads >= 1, ValueError(
|
240
|
+
f"`num_threads` must be an integer greater than or equal to 1. Received type {type(num_threads)} with value {num_threads}."
|
241
|
+
)
|
242
|
+
else:
|
243
|
+
num_threads = int(os.environ.get("CLARIFAI_NUM_THREADS", 1))
|
244
|
+
self.config["num_threads"] = num_threads
|
245
|
+
|
229
246
|
@staticmethod
|
230
247
|
def _get_tar_file_content_size(tar_file_path):
|
231
248
|
"""
|
@@ -244,6 +261,15 @@ class ModelBuilder:
|
|
244
261
|
total_size += member.size
|
245
262
|
return total_size
|
246
263
|
|
264
|
+
def method_signatures_yaml(self):
|
265
|
+
"""
|
266
|
+
Returns the method signatures for the model class in YAML format.
|
267
|
+
"""
|
268
|
+
model_class = self.load_model_class()
|
269
|
+
method_info = model_class._get_method_info()
|
270
|
+
signatures = {name: m.signature for name, m in method_info.items()}
|
271
|
+
return signatures_to_yaml(signatures)
|
272
|
+
|
247
273
|
@property
|
248
274
|
def client(self):
|
249
275
|
if self._client is None:
|
@@ -1,41 +1,282 @@
|
|
1
|
-
|
2
|
-
|
1
|
+
import inspect
|
2
|
+
import itertools
|
3
|
+
import logging
|
4
|
+
import os
|
5
|
+
import traceback
|
6
|
+
from abc import ABC
|
7
|
+
from typing import Any, Dict, Iterator, List
|
3
8
|
|
4
|
-
from clarifai_grpc.grpc.api import service_pb2
|
9
|
+
from clarifai_grpc.grpc.api import resources_pb2, service_pb2
|
10
|
+
from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
|
11
|
+
|
12
|
+
from clarifai.runners.utils import data_types
|
13
|
+
from clarifai.runners.utils.method_signatures import (build_function_signature, deserialize,
|
14
|
+
get_stream_from_signature, serialize,
|
15
|
+
signatures_to_json)
|
16
|
+
|
17
|
+
_METHOD_INFO_ATTR = '_cf_method_info'
|
18
|
+
|
19
|
+
_RAISE_EXCEPTIONS = os.getenv("RAISE_EXCEPTIONS", "false").lower() == "true"
|
20
|
+
|
21
|
+
|
22
|
+
class methods:
|
23
|
+
'''
|
24
|
+
Decorators to mark methods as predict, generate, or stream methods.
|
25
|
+
'''
|
26
|
+
|
27
|
+
@staticmethod
|
28
|
+
def predict(method):
|
29
|
+
setattr(method, _METHOD_INFO_ATTR, _MethodInfo(method, 'predict'))
|
30
|
+
return method
|
31
|
+
|
32
|
+
@staticmethod
|
33
|
+
def generate(method):
|
34
|
+
setattr(method, _METHOD_INFO_ATTR, _MethodInfo(method, 'generate'))
|
35
|
+
return method
|
36
|
+
|
37
|
+
@staticmethod
|
38
|
+
def stream(method):
|
39
|
+
setattr(method, _METHOD_INFO_ATTR, _MethodInfo(method, 'stream'))
|
40
|
+
return method
|
5
41
|
|
6
42
|
|
7
43
|
class ModelClass(ABC):
|
44
|
+
'''
|
45
|
+
Base class for model classes that can be run as a service.
|
46
|
+
|
47
|
+
Define methods as predict, generate, or stream methods using the @methods decorators.
|
48
|
+
|
49
|
+
Example:
|
50
|
+
|
51
|
+
from clarifai.runners.model_class import ModelClass, methods
|
52
|
+
from clarifai.runners.utils.data_types import Input, Stream
|
53
|
+
|
54
|
+
class MyModel(ModelClass):
|
55
|
+
|
56
|
+
@methods.predict
|
57
|
+
def predict(self, x: str, y: int) -> List[str]:
|
58
|
+
return [x] * y
|
59
|
+
|
60
|
+
@methods.generate
|
61
|
+
def generate(self, x: str, y: int) -> Stream[str]:
|
62
|
+
for i in range(y):
|
63
|
+
yield x + str(i)
|
64
|
+
|
65
|
+
@methods.stream
|
66
|
+
def stream(self, input_stream: Stream[Input(x=str, y=int)]) -> Stream[str]:
|
67
|
+
for item in input_stream:
|
68
|
+
yield item.x + ' ' + str(item.y)
|
69
|
+
'''
|
70
|
+
|
71
|
+
def load_model(self):
|
72
|
+
"""Load the model."""
|
73
|
+
pass
|
74
|
+
|
75
|
+
def _handle_get_signatures_request(self) -> service_pb2.MultiOutputResponse:
|
76
|
+
methods = self._get_method_info()
|
77
|
+
signatures = {method.name: method.signature for method in methods.values()}
|
78
|
+
resp = service_pb2.MultiOutputResponse(status=status_pb2.Status(code=status_code_pb2.SUCCESS))
|
79
|
+
resp.outputs.add().data.string_value = signatures_to_json(signatures)
|
80
|
+
return resp
|
81
|
+
|
82
|
+
def batch_predict(self, method, inputs: List[Dict[str, Any]]) -> List[Any]:
|
83
|
+
"""Batch predict method for multiple inputs."""
|
84
|
+
outputs = []
|
85
|
+
for input in inputs:
|
86
|
+
output = method(**input)
|
87
|
+
outputs.append(output)
|
88
|
+
return outputs
|
89
|
+
|
90
|
+
def batch_generate(self, method, inputs: List[Dict[str, Any]]) -> Iterator[List[Any]]:
|
91
|
+
"""Batch generate method for multiple inputs."""
|
92
|
+
generators = [method(**input) for input in inputs]
|
93
|
+
for outputs in itertools.zip_longest(*generators):
|
94
|
+
yield outputs
|
8
95
|
|
9
96
|
def predict_wrapper(
|
10
97
|
self, request: service_pb2.PostModelOutputsRequest) -> service_pb2.MultiOutputResponse:
|
11
|
-
|
12
|
-
|
98
|
+
outputs = []
|
99
|
+
try:
|
100
|
+
# TODO add method name field to proto
|
101
|
+
call_params = dict(request.model.model_version.output_info.params)
|
102
|
+
method_name = call_params.get('_method_name', 'predict')
|
103
|
+
if method_name == '_GET_SIGNATURES': # special case to fetch signatures, TODO add endpoint for this
|
104
|
+
return self._handle_get_signatures_request()
|
105
|
+
if method_name not in self._get_method_info():
|
106
|
+
raise ValueError(f"Method {method_name} not found in model class")
|
107
|
+
method = getattr(self, method_name)
|
108
|
+
method_info = method._cf_method_info
|
109
|
+
signature = method_info.signature
|
110
|
+
python_param_types = method_info.python_param_types
|
111
|
+
inputs = self._convert_input_protos_to_python(request.inputs, signature.inputs,
|
112
|
+
python_param_types)
|
113
|
+
if len(inputs) == 1:
|
114
|
+
inputs = inputs[0]
|
115
|
+
output = method(**inputs)
|
116
|
+
outputs.append(self._convert_output_to_proto(output, signature.outputs))
|
117
|
+
else:
|
118
|
+
outputs = self.batch_predict(method, inputs)
|
119
|
+
outputs = [self._convert_output_to_proto(output, signature.outputs) for output in outputs]
|
120
|
+
|
121
|
+
return service_pb2.MultiOutputResponse(
|
122
|
+
outputs=outputs, status=status_pb2.Status(code=status_code_pb2.SUCCESS))
|
123
|
+
except Exception as e:
|
124
|
+
if _RAISE_EXCEPTIONS:
|
125
|
+
raise
|
126
|
+
logging.exception("Error in predict")
|
127
|
+
return service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
128
|
+
code=status_code_pb2.FAILURE,
|
129
|
+
details=str(e),
|
130
|
+
stack_trace=traceback.format_exc().split('\n')))
|
13
131
|
|
14
132
|
def generate_wrapper(self, request: service_pb2.PostModelOutputsRequest
|
15
133
|
) -> Iterator[service_pb2.MultiOutputResponse]:
|
16
|
-
|
17
|
-
|
134
|
+
try:
|
135
|
+
call_params = dict(request.model.model_version.output_info.params)
|
136
|
+
method_name = call_params.get('_method_name', 'generate')
|
137
|
+
method = getattr(self, method_name)
|
138
|
+
method_info = method._cf_method_info
|
139
|
+
signature = method_info.signature
|
140
|
+
python_param_types = method_info.python_param_types
|
18
141
|
|
19
|
-
|
142
|
+
inputs = self._convert_input_protos_to_python(request.inputs, signature.inputs,
|
143
|
+
python_param_types)
|
144
|
+
if len(inputs) == 1:
|
145
|
+
inputs = inputs[0]
|
146
|
+
for output in method(**inputs):
|
147
|
+
resp = service_pb2.MultiOutputResponse()
|
148
|
+
self._convert_output_to_proto(output, signature.outputs, proto=resp.outputs.add())
|
149
|
+
resp.status.code = status_code_pb2.SUCCESS
|
150
|
+
yield resp
|
151
|
+
else:
|
152
|
+
for outputs in self.batch_generate(method, inputs):
|
153
|
+
resp = service_pb2.MultiOutputResponse()
|
154
|
+
for output in outputs:
|
155
|
+
self._convert_output_to_proto(output, signature.outputs, proto=resp.outputs.add())
|
156
|
+
resp.status.code = status_code_pb2.SUCCESS
|
157
|
+
yield resp
|
158
|
+
except Exception as e:
|
159
|
+
if _RAISE_EXCEPTIONS:
|
160
|
+
raise
|
161
|
+
logging.exception("Error in generate")
|
162
|
+
yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
163
|
+
code=status_code_pb2.FAILURE,
|
164
|
+
details=str(e),
|
165
|
+
stack_trace=traceback.format_exc().split('\n')))
|
166
|
+
|
167
|
+
def stream_wrapper(self, request_iterator: Iterator[service_pb2.PostModelOutputsRequest]
|
20
168
|
) -> Iterator[service_pb2.MultiOutputResponse]:
|
21
|
-
|
22
|
-
|
169
|
+
try:
|
170
|
+
request = next(request_iterator) # get first request to determine method
|
171
|
+
assert len(request.inputs) == 1, "Streaming requires exactly one input"
|
23
172
|
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
173
|
+
call_params = dict(request.model.model_version.output_info.params)
|
174
|
+
method_name = call_params.get('_method_name', 'stream')
|
175
|
+
method = getattr(self, method_name)
|
176
|
+
method_info = method._cf_method_info
|
177
|
+
signature = method_info.signature
|
178
|
+
python_param_types = method_info.python_param_types
|
179
|
+
|
180
|
+
# find the streaming vars in the signature
|
181
|
+
stream_argname, streaming_var_signatures = get_stream_from_signature(signature.inputs)
|
182
|
+
|
183
|
+
# convert all inputs for the first request, including the first stream value
|
184
|
+
inputs = self._convert_input_protos_to_python(request.inputs, signature.inputs,
|
185
|
+
python_param_types)
|
186
|
+
kwargs = inputs[0]
|
187
|
+
|
188
|
+
# first streaming item
|
189
|
+
first_item = kwargs.pop(stream_argname)
|
190
|
+
|
191
|
+
# streaming generator
|
192
|
+
def InputStream():
|
193
|
+
yield first_item
|
194
|
+
# subsequent streaming items contain only the streaming input
|
195
|
+
for request in request_iterator:
|
196
|
+
item = self._convert_input_protos_to_python(request.inputs, streaming_var_signatures,
|
197
|
+
python_param_types)
|
198
|
+
item = item[0][stream_argname]
|
199
|
+
yield item
|
200
|
+
|
201
|
+
# add stream generator back to the input kwargs
|
202
|
+
kwargs[stream_argname] = InputStream()
|
203
|
+
|
204
|
+
for output in method(**kwargs):
|
205
|
+
resp = service_pb2.MultiOutputResponse()
|
206
|
+
self._convert_output_to_proto(output, signature.outputs, proto=resp.outputs.add())
|
207
|
+
resp.status.code = status_code_pb2.SUCCESS
|
208
|
+
yield resp
|
209
|
+
except Exception as e:
|
210
|
+
if _RAISE_EXCEPTIONS:
|
211
|
+
raise
|
212
|
+
logging.exception("Error in stream")
|
213
|
+
yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
214
|
+
code=status_code_pb2.FAILURE,
|
215
|
+
details=str(e),
|
216
|
+
stack_trace=traceback.format_exc().split('\n')))
|
217
|
+
|
218
|
+
def _convert_input_protos_to_python(self, inputs: List[resources_pb2.Input], variables_signature,
|
219
|
+
python_param_types) -> List[Dict[str, Any]]:
|
220
|
+
result = []
|
221
|
+
for input in inputs:
|
222
|
+
kwargs = deserialize(input.data, variables_signature)
|
223
|
+
# dynamic cast to annotated types
|
224
|
+
for k, v in kwargs.items():
|
225
|
+
if k not in python_param_types:
|
226
|
+
continue
|
227
|
+
kwargs[k] = data_types.cast(v, python_param_types[k])
|
228
|
+
result.append(kwargs)
|
229
|
+
return result
|
230
|
+
|
231
|
+
def _convert_output_to_proto(self, output: Any, variables_signature,
|
232
|
+
proto=None) -> resources_pb2.Output:
|
233
|
+
if proto is None:
|
234
|
+
proto = resources_pb2.Output()
|
235
|
+
if isinstance(output, tuple):
|
236
|
+
output = {f'return.{i}': item for i, item in enumerate(output)}
|
237
|
+
if not isinstance(output, dict): # TODO Output type, not just dict
|
238
|
+
output = {'return': output}
|
239
|
+
serialize(output, variables_signature, proto.data, is_output=True)
|
240
|
+
proto.status.code = status_code_pb2.SUCCESS
|
241
|
+
return proto
|
242
|
+
|
243
|
+
@classmethod
|
244
|
+
def _register_model_methods(cls):
|
245
|
+
# go up the class hierarchy to find all decorated methods, and add to registry of current class
|
246
|
+
methods = {}
|
247
|
+
for base in reversed(cls.__mro__):
|
248
|
+
for name, method in base.__dict__.items():
|
249
|
+
method_info = getattr(method, _METHOD_INFO_ATTR, None)
|
250
|
+
if not method_info: # regular function, not a model method
|
251
|
+
continue
|
252
|
+
methods[name] = method_info
|
253
|
+
# check for generic predict(request) -> response, etc. methods
|
254
|
+
#for name in ('predict', 'generate', 'stream'):
|
255
|
+
# if hasattr(cls, name):
|
256
|
+
# method = getattr(cls, name)
|
257
|
+
# if not hasattr(method, _METHOD_INFO_ATTR): # not already put in registry
|
258
|
+
# methods[name] = _MethodInfo(method, method_type=name)
|
259
|
+
# set method table for this class in the registry
|
260
|
+
return methods
|
261
|
+
|
262
|
+
@classmethod
|
263
|
+
def _get_method_info(cls, func_name=None):
|
264
|
+
if not hasattr(cls, _METHOD_INFO_ATTR):
|
265
|
+
setattr(cls, _METHOD_INFO_ATTR, cls._register_model_methods())
|
266
|
+
method_info = getattr(cls, _METHOD_INFO_ATTR)
|
267
|
+
if func_name:
|
268
|
+
return method_info[func_name]
|
269
|
+
return method_info
|
270
|
+
|
271
|
+
|
272
|
+
class _MethodInfo:
|
273
|
+
|
274
|
+
def __init__(self, method, method_type):
|
275
|
+
self.name = method.__name__
|
276
|
+
self.signature = build_function_signature(method, method_type)
|
277
|
+
self.python_param_types = {
|
278
|
+
p.name: p.annotation
|
279
|
+
for p in inspect.signature(method).parameters.values()
|
280
|
+
if p.annotation != inspect.Parameter.empty
|
281
|
+
}
|
282
|
+
self.python_param_types.pop('self', None)
|
@@ -7,14 +7,11 @@ import subprocess
|
|
7
7
|
import sys
|
8
8
|
import tempfile
|
9
9
|
import time
|
10
|
-
import traceback
|
11
10
|
import venv
|
12
11
|
|
13
12
|
from clarifai_grpc.grpc.api import resources_pb2, service_pb2
|
14
|
-
from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
|
15
13
|
|
16
14
|
from clarifai.runners.models.model_builder import ModelBuilder
|
17
|
-
from clarifai.runners.utils.url_fetcher import ensure_urls_downloaded
|
18
15
|
from clarifai.utils.logging import logger
|
19
16
|
|
20
17
|
|
@@ -111,85 +108,13 @@ class ModelRunLocally:
|
|
111
108
|
for i in range(1):
|
112
109
|
yield request
|
113
110
|
|
114
|
-
def _run_model_inference(self, model):
|
115
|
-
"""Perform inference using the model."""
|
116
|
-
request = self._build_request()
|
117
|
-
stream_request = self._build_stream_request()
|
118
|
-
|
119
|
-
ensure_urls_downloaded(request)
|
120
|
-
predict_response = None
|
121
|
-
generate_response = None
|
122
|
-
stream_response = None
|
123
|
-
try:
|
124
|
-
predict_response = model.predict(request)
|
125
|
-
except NotImplementedError:
|
126
|
-
logger.info("Model does not implement predict() method.")
|
127
|
-
except Exception as e:
|
128
|
-
logger.error(f"Model Prediction failed: {e}")
|
129
|
-
traceback.print_exc()
|
130
|
-
predict_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
131
|
-
code=status_code_pb2.MODEL_PREDICTION_FAILED,
|
132
|
-
description="Prediction failed",
|
133
|
-
details="",
|
134
|
-
internal_details=str(e),
|
135
|
-
))
|
136
|
-
|
137
|
-
if predict_response:
|
138
|
-
if predict_response.outputs[0].status.code != status_code_pb2.SUCCESS:
|
139
|
-
logger.error(f"Moddel Prediction failed: {predict_response}")
|
140
|
-
else:
|
141
|
-
logger.info(f"Model Prediction succeeded: {predict_response}")
|
142
|
-
|
143
|
-
try:
|
144
|
-
generate_response = model.generate(request)
|
145
|
-
except NotImplementedError:
|
146
|
-
logger.info("Model does not implement generate() method.")
|
147
|
-
except Exception as e:
|
148
|
-
logger.error(f"Model Generation failed: {e}")
|
149
|
-
traceback.print_exc()
|
150
|
-
generate_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
151
|
-
code=status_code_pb2.MODEL_GENERATION_FAILED,
|
152
|
-
description="Generation failed",
|
153
|
-
details="",
|
154
|
-
internal_details=str(e),
|
155
|
-
))
|
156
|
-
|
157
|
-
if generate_response:
|
158
|
-
generate_first_res = next(generate_response)
|
159
|
-
if generate_first_res.outputs[0].status.code != status_code_pb2.SUCCESS:
|
160
|
-
logger.error(f"Moddel Prediction failed: {generate_first_res}")
|
161
|
-
else:
|
162
|
-
logger.info(
|
163
|
-
f"Model Prediction succeeded for generate and first response: {generate_first_res}")
|
164
|
-
|
165
|
-
try:
|
166
|
-
stream_response = model.stream(stream_request)
|
167
|
-
except NotImplementedError:
|
168
|
-
logger.info("Model does not implement stream() method.")
|
169
|
-
except Exception as e:
|
170
|
-
logger.error(f"Model Stream failed: {e}")
|
171
|
-
traceback.print_exc()
|
172
|
-
stream_response = service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
173
|
-
code=status_code_pb2.MODEL_STREAM_FAILED,
|
174
|
-
description="Stream failed",
|
175
|
-
details="",
|
176
|
-
internal_details=str(e),
|
177
|
-
))
|
178
|
-
|
179
|
-
if stream_response:
|
180
|
-
stream_first_res = next(stream_response)
|
181
|
-
if stream_first_res.outputs[0].status.code != status_code_pb2.SUCCESS:
|
182
|
-
logger.error(f"Moddel Prediction failed: {stream_first_res}")
|
183
|
-
else:
|
184
|
-
logger.info(
|
185
|
-
f"Model Prediction succeeded for stream and first response: {stream_first_res}")
|
186
|
-
|
187
111
|
def _run_test(self):
|
188
112
|
"""Test the model locally by making a prediction."""
|
189
113
|
# Create the model
|
190
114
|
model = self.builder.create_model_instance()
|
191
|
-
#
|
192
|
-
|
115
|
+
# call its test method, if it has one
|
116
|
+
if hasattr(model, "test"):
|
117
|
+
model.test()
|
193
118
|
|
194
119
|
def test_model(self):
|
195
120
|
"""Test the model by running it locally in the virtual environment."""
|
@@ -82,6 +82,8 @@ class ModelRunner(BaseRunner, HealthProbeRequestHandler):
|
|
82
82
|
ensure_urls_downloaded(request)
|
83
83
|
|
84
84
|
resp = self.model.predict_wrapper(request)
|
85
|
+
if resp.status.code != status_code_pb2.SUCCESS:
|
86
|
+
return service_pb2.RunnerItemOutput(multi_output_response=resp)
|
85
87
|
successes = [o.status.code == status_code_pb2.SUCCESS for o in resp.outputs]
|
86
88
|
if all(successes):
|
87
89
|
status = status_pb2.Status(
|
@@ -1,3 +1,4 @@
|
|
1
|
+
import os
|
1
2
|
from itertools import tee
|
2
3
|
from typing import Iterator
|
3
4
|
|
@@ -6,6 +7,8 @@ from clarifai_grpc.grpc.api.status import status_code_pb2, status_pb2
|
|
6
7
|
|
7
8
|
from ..utils.url_fetcher import ensure_urls_downloaded
|
8
9
|
|
10
|
+
_RAISE_EXCEPTIONS = os.getenv("RAISE_EXCEPTIONS", "false").lower() in ("true", "1")
|
11
|
+
|
9
12
|
|
10
13
|
class ModelServicer(service_pb2_grpc.V2Servicer):
|
11
14
|
"""
|
@@ -33,6 +36,8 @@ class ModelServicer(service_pb2_grpc.V2Servicer):
|
|
33
36
|
try:
|
34
37
|
return self.model.predict_wrapper(request)
|
35
38
|
except Exception as e:
|
39
|
+
if _RAISE_EXCEPTIONS:
|
40
|
+
raise
|
36
41
|
return service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
37
42
|
code=status_code_pb2.MODEL_PREDICTION_FAILED,
|
38
43
|
description="Failed",
|
@@ -50,8 +55,10 @@ class ModelServicer(service_pb2_grpc.V2Servicer):
|
|
50
55
|
ensure_urls_downloaded(request)
|
51
56
|
|
52
57
|
try:
|
53
|
-
|
58
|
+
yield from self.model.generate_wrapper(request)
|
54
59
|
except Exception as e:
|
60
|
+
if _RAISE_EXCEPTIONS:
|
61
|
+
raise
|
55
62
|
yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
56
63
|
code=status_code_pb2.MODEL_PREDICTION_FAILED,
|
57
64
|
description="Failed",
|
@@ -74,8 +81,10 @@ class ModelServicer(service_pb2_grpc.V2Servicer):
|
|
74
81
|
ensure_urls_downloaded(req)
|
75
82
|
|
76
83
|
try:
|
77
|
-
|
84
|
+
yield from self.model.stream_wrapper(request_copy)
|
78
85
|
except Exception as e:
|
86
|
+
if _RAISE_EXCEPTIONS:
|
87
|
+
raise
|
79
88
|
yield service_pb2.MultiOutputResponse(status=status_pb2.Status(
|
80
89
|
code=status_code_pb2.MODEL_PREDICTION_FAILED,
|
81
90
|
description="Failed",
|
clarifai/runners/server.py
CHANGED
@@ -85,6 +85,10 @@ def serve(model_path,
|
|
85
85
|
|
86
86
|
model = builder.create_model_instance()
|
87
87
|
|
88
|
+
# `num_threads` can be set in config.yaml or via the environment variable CLARIFAI_NUM_THREADS="<integer>".
|
89
|
+
# Note: The value in config.yaml takes precedence over the environment variable.
|
90
|
+
num_threads = builder.config.get("num_threads")
|
91
|
+
|
88
92
|
# Setup the grpc server for local development.
|
89
93
|
if grpc:
|
90
94
|
|
@@ -115,7 +119,7 @@ def serve(model_path,
|
|
115
119
|
nodepool_id=os.environ["CLARIFAI_NODEPOOL_ID"],
|
116
120
|
compute_cluster_id=os.environ["CLARIFAI_COMPUTE_CLUSTER_ID"],
|
117
121
|
base_url=os.environ.get("CLARIFAI_API_BASE", "https://api.clarifai.com"),
|
118
|
-
num_parallel_polls=
|
122
|
+
num_parallel_polls=num_threads,
|
119
123
|
)
|
120
124
|
runner.start() # start the runner to fetch work from the API.
|
121
125
|
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|