clarifai 10.8.4__py3-none-any.whl → 10.8.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- clarifai/__init__.py +1 -1
- clarifai/client/dataset.py +9 -3
- clarifai/constants/dataset.py +1 -1
- clarifai/datasets/upload/base.py +6 -3
- clarifai/datasets/upload/features.py +10 -0
- clarifai/datasets/upload/image.py +22 -13
- clarifai/datasets/upload/multimodal.py +70 -0
- clarifai/datasets/upload/text.py +8 -5
- clarifai/utils/misc.py +6 -0
- {clarifai-10.8.4.dist-info → clarifai-10.8.5.dist-info}/METADATA +2 -1
- {clarifai-10.8.4.dist-info → clarifai-10.8.5.dist-info}/RECORD +15 -58
- clarifai/models/model_serving/README.md +0 -158
- clarifai/models/model_serving/__init__.py +0 -14
- clarifai/models/model_serving/cli/__init__.py +0 -12
- clarifai/models/model_serving/cli/_utils.py +0 -53
- clarifai/models/model_serving/cli/base.py +0 -14
- clarifai/models/model_serving/cli/build.py +0 -79
- clarifai/models/model_serving/cli/clarifai_clis.py +0 -33
- clarifai/models/model_serving/cli/create.py +0 -171
- clarifai/models/model_serving/cli/example_cli.py +0 -34
- clarifai/models/model_serving/cli/login.py +0 -26
- clarifai/models/model_serving/cli/upload.py +0 -183
- clarifai/models/model_serving/constants.py +0 -21
- clarifai/models/model_serving/docs/cli.md +0 -161
- clarifai/models/model_serving/docs/concepts.md +0 -229
- clarifai/models/model_serving/docs/dependencies.md +0 -11
- clarifai/models/model_serving/docs/inference_parameters.md +0 -139
- clarifai/models/model_serving/docs/model_types.md +0 -19
- clarifai/models/model_serving/model_config/__init__.py +0 -16
- clarifai/models/model_serving/model_config/base.py +0 -369
- clarifai/models/model_serving/model_config/config.py +0 -312
- clarifai/models/model_serving/model_config/inference_parameter.py +0 -129
- clarifai/models/model_serving/model_config/model_types_config/multimodal-embedder.yaml +0 -25
- clarifai/models/model_serving/model_config/model_types_config/text-classifier.yaml +0 -19
- clarifai/models/model_serving/model_config/model_types_config/text-embedder.yaml +0 -20
- clarifai/models/model_serving/model_config/model_types_config/text-to-image.yaml +0 -19
- clarifai/models/model_serving/model_config/model_types_config/text-to-text.yaml +0 -19
- clarifai/models/model_serving/model_config/model_types_config/visual-classifier.yaml +0 -22
- clarifai/models/model_serving/model_config/model_types_config/visual-detector.yaml +0 -32
- clarifai/models/model_serving/model_config/model_types_config/visual-embedder.yaml +0 -19
- clarifai/models/model_serving/model_config/model_types_config/visual-segmenter.yaml +0 -19
- clarifai/models/model_serving/model_config/output.py +0 -133
- clarifai/models/model_serving/model_config/triton/__init__.py +0 -14
- clarifai/models/model_serving/model_config/triton/serializer.py +0 -136
- clarifai/models/model_serving/model_config/triton/triton_config.py +0 -182
- clarifai/models/model_serving/model_config/triton/wrappers.py +0 -281
- clarifai/models/model_serving/repo_build/__init__.py +0 -14
- clarifai/models/model_serving/repo_build/build.py +0 -198
- clarifai/models/model_serving/repo_build/static_files/_requirements.txt +0 -2
- clarifai/models/model_serving/repo_build/static_files/base_test.py +0 -169
- clarifai/models/model_serving/repo_build/static_files/inference.py +0 -26
- clarifai/models/model_serving/repo_build/static_files/sample_clarifai_config.yaml +0 -25
- clarifai/models/model_serving/repo_build/static_files/test.py +0 -40
- clarifai/models/model_serving/repo_build/static_files/triton/model.py +0 -75
- clarifai/models/model_serving/utils.py +0 -31
- {clarifai-10.8.4.dist-info → clarifai-10.8.5.dist-info}/LICENSE +0 -0
- {clarifai-10.8.4.dist-info → clarifai-10.8.5.dist-info}/WHEEL +0 -0
- {clarifai-10.8.4.dist-info → clarifai-10.8.5.dist-info}/entry_points.txt +0 -0
- {clarifai-10.8.4.dist-info → clarifai-10.8.5.dist-info}/top_level.txt +0 -0
@@ -1,182 +0,0 @@
|
|
1
|
-
# Copyright 2023 Clarifai, Inc.
|
2
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
-
# you may not use this file except in compliance with the License.
|
4
|
-
# You may obtain a copy of the License at
|
5
|
-
#
|
6
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
-
#
|
8
|
-
# Unless required by applicable law or agreed to in writing, software
|
9
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
-
# See the License for the specific language governing permissions and
|
12
|
-
# limitations under the License.
|
13
|
-
""" Model Config classes."""
|
14
|
-
from __future__ import annotations # isort: skip
|
15
|
-
|
16
|
-
from copy import deepcopy
|
17
|
-
from dataclasses import dataclass, field
|
18
|
-
from typing import Any, List, Union
|
19
|
-
|
20
|
-
from ...constants import IMAGE_TENSOR_NAME, MAX_HW_DIM
|
21
|
-
|
22
|
-
|
23
|
-
### Triton Model Config classes.###
|
24
|
-
@dataclass
|
25
|
-
class DType:
|
26
|
-
"""
|
27
|
-
Triton Model Config data types.
|
28
|
-
"""
|
29
|
-
# https://github.com/triton-inference-server/common/blob/main/protobuf/model_config.proto
|
30
|
-
TYPE_UINT8: int = 2
|
31
|
-
TYPE_INT8: int = 6
|
32
|
-
TYPE_INT16: int = 7
|
33
|
-
TYPE_INT32: int = 8
|
34
|
-
TYPE_INT64: int = 9
|
35
|
-
TYPE_FP16: int = 10
|
36
|
-
TYPE_FP32: int = 11
|
37
|
-
TYPE_STRING: int = 13
|
38
|
-
KIND_GPU: int = 1
|
39
|
-
KIND_CPU: int = 2
|
40
|
-
|
41
|
-
|
42
|
-
@dataclass
|
43
|
-
class InputConfig:
|
44
|
-
"""
|
45
|
-
Triton Input definition.
|
46
|
-
Params:
|
47
|
-
-------
|
48
|
-
name: input name
|
49
|
-
data_type: input data type
|
50
|
-
dims: Pre-defined input data shape(s).
|
51
|
-
|
52
|
-
Returns:
|
53
|
-
--------
|
54
|
-
InputConfig
|
55
|
-
"""
|
56
|
-
name: str
|
57
|
-
data_type: int
|
58
|
-
dims: List = field(default_factory=list)
|
59
|
-
optional: bool = False
|
60
|
-
|
61
|
-
|
62
|
-
@dataclass
|
63
|
-
class OutputConfig:
|
64
|
-
"""
|
65
|
-
Triton Output definition.
|
66
|
-
Params:
|
67
|
-
-------
|
68
|
-
name: output name
|
69
|
-
data_type: output data type
|
70
|
-
dims: Pre-defined output data shape(s).
|
71
|
-
labels (bool): If labels file is required for inference.
|
72
|
-
|
73
|
-
Returns:
|
74
|
-
--------
|
75
|
-
OutputConfig
|
76
|
-
"""
|
77
|
-
name: str
|
78
|
-
data_type: int
|
79
|
-
dims: List = field(default_factory=list)
|
80
|
-
label_filename: str = ""
|
81
|
-
|
82
|
-
|
83
|
-
@dataclass
|
84
|
-
class Device:
|
85
|
-
"""
|
86
|
-
Triton instance_group.
|
87
|
-
Define the type of inference device and number of devices to use.
|
88
|
-
Params:
|
89
|
-
-------
|
90
|
-
count: number of devices
|
91
|
-
use_gpu: whether to use cpu or gpu.
|
92
|
-
|
93
|
-
Returns:
|
94
|
-
--------
|
95
|
-
Device object
|
96
|
-
"""
|
97
|
-
count: int = 1
|
98
|
-
use_gpu: bool = True
|
99
|
-
|
100
|
-
def __post_init__(self):
|
101
|
-
if self.use_gpu:
|
102
|
-
self.kind: str = DType.KIND_GPU
|
103
|
-
else:
|
104
|
-
self.kind: str = DType.KIND_CPU
|
105
|
-
|
106
|
-
|
107
|
-
@dataclass
|
108
|
-
class DynamicBatching:
|
109
|
-
"""
|
110
|
-
Triton dynamic_batching config.
|
111
|
-
Params:
|
112
|
-
-------
|
113
|
-
preferred_batch_size: batch size
|
114
|
-
max_queue_delay_microseconds: max queue delay for a request batch
|
115
|
-
|
116
|
-
Returns:
|
117
|
-
--------
|
118
|
-
DynamicBatching object
|
119
|
-
"""
|
120
|
-
#preferred_batch_size: List[int] = [1] # recommended not to set
|
121
|
-
max_queue_delay_microseconds: int = 500
|
122
|
-
|
123
|
-
|
124
|
-
@dataclass
|
125
|
-
class TritonModelConfig:
|
126
|
-
"""
|
127
|
-
Triton Model Config base.
|
128
|
-
Params:
|
129
|
-
-------
|
130
|
-
name: triton inference model name
|
131
|
-
input: a list of an InputConfig field
|
132
|
-
output: a list of OutputConfig fields/dicts
|
133
|
-
instance_group: Device. see Device
|
134
|
-
dynamic_batching: Triton dynamic batching settings.
|
135
|
-
max_batch_size: max request batch size
|
136
|
-
backend: Triton Python Backend. Constant
|
137
|
-
image_shape: List of Height and Width of input image. *
|
138
|
-
|
139
|
-
(*): This attribute won't be serialized in config.pbtxt
|
140
|
-
|
141
|
-
Returns:
|
142
|
-
--------
|
143
|
-
TritonModelConfig
|
144
|
-
"""
|
145
|
-
#model_type: str
|
146
|
-
model_name: str = ""
|
147
|
-
model_version: str = "1"
|
148
|
-
input: List[InputConfig] = field(default_factory=list)
|
149
|
-
output: List[OutputConfig] = field(default_factory=list)
|
150
|
-
instance_group: Device = field(default_factory=Device)
|
151
|
-
dynamic_batching: DynamicBatching = field(default_factory=DynamicBatching)
|
152
|
-
max_batch_size: int = 1
|
153
|
-
backend: str = "python"
|
154
|
-
image_shape: tuple[Union[int, float], Union[int, float]] = field(
|
155
|
-
default_factory=lambda: [-1, -1]) #(H, W)
|
156
|
-
|
157
|
-
def __setattr__(self, __name: str, __value: Any) -> None:
|
158
|
-
if __name == "image_shape":
|
159
|
-
__value = self._check_and_assign_image_shape_value(__value)
|
160
|
-
|
161
|
-
super().__setattr__(__name, __value)
|
162
|
-
|
163
|
-
def _check_and_assign_image_shape_value(self, value):
|
164
|
-
_has_image = False
|
165
|
-
for each in self.input:
|
166
|
-
if IMAGE_TENSOR_NAME in each.name:
|
167
|
-
_has_image = True
|
168
|
-
if len(value) != 2:
|
169
|
-
raise ValueError(
|
170
|
-
f"image_shape takes 2 values, Height and Width. Got {len(value)} values instead.")
|
171
|
-
if value[0] > MAX_HW_DIM or value[1] > MAX_HW_DIM:
|
172
|
-
raise ValueError(
|
173
|
-
f"H and W each have a maximum value of {MAX_HW_DIM}. Got H: {value[0]}, W: {value[1]}"
|
174
|
-
)
|
175
|
-
image_dims = deepcopy(value)
|
176
|
-
image_dims.append(3) # add channel dim
|
177
|
-
each.dims = image_dims
|
178
|
-
|
179
|
-
if not _has_image and self.input:
|
180
|
-
return [-1, -1]
|
181
|
-
else:
|
182
|
-
return value
|
@@ -1,281 +0,0 @@
|
|
1
|
-
# Copyright 2023 Clarifai, Inc.
|
2
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
-
# you may not use this file except in compliance with the License.
|
4
|
-
# You may obtain a copy of the License at
|
5
|
-
#
|
6
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
-
#
|
8
|
-
# Unless required by applicable law or agreed to in writing, software
|
9
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
-
# See the License for the specific language governing permissions and
|
12
|
-
# limitations under the License.
|
13
|
-
"""
|
14
|
-
Parse inference model predictions to triton inference responses
|
15
|
-
per model type.
|
16
|
-
"""
|
17
|
-
|
18
|
-
from functools import wraps
|
19
|
-
from itertools import zip_longest
|
20
|
-
from typing import Callable, Dict
|
21
|
-
import numpy as np
|
22
|
-
|
23
|
-
try:
|
24
|
-
import triton_python_backend_utils as pb_utils
|
25
|
-
except ModuleNotFoundError:
|
26
|
-
pass
|
27
|
-
|
28
|
-
|
29
|
-
def visual_detector(func: Callable):
|
30
|
-
"""
|
31
|
-
Visual detector type output parser.
|
32
|
-
"""
|
33
|
-
|
34
|
-
@wraps(func)
|
35
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
36
|
-
"""
|
37
|
-
Format predictions and return clarifai compatible output.
|
38
|
-
"""
|
39
|
-
out_bboxes = []
|
40
|
-
out_labels = []
|
41
|
-
out_scores = []
|
42
|
-
|
43
|
-
# input_data passed as list of images
|
44
|
-
preds = func(self, list(input_data[:]), *args, **kwargs)
|
45
|
-
for pred in preds:
|
46
|
-
out_bboxes.append(pred.predicted_bboxes)
|
47
|
-
out_labels.append(pred.predicted_labels)
|
48
|
-
out_scores.append(pred.predicted_scores)
|
49
|
-
|
50
|
-
if len(out_bboxes) < 1 or len(out_labels) < 1:
|
51
|
-
out_tensor_bboxes = pb_utils.Tensor("predicted_bboxes", np.zeros((0, 4), dtype=np.float32))
|
52
|
-
out_tensor_labels = pb_utils.Tensor("predicted_labels", np.zeros((0, 1), dtype=np.int32))
|
53
|
-
out_tensor_scores = pb_utils.Tensor("predicted_scores", np.zeros((0, 1), dtype=np.float32))
|
54
|
-
else:
|
55
|
-
out_tensor_bboxes = pb_utils.Tensor("predicted_bboxes",
|
56
|
-
np.asarray(out_bboxes, dtype=np.float32))
|
57
|
-
out_tensor_labels = pb_utils.Tensor("predicted_labels",
|
58
|
-
np.asarray(out_labels, dtype=np.int32))
|
59
|
-
out_tensor_scores = pb_utils.Tensor("predicted_scores",
|
60
|
-
np.asarray(out_scores, dtype=np.float32))
|
61
|
-
|
62
|
-
inference_response = pb_utils.InferenceResponse(
|
63
|
-
output_tensors=[out_tensor_bboxes, out_tensor_labels, out_tensor_scores])
|
64
|
-
|
65
|
-
return inference_response
|
66
|
-
|
67
|
-
return parse_predictions
|
68
|
-
|
69
|
-
|
70
|
-
def visual_classifier(func: Callable):
|
71
|
-
"""
|
72
|
-
Visual classifier type output parser.
|
73
|
-
"""
|
74
|
-
|
75
|
-
@wraps(func)
|
76
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
77
|
-
"""
|
78
|
-
Format predictions and return clarifai compatible output.
|
79
|
-
"""
|
80
|
-
out_scores = []
|
81
|
-
# input_data passed as list of images
|
82
|
-
preds = func(self, list(input_data[:]), *args, **kwargs)
|
83
|
-
|
84
|
-
for pred in preds:
|
85
|
-
out_scores.append(pred.predicted_scores)
|
86
|
-
|
87
|
-
out_tensor_scores = pb_utils.Tensor("softmax_predictions",
|
88
|
-
np.asarray(out_scores, dtype=np.float32))
|
89
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_scores])
|
90
|
-
|
91
|
-
return inference_response
|
92
|
-
|
93
|
-
return parse_predictions
|
94
|
-
|
95
|
-
|
96
|
-
def text_classifier(func: Callable):
|
97
|
-
"""
|
98
|
-
Text classifier type output parser.
|
99
|
-
"""
|
100
|
-
|
101
|
-
@wraps(func)
|
102
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
103
|
-
"""
|
104
|
-
Format predictions and return clarifai compatible output.
|
105
|
-
"""
|
106
|
-
out_scores = []
|
107
|
-
input_data = [in_elem[0].decode() for in_elem in input_data]
|
108
|
-
preds = func(self, input_data, *args, **kwargs)
|
109
|
-
|
110
|
-
for pred in preds:
|
111
|
-
out_scores.append(pred.predicted_scores)
|
112
|
-
|
113
|
-
out_tensor_scores = pb_utils.Tensor("softmax_predictions",
|
114
|
-
np.asarray(out_scores, dtype=np.float32))
|
115
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_scores])
|
116
|
-
|
117
|
-
return inference_response
|
118
|
-
|
119
|
-
return parse_predictions
|
120
|
-
|
121
|
-
|
122
|
-
def text_to_text(func: Callable):
|
123
|
-
"""
|
124
|
-
Text to text type output parser.
|
125
|
-
Convert a sequence of text into another e.g. text generation,
|
126
|
-
summarization or translation.
|
127
|
-
"""
|
128
|
-
|
129
|
-
@wraps(func)
|
130
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
131
|
-
"""
|
132
|
-
Format predictions and return clarifai compatible output.
|
133
|
-
"""
|
134
|
-
out_text = []
|
135
|
-
input_data = [in_elem[0].decode() for in_elem in input_data]
|
136
|
-
preds = func(self, input_data, *args, **kwargs)
|
137
|
-
|
138
|
-
for pred in preds:
|
139
|
-
out_text.append(pred.predicted_text)
|
140
|
-
|
141
|
-
out_text_tensor = pb_utils.Tensor("text", np.asarray(out_text, dtype=object))
|
142
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_text_tensor])
|
143
|
-
|
144
|
-
return inference_response
|
145
|
-
|
146
|
-
return parse_predictions
|
147
|
-
|
148
|
-
|
149
|
-
def text_embedder(func: Callable):
|
150
|
-
"""
|
151
|
-
Text embedder type output parser.
|
152
|
-
Generates embeddings for an input text.
|
153
|
-
"""
|
154
|
-
|
155
|
-
@wraps(func)
|
156
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
157
|
-
"""
|
158
|
-
Format predictions and return clarifai compatible output.
|
159
|
-
"""
|
160
|
-
out_embeddings = []
|
161
|
-
input_data = [in_elem[0].decode() for in_elem in input_data]
|
162
|
-
preds = func(self, input_data, *args, **kwargs)
|
163
|
-
|
164
|
-
for pred in preds:
|
165
|
-
out_embeddings.append(pred.embedding_vector)
|
166
|
-
|
167
|
-
out_embed_tensor = pb_utils.Tensor("embeddings", np.asarray(out_embeddings, dtype=np.float32))
|
168
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_embed_tensor])
|
169
|
-
|
170
|
-
return inference_response
|
171
|
-
|
172
|
-
return parse_predictions
|
173
|
-
|
174
|
-
|
175
|
-
def visual_embedder(func: Callable):
|
176
|
-
"""
|
177
|
-
Visual embedder type output parser.
|
178
|
-
Generates embeddings for an input image.
|
179
|
-
"""
|
180
|
-
|
181
|
-
@wraps(func)
|
182
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
183
|
-
"""
|
184
|
-
Format predictions and return clarifai compatible output.
|
185
|
-
"""
|
186
|
-
out_embeddings = []
|
187
|
-
# input_data passed as list of images
|
188
|
-
preds = func(self, list(input_data[:]), *args, **kwargs)
|
189
|
-
|
190
|
-
for pred in preds:
|
191
|
-
out_embeddings.append(pred.embedding_vector)
|
192
|
-
|
193
|
-
out_embed_tensor = pb_utils.Tensor("embeddings", np.asarray(out_embeddings, dtype=np.float32))
|
194
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_embed_tensor])
|
195
|
-
|
196
|
-
return inference_response
|
197
|
-
|
198
|
-
return parse_predictions
|
199
|
-
|
200
|
-
|
201
|
-
def visual_segmenter(func: Callable):
|
202
|
-
"""
|
203
|
-
Visual segmenter type output parser.
|
204
|
-
"""
|
205
|
-
|
206
|
-
@wraps(func)
|
207
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
208
|
-
"""
|
209
|
-
Format predictions and return clarifai compatible output.
|
210
|
-
"""
|
211
|
-
masks = []
|
212
|
-
# input_data passed as list of images
|
213
|
-
preds = func(self, list(input_data[:]), *args, **kwargs)
|
214
|
-
|
215
|
-
for pred in preds:
|
216
|
-
masks.append(pred.predicted_mask)
|
217
|
-
|
218
|
-
out_mask_tensor = pb_utils.Tensor("predicted_mask", np.asarray(masks, dtype=np.int64))
|
219
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_mask_tensor])
|
220
|
-
|
221
|
-
return inference_response
|
222
|
-
|
223
|
-
return parse_predictions
|
224
|
-
|
225
|
-
|
226
|
-
def text_to_image(func: Callable):
|
227
|
-
"""
|
228
|
-
Text to image type output parser.
|
229
|
-
"""
|
230
|
-
|
231
|
-
@wraps(func)
|
232
|
-
def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
|
233
|
-
"""
|
234
|
-
Format predictions and return clarifai compatible output.
|
235
|
-
"""
|
236
|
-
gen_images = []
|
237
|
-
input_data = [in_elem[0].decode() for in_elem in input_data]
|
238
|
-
preds = func(self, input_data, *args, **kwargs)
|
239
|
-
|
240
|
-
for pred in preds:
|
241
|
-
gen_images.append(pred.image)
|
242
|
-
|
243
|
-
out_image_tensor = pb_utils.Tensor("image", np.asarray(gen_images, dtype=np.uint8))
|
244
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_image_tensor])
|
245
|
-
|
246
|
-
return inference_response
|
247
|
-
|
248
|
-
return parse_predictions
|
249
|
-
|
250
|
-
|
251
|
-
def multimodal_embedder(func: Callable):
|
252
|
-
"""
|
253
|
-
Multimodal embedder type output parser.
|
254
|
-
Generates embeddings for image or text input.
|
255
|
-
"""
|
256
|
-
|
257
|
-
@wraps(func)
|
258
|
-
def parse_predictions(self, input_data: Dict[str, np.ndarray], *args, **kwargs):
|
259
|
-
"""
|
260
|
-
Format predictions and return clarifai compatible output.
|
261
|
-
"""
|
262
|
-
out_embeddings = []
|
263
|
-
model_input_data = []
|
264
|
-
for group in zip_longest(*input_data.values()):
|
265
|
-
_input_data = dict(zip(input_data, group))
|
266
|
-
for k, v in _input_data.items():
|
267
|
-
# decode np.object to string
|
268
|
-
if isinstance(v, np.ndarray) and v.dtype == np.object_:
|
269
|
-
_input_data.update({k: v[0].decode()})
|
270
|
-
model_input_data.append(_input_data)
|
271
|
-
|
272
|
-
preds = func(self, model_input_data, *args, **kwargs)
|
273
|
-
for pred in preds:
|
274
|
-
out_embeddings.append(pred.embedding_vector)
|
275
|
-
|
276
|
-
out_embed_tensor = pb_utils.Tensor("embeddings", np.asarray(out_embeddings, dtype=np.float32))
|
277
|
-
inference_response = pb_utils.InferenceResponse(output_tensors=[out_embed_tensor])
|
278
|
-
|
279
|
-
return inference_response
|
280
|
-
|
281
|
-
return parse_predictions
|
@@ -1,14 +0,0 @@
|
|
1
|
-
# Copyright 2023 Clarifai, Inc.
|
2
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
-
# you may not use this file except in compliance with the License.
|
4
|
-
# You may obtain a copy of the License at
|
5
|
-
#
|
6
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
-
#
|
8
|
-
# Unless required by applicable law or agreed to in writing, software
|
9
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
-
# See the License for the specific language governing permissions and
|
12
|
-
# limitations under the License.
|
13
|
-
from .build import RepositoryBuilder # noqa
|
14
|
-
from .static_files.base_test import BaseTest # noqa
|
@@ -1,198 +0,0 @@
|
|
1
|
-
# Copyright 2023 Clarifai, Inc.
|
2
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
-
# you may not use this file except in compliance with the License.
|
4
|
-
# You may obtain a copy of the License at
|
5
|
-
#
|
6
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
-
#
|
8
|
-
# Unless required by applicable law or agreed to in writing, software
|
9
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
-
# See the License for the specific language governing permissions and
|
12
|
-
# limitations under the License.
|
13
|
-
"""
|
14
|
-
Triton python backend inference model controller.
|
15
|
-
"""
|
16
|
-
|
17
|
-
import inspect
|
18
|
-
import os
|
19
|
-
import shutil
|
20
|
-
import zipfile
|
21
|
-
from dataclasses import asdict
|
22
|
-
from pathlib import Path
|
23
|
-
from typing import Iterable, Literal, Union
|
24
|
-
|
25
|
-
import yaml
|
26
|
-
from tqdm import tqdm
|
27
|
-
|
28
|
-
from ..constants import BUILT_MODEL_EXT
|
29
|
-
from ..model_config import MODEL_TYPES, ModelConfigClass, base, get_model_config, load_user_config
|
30
|
-
from ..model_config.base import * # noqa
|
31
|
-
from ..model_config.config import parse_config
|
32
|
-
from ..model_config.triton.serializer import Serializer
|
33
|
-
|
34
|
-
|
35
|
-
def __parse_type_to_class():
|
36
|
-
_t = {}
|
37
|
-
_classes = inspect.getmembers(base, inspect.isclass)
|
38
|
-
for cls_name, cls_obj in _classes:
|
39
|
-
if cls_obj.__base__ is base._BaseClarifaiModel:
|
40
|
-
_t.update({cls_obj._config.clarifai_model.type: cls_name})
|
41
|
-
return _t
|
42
|
-
|
43
|
-
|
44
|
-
_TYPE_TO_CLASS = __parse_type_to_class()
|
45
|
-
|
46
|
-
|
47
|
-
def _get_static_file_path(relative_path: str):
|
48
|
-
curr_dir = os.path.dirname(__file__)
|
49
|
-
return os.path.join(curr_dir, "static_files", relative_path)
|
50
|
-
|
51
|
-
|
52
|
-
def _read_static_file(relative_path: str):
|
53
|
-
path = _get_static_file_path(relative_path)
|
54
|
-
with open(path, "r") as f:
|
55
|
-
return f.read()
|
56
|
-
|
57
|
-
|
58
|
-
def copy_folder(src_folder, dest_folder, exclude_items=None):
|
59
|
-
|
60
|
-
if exclude_items is None:
|
61
|
-
exclude_items = set()
|
62
|
-
|
63
|
-
# Ensure the destination folder exists
|
64
|
-
if not os.path.exists(dest_folder):
|
65
|
-
os.makedirs(dest_folder)
|
66
|
-
|
67
|
-
loader = tqdm(os.listdir(src_folder))
|
68
|
-
if exclude_items:
|
69
|
-
print(f"NOTE: skipping {exclude_items}")
|
70
|
-
|
71
|
-
for item in loader:
|
72
|
-
loader.set_description(f"copying {item}...")
|
73
|
-
src_item = os.path.join(src_folder, item)
|
74
|
-
dest_item = os.path.join(dest_folder, item)
|
75
|
-
|
76
|
-
# Skip items in the exclude list
|
77
|
-
if item in exclude_items or item.endswith(BUILT_MODEL_EXT):
|
78
|
-
continue
|
79
|
-
|
80
|
-
# Copy files directly
|
81
|
-
if os.path.isfile(src_item):
|
82
|
-
shutil.copy2(src_item, dest_item)
|
83
|
-
|
84
|
-
# Copy directories using copytree
|
85
|
-
elif os.path.isdir(src_item):
|
86
|
-
shutil.copytree(src_item, dest_item, symlinks=False, ignore=None, dirs_exist_ok=True)
|
87
|
-
|
88
|
-
|
89
|
-
def zip_dir(input: Union[Path, str], zip_filename: Union[Path, str]):
|
90
|
-
"""
|
91
|
-
Zip folder without compressing
|
92
|
-
"""
|
93
|
-
# Convert to Path object
|
94
|
-
dir = Path(input)
|
95
|
-
|
96
|
-
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_STORED) as zip_file:
|
97
|
-
for entry in dir.rglob("*"):
|
98
|
-
zip_file.write(entry, entry.relative_to(dir))
|
99
|
-
|
100
|
-
|
101
|
-
class RepositoryBuilder:
|
102
|
-
|
103
|
-
@staticmethod
|
104
|
-
def init_repository(model_type: str, working_dir: str, backend=Literal['triton'], **kwargs):
|
105
|
-
assert model_type in MODEL_TYPES
|
106
|
-
model_type = model_type
|
107
|
-
default_model_type_config: ModelConfigClass = get_model_config(model_type)
|
108
|
-
|
109
|
-
os.makedirs(working_dir, exist_ok=True)
|
110
|
-
|
111
|
-
def __write_to(filename, data):
|
112
|
-
with open(os.path.join(working_dir, filename), "w") as f:
|
113
|
-
f.write(data)
|
114
|
-
|
115
|
-
# create inference.py
|
116
|
-
_filename = "inference.py"
|
117
|
-
inference_py = _read_static_file(_filename)
|
118
|
-
inference_py = inference_py.replace("InferenceModel()",
|
119
|
-
f"InferenceModel({_TYPE_TO_CLASS[model_type]})")
|
120
|
-
inference_py = inference_py.replace("predict_docstring",
|
121
|
-
eval(_TYPE_TO_CLASS[model_type]).predict.__doc__)
|
122
|
-
# create config
|
123
|
-
config = asdict(default_model_type_config)
|
124
|
-
if backend == "triton":
|
125
|
-
max_batch_size = kwargs.get("max_batch_size", None)
|
126
|
-
image_shape = kwargs.get("image_shape", None)
|
127
|
-
if max_batch_size:
|
128
|
-
config['serving_backend']['triton']['max_batch_size'] = max_batch_size
|
129
|
-
if image_shape:
|
130
|
-
config['serving_backend']['triton']['image_shape'] = image_shape
|
131
|
-
config = parse_config(config).dump_to_user_config()
|
132
|
-
config_data = yaml.dump(config)
|
133
|
-
sample_yaml = _read_static_file("sample_clarifai_config.yaml")
|
134
|
-
config_data = sample_yaml + "\n\n" + config_data
|
135
|
-
__write_to("clarifai_config.yaml", config_data)
|
136
|
-
#
|
137
|
-
# create inference.py after checking all configs
|
138
|
-
__write_to(_filename, inference_py)
|
139
|
-
# create test.py
|
140
|
-
__write_to("test.py", _read_static_file("test.py"))
|
141
|
-
# create requirements.txt
|
142
|
-
__write_to("requirements.txt", _read_static_file("_requirements.txt"))
|
143
|
-
|
144
|
-
@staticmethod
|
145
|
-
def build(working_dir: str, output_dir: str = None, name: str = None, backend=Literal['triton']):
|
146
|
-
if not output_dir:
|
147
|
-
output_dir = working_dir
|
148
|
-
else:
|
149
|
-
os.makedirs(output_dir, exist_ok=True)
|
150
|
-
|
151
|
-
temp_folder = os.path.join(working_dir, ".cache")
|
152
|
-
os.makedirs(temp_folder, exist_ok=True)
|
153
|
-
|
154
|
-
user_config_file = os.path.join(working_dir, "clarifai_config.yaml")
|
155
|
-
assert os.path.exists(
|
156
|
-
user_config_file
|
157
|
-
), f"FileNotFound: please make sure `clarifai_config.yaml` exists in {working_dir}"
|
158
|
-
user_config = load_user_config(user_config_file)
|
159
|
-
|
160
|
-
if backend == "triton":
|
161
|
-
triton_1_ver = os.path.join(temp_folder, "1")
|
162
|
-
os.makedirs(triton_1_ver, exist_ok=True)
|
163
|
-
# check if labels exists
|
164
|
-
for output_config in user_config.serving_backend.triton.output:
|
165
|
-
if output_config.label_filename:
|
166
|
-
user_labels = user_config.clarifai_model.labels
|
167
|
-
assert user_labels, f"Model type `{user_config.clarifai_model.type}` requires labels, "\
|
168
|
-
f"but can not found value of `clarifai_model.labels` in {user_config_file}. Please update this attribute to build the model"
|
169
|
-
with open(os.path.join(temp_folder, "labels.txt"), "w") as f:
|
170
|
-
if not isinstance(user_labels, Iterable):
|
171
|
-
user_labels = [user_labels]
|
172
|
-
f.write("\n".join([str(lb) for lb in user_labels]) + "\n")
|
173
|
-
|
174
|
-
# copy model.py
|
175
|
-
shutil.copy(_get_static_file_path("triton/model.py"), triton_1_ver)
|
176
|
-
# copy requirements.txt
|
177
|
-
shutil.copy(os.path.join(working_dir, "requirements.txt"), temp_folder)
|
178
|
-
# copy all other files
|
179
|
-
copy_folder(
|
180
|
-
working_dir, triton_1_ver, exclude_items=["requirements.txt", ".cache", "__pycache__"])
|
181
|
-
# generate config.pbtxt
|
182
|
-
_config_pbtxt_serializer = Serializer(user_config.serving_backend.triton)
|
183
|
-
_config_pbtxt_serializer.to_file(temp_folder)
|
184
|
-
|
185
|
-
else:
|
186
|
-
raise ValueError(f"backend must be ['triton'], got {backend}")
|
187
|
-
|
188
|
-
clarifai_model_name = name or user_config.clarifai_model.clarifai_model_id or "model"
|
189
|
-
clarifai_model_name += BUILT_MODEL_EXT
|
190
|
-
clarifai_model_name = os.path.join(output_dir, clarifai_model_name)
|
191
|
-
|
192
|
-
print(
|
193
|
-
"Model building in progress; the duration may vary depending on the size of checkpoints/assets..."
|
194
|
-
)
|
195
|
-
zip_dir(temp_folder, clarifai_model_name)
|
196
|
-
print(f"Finished. Your model is located at {clarifai_model_name}")
|
197
|
-
|
198
|
-
return clarifai_model_name
|