clarifai 10.8.3__py3-none-any.whl → 10.8.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. clarifai/__init__.py +1 -1
  2. clarifai/client/dataset.py +9 -3
  3. clarifai/constants/dataset.py +1 -1
  4. clarifai/datasets/upload/base.py +6 -3
  5. clarifai/datasets/upload/features.py +10 -0
  6. clarifai/datasets/upload/image.py +22 -13
  7. clarifai/datasets/upload/multimodal.py +70 -0
  8. clarifai/datasets/upload/text.py +8 -5
  9. clarifai/runners/utils/data_handler.py +31 -44
  10. clarifai/runners/utils/loader.py +6 -5
  11. clarifai/utils/misc.py +6 -0
  12. {clarifai-10.8.3.dist-info → clarifai-10.8.5.dist-info}/METADATA +2 -1
  13. {clarifai-10.8.3.dist-info → clarifai-10.8.5.dist-info}/RECORD +17 -60
  14. clarifai/models/model_serving/README.md +0 -158
  15. clarifai/models/model_serving/__init__.py +0 -14
  16. clarifai/models/model_serving/cli/__init__.py +0 -12
  17. clarifai/models/model_serving/cli/_utils.py +0 -53
  18. clarifai/models/model_serving/cli/base.py +0 -14
  19. clarifai/models/model_serving/cli/build.py +0 -79
  20. clarifai/models/model_serving/cli/clarifai_clis.py +0 -33
  21. clarifai/models/model_serving/cli/create.py +0 -171
  22. clarifai/models/model_serving/cli/example_cli.py +0 -34
  23. clarifai/models/model_serving/cli/login.py +0 -26
  24. clarifai/models/model_serving/cli/upload.py +0 -183
  25. clarifai/models/model_serving/constants.py +0 -21
  26. clarifai/models/model_serving/docs/cli.md +0 -161
  27. clarifai/models/model_serving/docs/concepts.md +0 -229
  28. clarifai/models/model_serving/docs/dependencies.md +0 -11
  29. clarifai/models/model_serving/docs/inference_parameters.md +0 -139
  30. clarifai/models/model_serving/docs/model_types.md +0 -19
  31. clarifai/models/model_serving/model_config/__init__.py +0 -16
  32. clarifai/models/model_serving/model_config/base.py +0 -369
  33. clarifai/models/model_serving/model_config/config.py +0 -312
  34. clarifai/models/model_serving/model_config/inference_parameter.py +0 -129
  35. clarifai/models/model_serving/model_config/model_types_config/multimodal-embedder.yaml +0 -25
  36. clarifai/models/model_serving/model_config/model_types_config/text-classifier.yaml +0 -19
  37. clarifai/models/model_serving/model_config/model_types_config/text-embedder.yaml +0 -20
  38. clarifai/models/model_serving/model_config/model_types_config/text-to-image.yaml +0 -19
  39. clarifai/models/model_serving/model_config/model_types_config/text-to-text.yaml +0 -19
  40. clarifai/models/model_serving/model_config/model_types_config/visual-classifier.yaml +0 -22
  41. clarifai/models/model_serving/model_config/model_types_config/visual-detector.yaml +0 -32
  42. clarifai/models/model_serving/model_config/model_types_config/visual-embedder.yaml +0 -19
  43. clarifai/models/model_serving/model_config/model_types_config/visual-segmenter.yaml +0 -19
  44. clarifai/models/model_serving/model_config/output.py +0 -133
  45. clarifai/models/model_serving/model_config/triton/__init__.py +0 -14
  46. clarifai/models/model_serving/model_config/triton/serializer.py +0 -136
  47. clarifai/models/model_serving/model_config/triton/triton_config.py +0 -182
  48. clarifai/models/model_serving/model_config/triton/wrappers.py +0 -281
  49. clarifai/models/model_serving/repo_build/__init__.py +0 -14
  50. clarifai/models/model_serving/repo_build/build.py +0 -198
  51. clarifai/models/model_serving/repo_build/static_files/_requirements.txt +0 -2
  52. clarifai/models/model_serving/repo_build/static_files/base_test.py +0 -169
  53. clarifai/models/model_serving/repo_build/static_files/inference.py +0 -26
  54. clarifai/models/model_serving/repo_build/static_files/sample_clarifai_config.yaml +0 -25
  55. clarifai/models/model_serving/repo_build/static_files/test.py +0 -40
  56. clarifai/models/model_serving/repo_build/static_files/triton/model.py +0 -75
  57. clarifai/models/model_serving/utils.py +0 -31
  58. {clarifai-10.8.3.dist-info → clarifai-10.8.5.dist-info}/LICENSE +0 -0
  59. {clarifai-10.8.3.dist-info → clarifai-10.8.5.dist-info}/WHEEL +0 -0
  60. {clarifai-10.8.3.dist-info → clarifai-10.8.5.dist-info}/entry_points.txt +0 -0
  61. {clarifai-10.8.3.dist-info → clarifai-10.8.5.dist-info}/top_level.txt +0 -0
@@ -1,281 +0,0 @@
1
- # Copyright 2023 Clarifai, Inc.
2
- # Licensed under the Apache License, Version 2.0 (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # http://www.apache.org/licenses/LICENSE-2.0
7
- #
8
- # Unless required by applicable law or agreed to in writing, software
9
- # distributed under the License is distributed on an "AS IS" BASIS,
10
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
- # See the License for the specific language governing permissions and
12
- # limitations under the License.
13
- """
14
- Parse inference model predictions to triton inference responses
15
- per model type.
16
- """
17
-
18
- from functools import wraps
19
- from itertools import zip_longest
20
- from typing import Callable, Dict
21
- import numpy as np
22
-
23
- try:
24
- import triton_python_backend_utils as pb_utils
25
- except ModuleNotFoundError:
26
- pass
27
-
28
-
29
- def visual_detector(func: Callable):
30
- """
31
- Visual detector type output parser.
32
- """
33
-
34
- @wraps(func)
35
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
36
- """
37
- Format predictions and return clarifai compatible output.
38
- """
39
- out_bboxes = []
40
- out_labels = []
41
- out_scores = []
42
-
43
- # input_data passed as list of images
44
- preds = func(self, list(input_data[:]), *args, **kwargs)
45
- for pred in preds:
46
- out_bboxes.append(pred.predicted_bboxes)
47
- out_labels.append(pred.predicted_labels)
48
- out_scores.append(pred.predicted_scores)
49
-
50
- if len(out_bboxes) < 1 or len(out_labels) < 1:
51
- out_tensor_bboxes = pb_utils.Tensor("predicted_bboxes", np.zeros((0, 4), dtype=np.float32))
52
- out_tensor_labels = pb_utils.Tensor("predicted_labels", np.zeros((0, 1), dtype=np.int32))
53
- out_tensor_scores = pb_utils.Tensor("predicted_scores", np.zeros((0, 1), dtype=np.float32))
54
- else:
55
- out_tensor_bboxes = pb_utils.Tensor("predicted_bboxes",
56
- np.asarray(out_bboxes, dtype=np.float32))
57
- out_tensor_labels = pb_utils.Tensor("predicted_labels",
58
- np.asarray(out_labels, dtype=np.int32))
59
- out_tensor_scores = pb_utils.Tensor("predicted_scores",
60
- np.asarray(out_scores, dtype=np.float32))
61
-
62
- inference_response = pb_utils.InferenceResponse(
63
- output_tensors=[out_tensor_bboxes, out_tensor_labels, out_tensor_scores])
64
-
65
- return inference_response
66
-
67
- return parse_predictions
68
-
69
-
70
- def visual_classifier(func: Callable):
71
- """
72
- Visual classifier type output parser.
73
- """
74
-
75
- @wraps(func)
76
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
77
- """
78
- Format predictions and return clarifai compatible output.
79
- """
80
- out_scores = []
81
- # input_data passed as list of images
82
- preds = func(self, list(input_data[:]), *args, **kwargs)
83
-
84
- for pred in preds:
85
- out_scores.append(pred.predicted_scores)
86
-
87
- out_tensor_scores = pb_utils.Tensor("softmax_predictions",
88
- np.asarray(out_scores, dtype=np.float32))
89
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_scores])
90
-
91
- return inference_response
92
-
93
- return parse_predictions
94
-
95
-
96
- def text_classifier(func: Callable):
97
- """
98
- Text classifier type output parser.
99
- """
100
-
101
- @wraps(func)
102
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
103
- """
104
- Format predictions and return clarifai compatible output.
105
- """
106
- out_scores = []
107
- input_data = [in_elem[0].decode() for in_elem in input_data]
108
- preds = func(self, input_data, *args, **kwargs)
109
-
110
- for pred in preds:
111
- out_scores.append(pred.predicted_scores)
112
-
113
- out_tensor_scores = pb_utils.Tensor("softmax_predictions",
114
- np.asarray(out_scores, dtype=np.float32))
115
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_scores])
116
-
117
- return inference_response
118
-
119
- return parse_predictions
120
-
121
-
122
- def text_to_text(func: Callable):
123
- """
124
- Text to text type output parser.
125
- Convert a sequence of text into another e.g. text generation,
126
- summarization or translation.
127
- """
128
-
129
- @wraps(func)
130
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
131
- """
132
- Format predictions and return clarifai compatible output.
133
- """
134
- out_text = []
135
- input_data = [in_elem[0].decode() for in_elem in input_data]
136
- preds = func(self, input_data, *args, **kwargs)
137
-
138
- for pred in preds:
139
- out_text.append(pred.predicted_text)
140
-
141
- out_text_tensor = pb_utils.Tensor("text", np.asarray(out_text, dtype=object))
142
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_text_tensor])
143
-
144
- return inference_response
145
-
146
- return parse_predictions
147
-
148
-
149
- def text_embedder(func: Callable):
150
- """
151
- Text embedder type output parser.
152
- Generates embeddings for an input text.
153
- """
154
-
155
- @wraps(func)
156
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
157
- """
158
- Format predictions and return clarifai compatible output.
159
- """
160
- out_embeddings = []
161
- input_data = [in_elem[0].decode() for in_elem in input_data]
162
- preds = func(self, input_data, *args, **kwargs)
163
-
164
- for pred in preds:
165
- out_embeddings.append(pred.embedding_vector)
166
-
167
- out_embed_tensor = pb_utils.Tensor("embeddings", np.asarray(out_embeddings, dtype=np.float32))
168
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_embed_tensor])
169
-
170
- return inference_response
171
-
172
- return parse_predictions
173
-
174
-
175
- def visual_embedder(func: Callable):
176
- """
177
- Visual embedder type output parser.
178
- Generates embeddings for an input image.
179
- """
180
-
181
- @wraps(func)
182
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
183
- """
184
- Format predictions and return clarifai compatible output.
185
- """
186
- out_embeddings = []
187
- # input_data passed as list of images
188
- preds = func(self, list(input_data[:]), *args, **kwargs)
189
-
190
- for pred in preds:
191
- out_embeddings.append(pred.embedding_vector)
192
-
193
- out_embed_tensor = pb_utils.Tensor("embeddings", np.asarray(out_embeddings, dtype=np.float32))
194
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_embed_tensor])
195
-
196
- return inference_response
197
-
198
- return parse_predictions
199
-
200
-
201
- def visual_segmenter(func: Callable):
202
- """
203
- Visual segmenter type output parser.
204
- """
205
-
206
- @wraps(func)
207
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
208
- """
209
- Format predictions and return clarifai compatible output.
210
- """
211
- masks = []
212
- # input_data passed as list of images
213
- preds = func(self, list(input_data[:]), *args, **kwargs)
214
-
215
- for pred in preds:
216
- masks.append(pred.predicted_mask)
217
-
218
- out_mask_tensor = pb_utils.Tensor("predicted_mask", np.asarray(masks, dtype=np.int64))
219
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_mask_tensor])
220
-
221
- return inference_response
222
-
223
- return parse_predictions
224
-
225
-
226
- def text_to_image(func: Callable):
227
- """
228
- Text to image type output parser.
229
- """
230
-
231
- @wraps(func)
232
- def parse_predictions(self, input_data: np.ndarray, *args, **kwargs):
233
- """
234
- Format predictions and return clarifai compatible output.
235
- """
236
- gen_images = []
237
- input_data = [in_elem[0].decode() for in_elem in input_data]
238
- preds = func(self, input_data, *args, **kwargs)
239
-
240
- for pred in preds:
241
- gen_images.append(pred.image)
242
-
243
- out_image_tensor = pb_utils.Tensor("image", np.asarray(gen_images, dtype=np.uint8))
244
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_image_tensor])
245
-
246
- return inference_response
247
-
248
- return parse_predictions
249
-
250
-
251
- def multimodal_embedder(func: Callable):
252
- """
253
- Multimodal embedder type output parser.
254
- Generates embeddings for image or text input.
255
- """
256
-
257
- @wraps(func)
258
- def parse_predictions(self, input_data: Dict[str, np.ndarray], *args, **kwargs):
259
- """
260
- Format predictions and return clarifai compatible output.
261
- """
262
- out_embeddings = []
263
- model_input_data = []
264
- for group in zip_longest(*input_data.values()):
265
- _input_data = dict(zip(input_data, group))
266
- for k, v in _input_data.items():
267
- # decode np.object to string
268
- if isinstance(v, np.ndarray) and v.dtype == np.object_:
269
- _input_data.update({k: v[0].decode()})
270
- model_input_data.append(_input_data)
271
-
272
- preds = func(self, model_input_data, *args, **kwargs)
273
- for pred in preds:
274
- out_embeddings.append(pred.embedding_vector)
275
-
276
- out_embed_tensor = pb_utils.Tensor("embeddings", np.asarray(out_embeddings, dtype=np.float32))
277
- inference_response = pb_utils.InferenceResponse(output_tensors=[out_embed_tensor])
278
-
279
- return inference_response
280
-
281
- return parse_predictions
@@ -1,14 +0,0 @@
1
- # Copyright 2023 Clarifai, Inc.
2
- # Licensed under the Apache License, Version 2.0 (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # http://www.apache.org/licenses/LICENSE-2.0
7
- #
8
- # Unless required by applicable law or agreed to in writing, software
9
- # distributed under the License is distributed on an "AS IS" BASIS,
10
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
- # See the License for the specific language governing permissions and
12
- # limitations under the License.
13
- from .build import RepositoryBuilder # noqa
14
- from .static_files.base_test import BaseTest # noqa
@@ -1,198 +0,0 @@
1
- # Copyright 2023 Clarifai, Inc.
2
- # Licensed under the Apache License, Version 2.0 (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # http://www.apache.org/licenses/LICENSE-2.0
7
- #
8
- # Unless required by applicable law or agreed to in writing, software
9
- # distributed under the License is distributed on an "AS IS" BASIS,
10
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
- # See the License for the specific language governing permissions and
12
- # limitations under the License.
13
- """
14
- Triton python backend inference model controller.
15
- """
16
-
17
- import inspect
18
- import os
19
- import shutil
20
- import zipfile
21
- from dataclasses import asdict
22
- from pathlib import Path
23
- from typing import Iterable, Literal, Union
24
-
25
- import yaml
26
- from tqdm import tqdm
27
-
28
- from ..constants import BUILT_MODEL_EXT
29
- from ..model_config import MODEL_TYPES, ModelConfigClass, base, get_model_config, load_user_config
30
- from ..model_config.base import * # noqa
31
- from ..model_config.config import parse_config
32
- from ..model_config.triton.serializer import Serializer
33
-
34
-
35
- def __parse_type_to_class():
36
- _t = {}
37
- _classes = inspect.getmembers(base, inspect.isclass)
38
- for cls_name, cls_obj in _classes:
39
- if cls_obj.__base__ is base._BaseClarifaiModel:
40
- _t.update({cls_obj._config.clarifai_model.type: cls_name})
41
- return _t
42
-
43
-
44
- _TYPE_TO_CLASS = __parse_type_to_class()
45
-
46
-
47
- def _get_static_file_path(relative_path: str):
48
- curr_dir = os.path.dirname(__file__)
49
- return os.path.join(curr_dir, "static_files", relative_path)
50
-
51
-
52
- def _read_static_file(relative_path: str):
53
- path = _get_static_file_path(relative_path)
54
- with open(path, "r") as f:
55
- return f.read()
56
-
57
-
58
- def copy_folder(src_folder, dest_folder, exclude_items=None):
59
-
60
- if exclude_items is None:
61
- exclude_items = set()
62
-
63
- # Ensure the destination folder exists
64
- if not os.path.exists(dest_folder):
65
- os.makedirs(dest_folder)
66
-
67
- loader = tqdm(os.listdir(src_folder))
68
- if exclude_items:
69
- print(f"NOTE: skipping {exclude_items}")
70
-
71
- for item in loader:
72
- loader.set_description(f"copying {item}...")
73
- src_item = os.path.join(src_folder, item)
74
- dest_item = os.path.join(dest_folder, item)
75
-
76
- # Skip items in the exclude list
77
- if item in exclude_items or item.endswith(BUILT_MODEL_EXT):
78
- continue
79
-
80
- # Copy files directly
81
- if os.path.isfile(src_item):
82
- shutil.copy2(src_item, dest_item)
83
-
84
- # Copy directories using copytree
85
- elif os.path.isdir(src_item):
86
- shutil.copytree(src_item, dest_item, symlinks=False, ignore=None, dirs_exist_ok=True)
87
-
88
-
89
- def zip_dir(input: Union[Path, str], zip_filename: Union[Path, str]):
90
- """
91
- Zip folder without compressing
92
- """
93
- # Convert to Path object
94
- dir = Path(input)
95
-
96
- with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_STORED) as zip_file:
97
- for entry in dir.rglob("*"):
98
- zip_file.write(entry, entry.relative_to(dir))
99
-
100
-
101
- class RepositoryBuilder:
102
-
103
- @staticmethod
104
- def init_repository(model_type: str, working_dir: str, backend=Literal['triton'], **kwargs):
105
- assert model_type in MODEL_TYPES
106
- model_type = model_type
107
- default_model_type_config: ModelConfigClass = get_model_config(model_type)
108
-
109
- os.makedirs(working_dir, exist_ok=True)
110
-
111
- def __write_to(filename, data):
112
- with open(os.path.join(working_dir, filename), "w") as f:
113
- f.write(data)
114
-
115
- # create inference.py
116
- _filename = "inference.py"
117
- inference_py = _read_static_file(_filename)
118
- inference_py = inference_py.replace("InferenceModel()",
119
- f"InferenceModel({_TYPE_TO_CLASS[model_type]})")
120
- inference_py = inference_py.replace("predict_docstring",
121
- eval(_TYPE_TO_CLASS[model_type]).predict.__doc__)
122
- # create config
123
- config = asdict(default_model_type_config)
124
- if backend == "triton":
125
- max_batch_size = kwargs.get("max_batch_size", None)
126
- image_shape = kwargs.get("image_shape", None)
127
- if max_batch_size:
128
- config['serving_backend']['triton']['max_batch_size'] = max_batch_size
129
- if image_shape:
130
- config['serving_backend']['triton']['image_shape'] = image_shape
131
- config = parse_config(config).dump_to_user_config()
132
- config_data = yaml.dump(config)
133
- sample_yaml = _read_static_file("sample_clarifai_config.yaml")
134
- config_data = sample_yaml + "\n\n" + config_data
135
- __write_to("clarifai_config.yaml", config_data)
136
- #
137
- # create inference.py after checking all configs
138
- __write_to(_filename, inference_py)
139
- # create test.py
140
- __write_to("test.py", _read_static_file("test.py"))
141
- # create requirements.txt
142
- __write_to("requirements.txt", _read_static_file("_requirements.txt"))
143
-
144
- @staticmethod
145
- def build(working_dir: str, output_dir: str = None, name: str = None, backend=Literal['triton']):
146
- if not output_dir:
147
- output_dir = working_dir
148
- else:
149
- os.makedirs(output_dir, exist_ok=True)
150
-
151
- temp_folder = os.path.join(working_dir, ".cache")
152
- os.makedirs(temp_folder, exist_ok=True)
153
-
154
- user_config_file = os.path.join(working_dir, "clarifai_config.yaml")
155
- assert os.path.exists(
156
- user_config_file
157
- ), f"FileNotFound: please make sure `clarifai_config.yaml` exists in {working_dir}"
158
- user_config = load_user_config(user_config_file)
159
-
160
- if backend == "triton":
161
- triton_1_ver = os.path.join(temp_folder, "1")
162
- os.makedirs(triton_1_ver, exist_ok=True)
163
- # check if labels exists
164
- for output_config in user_config.serving_backend.triton.output:
165
- if output_config.label_filename:
166
- user_labels = user_config.clarifai_model.labels
167
- assert user_labels, f"Model type `{user_config.clarifai_model.type}` requires labels, "\
168
- f"but can not found value of `clarifai_model.labels` in {user_config_file}. Please update this attribute to build the model"
169
- with open(os.path.join(temp_folder, "labels.txt"), "w") as f:
170
- if not isinstance(user_labels, Iterable):
171
- user_labels = [user_labels]
172
- f.write("\n".join([str(lb) for lb in user_labels]) + "\n")
173
-
174
- # copy model.py
175
- shutil.copy(_get_static_file_path("triton/model.py"), triton_1_ver)
176
- # copy requirements.txt
177
- shutil.copy(os.path.join(working_dir, "requirements.txt"), temp_folder)
178
- # copy all other files
179
- copy_folder(
180
- working_dir, triton_1_ver, exclude_items=["requirements.txt", ".cache", "__pycache__"])
181
- # generate config.pbtxt
182
- _config_pbtxt_serializer = Serializer(user_config.serving_backend.triton)
183
- _config_pbtxt_serializer.to_file(temp_folder)
184
-
185
- else:
186
- raise ValueError(f"backend must be ['triton'], got {backend}")
187
-
188
- clarifai_model_name = name or user_config.clarifai_model.clarifai_model_id or "model"
189
- clarifai_model_name += BUILT_MODEL_EXT
190
- clarifai_model_name = os.path.join(output_dir, clarifai_model_name)
191
-
192
- print(
193
- "Model building in progress; the duration may vary depending on the size of checkpoints/assets..."
194
- )
195
- zip_dir(temp_folder, clarifai_model_name)
196
- print(f"Finished. Your model is located at {clarifai_model_name}")
197
-
198
- return clarifai_model_name
@@ -1,2 +0,0 @@
1
- clarifai>9.10.4
2
- tritonclient[all]
@@ -1,169 +0,0 @@
1
- import os
2
- from copy import deepcopy
3
- from typing import Dict, Iterable, List, Union
4
-
5
- import numpy as np
6
- import yaml
7
-
8
- from clarifai.models.model_serving.constants import IMAGE_TENSOR_NAME, TEXT_TENSOR_NAME
9
- from clarifai.models.model_serving.model_config import (
10
- ClassifierOutput, EmbeddingOutput, ImageOutput, InferParam, InferParamManager, MasksOutput,
11
- ModelTypes, TextOutput, VisualDetector, load_user_config)
12
-
13
- _default_texts = ["Photo of a cat", "A cat is playing around", "Hello, this is test"]
14
-
15
- _default_images = [
16
- np.zeros((100, 100, 3), dtype='uint8'), #black
17
- np.ones((100, 100, 3), dtype='uint8') * 255, #white
18
- np.random.uniform(0, 255, (100, 100, 3)).astype('uint8') #noise
19
- ]
20
-
21
-
22
- def _is_valid_logit(x: np.array):
23
- return np.all(0 <= x) and np.all(x <= 1)
24
-
25
-
26
- def _is_non_negative(x: np.array):
27
- return np.all(x >= 0)
28
-
29
-
30
- def _is_integer(x):
31
- return np.all(np.equal(np.mod(x, 1), 0))
32
-
33
-
34
- class BaseTest:
35
- init_inference_parameters = {}
36
-
37
- def __init__(self, init_inference_parameters={}) -> None:
38
- import sys
39
- if 'inference' in sys.modules:
40
- del sys.modules['inference']
41
- import inference
42
- from inference import InferenceModel
43
- self.model = InferenceModel()
44
- self._base_dir = os.path.dirname(inference.__file__)
45
- self.cfg_path = os.path.join(self._base_dir, "clarifai_config.yaml")
46
- self.user_config = load_user_config(self.cfg_path)
47
- self._user_labels = None
48
- # check if labels exists
49
- for output_config in self.user_config.serving_backend.triton.output:
50
- if output_config.label_filename:
51
- self._user_labels = self.user_config.clarifai_model.labels
52
- assert self._user_labels, f"Model type `{self.user_config.clarifai_model.type}` requires labels, "\
53
- f"but can not found value of `clarifai_model.labels` in {self.cfg_path}. Please update this attribute to build the model"
54
-
55
- # update init vs user_defined params
56
- user_defined_infer_params = [
57
- InferParam(**each) for each in self.user_config.clarifai_model.inference_parameters
58
- ]
59
- total_infer_params = []
60
- if init_inference_parameters:
61
- self.init_inference_parameters = init_inference_parameters
62
- for k, v in self.init_inference_parameters.items():
63
- _exist = False
64
- for user_param in user_defined_infer_params:
65
- if user_param.path == k:
66
- if user_param.default_value != v:
67
- print(f"Warning: Overwrite parameter `{k}` with default value `{v}`")
68
- user_param.default_value = v
69
- _exist = True
70
- total_infer_params.append(user_param)
71
- user_defined_infer_params.remove(user_param)
72
- break
73
- if not _exist:
74
- total_infer_params.append(InferParamManager.from_kwargs(**{k: v}).params[0])
75
-
76
- self.infer_param_manager = InferParamManager(
77
- params=total_infer_params + user_defined_infer_params)
78
- self.user_config.clarifai_model.inference_parameters = self.infer_param_manager.get_list_params(
79
- )
80
- self._overwrite_cfg()
81
-
82
- @property
83
- def user_labels(self):
84
- return self._user_labels
85
-
86
- def _overwrite_cfg(self):
87
- config = yaml.dump(self.user_config.dump_to_user_config(),)
88
- with open(self.cfg_path, "w") as f:
89
- f.write(config)
90
-
91
- def predict(self, input_data: Union[List[np.ndarray], List[str], Dict[str, Union[List[
92
- np.ndarray], List[str]]]], **inference_parameters) -> Iterable:
93
- """
94
- Test Prediction method is exact `InferenceModel.predict` method with
95
- checking inference paramters.
96
-
97
- Args:
98
- -----
99
- - input_data: A list of input data item to predict on. The type depends on model input type:
100
- * `image`: List[np.ndarray]
101
- * `text`: List[str]
102
- * `multimodal`:
103
- input_data is list of dict where key is input type name e.i. `image`, `text` and value is list.
104
- {"image": List[np.ndarray], "text": List[str]}
105
-
106
- - **inference_parameters: keyword args of your inference parameters.
107
-
108
- Returns:
109
- --------
110
- List of your inference model output type
111
- """
112
- infer_params = self.infer_param_manager.validate(**inference_parameters)
113
- outputs = self.model.predict(input_data=input_data, inference_parameters=infer_params)
114
- outputs = self._verify_outputs(outputs)
115
- return outputs
116
-
117
- def _verify_outputs(self, outputs: List[Union[ClassifierOutput, VisualDetector, EmbeddingOutput,
118
- TextOutput, ImageOutput, MasksOutput]]):
119
- """Test output value/dims
120
-
121
- Args:
122
- outputs (List[Union[ClassifierOutput, VisualDetector, EmbeddingOutput, TextOutput, ImageOutput, MasksOutput]]): Outputs of `predict` method
123
- """
124
- _outputs = deepcopy(outputs)
125
- _output = _outputs[0]
126
-
127
- if isinstance(_output, EmbeddingOutput):
128
- # not test
129
- pass
130
- elif isinstance(_output, ClassifierOutput):
131
- for each in _outputs:
132
- assert _is_valid_logit(each.predicted_scores), "`predicted_scores` must be in range [0, 1]"
133
- assert len(each.predicted_scores) == len(
134
- self.user_labels
135
- ), f"`predicted_scores` dim must be equal to labels, got {len(each.predicted_scores)} != labels {len(self.user_labels)}"
136
- elif isinstance(_output, VisualDetector):
137
- for each in _outputs:
138
- assert _is_valid_logit(each.predicted_scores), "`predicted_scores` must be in range [0, 1]"
139
- assert _is_integer(each.predicted_labels), "`predicted_labels` must be integer"
140
- assert np.all(0 <= each.predicted_labels) and np.all(each.predicted_labels < len(
141
- self.user_labels)), f"`predicted_labels` must be in [0, {len(self.user_labels) - 1}]"
142
- assert _is_non_negative(each.predicted_bboxes), "`predicted_bboxes` must be >= 0"
143
- elif isinstance(_output, MasksOutput):
144
- for each in _outputs:
145
- assert np.all(0 <= each.predicted_mask) and np.all(each.predicted_mask < len(
146
- self.user_labels)), f"`predicted_mask` must be in [0, {len(self.user_labels) - 1}]"
147
- elif isinstance(_output, TextOutput):
148
- pass
149
- elif isinstance(_output, ImageOutput):
150
- for each in _outputs:
151
- assert _is_non_negative(each.image), "`image` must be >= 0"
152
- else:
153
- pass
154
-
155
- return outputs
156
-
157
- def test_with_default_inputs(self):
158
- model_type = self.user_config.clarifai_model.type
159
- if model_type == ModelTypes.multimodal_embedder:
160
- self.predict(input_data=[{IMAGE_TENSOR_NAME: each} for each in _default_images])
161
- self.predict(input_data=[{TEXT_TENSOR_NAME: each} for each in _default_texts])
162
- self.predict(input_data=[{
163
- TEXT_TENSOR_NAME: text,
164
- IMAGE_TENSOR_NAME: img
165
- } for text, img in zip(_default_texts, _default_images)])
166
- elif model_type.startswith("visual"):
167
- self.predict(input_data=_default_images)
168
- else:
169
- self.predict(input_data=_default_texts)
@@ -1,26 +0,0 @@
1
- # User model inference script.
2
-
3
- import os
4
- from pathlib import Path
5
- from typing import Dict, Union
6
- from clarifai.models.model_serving.model_config import * # noqa
7
-
8
-
9
- class InferenceModel():
10
- """User model inference class."""
11
-
12
- def __init__(self) -> None:
13
- """
14
- Load inference time artifacts that are called frequently .e.g. models, tokenizers, etc.
15
- in this method so they are loaded only once for faster inference.
16
- """
17
- # current directory
18
- self.base_path: Path = os.path.dirname(__file__)
19
-
20
- def predict(self,
21
- input_data: list,
22
- inference_parameters: Dict[str, Union[bool, str, float, int]] = {}) -> list:
23
- """predict_docstring
24
- """
25
-
26
- raise NotImplementedError()