clarifai 10.0.0__py3-none-any.whl → 10.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- clarifai/client/base.py +8 -1
- clarifai/client/dataset.py +77 -21
- clarifai/client/input.py +6 -6
- clarifai/client/model.py +1 -1
- clarifai/client/module.py +1 -1
- clarifai/client/workflow.py +1 -1
- clarifai/datasets/upload/features.py +3 -0
- clarifai/datasets/upload/image.py +57 -26
- clarifai/datasets/upload/loaders/xview_detection.py +4 -0
- clarifai/datasets/upload/utils.py +23 -7
- clarifai/models/model_serving/README.md +113 -121
- clarifai/models/model_serving/__init__.py +2 -0
- clarifai/models/model_serving/cli/_utils.py +53 -0
- clarifai/models/model_serving/cli/base.py +14 -0
- clarifai/models/model_serving/cli/build.py +79 -0
- clarifai/models/model_serving/cli/clarifai_clis.py +33 -0
- clarifai/models/model_serving/cli/create.py +171 -0
- clarifai/models/model_serving/cli/example_cli.py +34 -0
- clarifai/models/model_serving/cli/login.py +26 -0
- clarifai/models/model_serving/cli/upload.py +182 -0
- clarifai/models/model_serving/constants.py +20 -0
- clarifai/models/model_serving/docs/cli.md +150 -0
- clarifai/models/model_serving/docs/concepts.md +229 -0
- clarifai/models/model_serving/docs/dependencies.md +1 -1
- clarifai/models/model_serving/docs/inference_parameters.md +112 -107
- clarifai/models/model_serving/docs/model_types.md +16 -17
- clarifai/models/model_serving/model_config/__init__.py +4 -2
- clarifai/models/model_serving/model_config/base.py +369 -0
- clarifai/models/model_serving/model_config/config.py +219 -224
- clarifai/models/model_serving/model_config/inference_parameter.py +5 -0
- clarifai/models/model_serving/model_config/model_types_config/multimodal-embedder.yaml +25 -24
- clarifai/models/model_serving/model_config/model_types_config/text-classifier.yaml +19 -18
- clarifai/models/model_serving/model_config/model_types_config/text-embedder.yaml +20 -18
- clarifai/models/model_serving/model_config/model_types_config/text-to-image.yaml +19 -18
- clarifai/models/model_serving/model_config/model_types_config/text-to-text.yaml +19 -18
- clarifai/models/model_serving/model_config/model_types_config/visual-classifier.yaml +22 -18
- clarifai/models/model_serving/model_config/model_types_config/visual-detector.yaml +32 -28
- clarifai/models/model_serving/model_config/model_types_config/visual-embedder.yaml +19 -18
- clarifai/models/model_serving/model_config/model_types_config/visual-segmenter.yaml +19 -18
- clarifai/models/model_serving/{models → model_config}/output.py +8 -0
- clarifai/models/model_serving/model_config/triton/__init__.py +14 -0
- clarifai/models/model_serving/model_config/{serializer.py → triton/serializer.py} +3 -1
- clarifai/models/model_serving/model_config/triton/triton_config.py +182 -0
- clarifai/models/model_serving/{models/model_types.py → model_config/triton/wrappers.py} +4 -4
- clarifai/models/model_serving/{models → repo_build}/__init__.py +2 -0
- clarifai/models/model_serving/repo_build/build.py +198 -0
- clarifai/models/model_serving/repo_build/static_files/_requirements.txt +2 -0
- clarifai/models/model_serving/repo_build/static_files/base_test.py +169 -0
- clarifai/models/model_serving/repo_build/static_files/inference.py +26 -0
- clarifai/models/model_serving/repo_build/static_files/sample_clarifai_config.yaml +25 -0
- clarifai/models/model_serving/repo_build/static_files/test.py +40 -0
- clarifai/models/model_serving/{models/pb_model.py → repo_build/static_files/triton/model.py} +15 -14
- clarifai/models/model_serving/utils.py +21 -0
- clarifai/rag/rag.py +45 -12
- clarifai/rag/utils.py +3 -2
- clarifai/utils/logging.py +7 -0
- clarifai/versions.py +1 -1
- {clarifai-10.0.0.dist-info → clarifai-10.1.0.dist-info}/METADATA +28 -5
- clarifai-10.1.0.dist-info/RECORD +114 -0
- clarifai-10.1.0.dist-info/entry_points.txt +2 -0
- clarifai/models/model_serving/cli/deploy_cli.py +0 -123
- clarifai/models/model_serving/cli/model_zip.py +0 -61
- clarifai/models/model_serving/cli/repository.py +0 -89
- clarifai/models/model_serving/docs/custom_config.md +0 -33
- clarifai/models/model_serving/docs/output.md +0 -28
- clarifai/models/model_serving/models/default_test.py +0 -281
- clarifai/models/model_serving/models/inference.py +0 -50
- clarifai/models/model_serving/models/test.py +0 -64
- clarifai/models/model_serving/pb_model_repository.py +0 -108
- clarifai-10.0.0.dist-info/RECORD +0 -103
- clarifai-10.0.0.dist-info/entry_points.txt +0 -4
- {clarifai-10.0.0.dist-info → clarifai-10.1.0.dist-info}/LICENSE +0 -0
- {clarifai-10.0.0.dist-info → clarifai-10.1.0.dist-info}/WHEEL +0 -0
- {clarifai-10.0.0.dist-info → clarifai-10.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,198 @@
|
|
1
|
+
# Copyright 2023 Clarifai, Inc.
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
"""
|
14
|
+
Triton python backend inference model controller.
|
15
|
+
"""
|
16
|
+
|
17
|
+
import inspect
|
18
|
+
import os
|
19
|
+
import shutil
|
20
|
+
import zipfile
|
21
|
+
from dataclasses import asdict
|
22
|
+
from pathlib import Path
|
23
|
+
from typing import Iterable, Literal, Union
|
24
|
+
|
25
|
+
import yaml
|
26
|
+
from tqdm import tqdm
|
27
|
+
|
28
|
+
from ..constants import BUILT_MODEL_EXT
|
29
|
+
from ..model_config import MODEL_TYPES, ModelConfigClass, base, get_model_config, load_user_config
|
30
|
+
from ..model_config.base import * # noqa
|
31
|
+
from ..model_config.config import parse_config
|
32
|
+
from ..model_config.triton.serializer import Serializer
|
33
|
+
|
34
|
+
|
35
|
+
def __parse_type_to_class():
|
36
|
+
_t = {}
|
37
|
+
_classes = inspect.getmembers(base, inspect.isclass)
|
38
|
+
for cls_name, cls_obj in _classes:
|
39
|
+
if cls_obj.__base__ is base._BaseClarifaiModel:
|
40
|
+
_t.update({cls_obj._config.clarifai_model.type: cls_name})
|
41
|
+
return _t
|
42
|
+
|
43
|
+
|
44
|
+
_TYPE_TO_CLASS = __parse_type_to_class()
|
45
|
+
|
46
|
+
|
47
|
+
def _get_static_file_path(relative_path: str):
|
48
|
+
curr_dir = os.path.dirname(__file__)
|
49
|
+
return os.path.join(curr_dir, "static_files", relative_path)
|
50
|
+
|
51
|
+
|
52
|
+
def _read_static_file(relative_path: str):
|
53
|
+
path = _get_static_file_path(relative_path)
|
54
|
+
with open(path, "r") as f:
|
55
|
+
return f.read()
|
56
|
+
|
57
|
+
|
58
|
+
def copy_folder(src_folder, dest_folder, exclude_items=None):
|
59
|
+
|
60
|
+
if exclude_items is None:
|
61
|
+
exclude_items = set()
|
62
|
+
|
63
|
+
# Ensure the destination folder exists
|
64
|
+
if not os.path.exists(dest_folder):
|
65
|
+
os.makedirs(dest_folder)
|
66
|
+
|
67
|
+
loader = tqdm(os.listdir(src_folder))
|
68
|
+
if exclude_items:
|
69
|
+
print(f"NOTE: skipping {exclude_items}")
|
70
|
+
|
71
|
+
for item in loader:
|
72
|
+
loader.set_description(f"copying {item}...")
|
73
|
+
src_item = os.path.join(src_folder, item)
|
74
|
+
dest_item = os.path.join(dest_folder, item)
|
75
|
+
|
76
|
+
# Skip items in the exclude list
|
77
|
+
if item in exclude_items or item.endswith(BUILT_MODEL_EXT):
|
78
|
+
continue
|
79
|
+
|
80
|
+
# Copy files directly
|
81
|
+
if os.path.isfile(src_item):
|
82
|
+
shutil.copy2(src_item, dest_item)
|
83
|
+
|
84
|
+
# Copy directories using copytree
|
85
|
+
elif os.path.isdir(src_item):
|
86
|
+
shutil.copytree(src_item, dest_item, symlinks=False, ignore=None, dirs_exist_ok=True)
|
87
|
+
|
88
|
+
|
89
|
+
def zip_dir(input: Union[Path, str], zip_filename: Union[Path, str]):
|
90
|
+
"""
|
91
|
+
Zip folder without compressing
|
92
|
+
"""
|
93
|
+
# Convert to Path object
|
94
|
+
dir = Path(input)
|
95
|
+
|
96
|
+
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_STORED) as zip_file:
|
97
|
+
for entry in dir.rglob("*"):
|
98
|
+
zip_file.write(entry, entry.relative_to(dir))
|
99
|
+
|
100
|
+
|
101
|
+
class RepositoryBuilder:
|
102
|
+
|
103
|
+
@staticmethod
|
104
|
+
def init_repository(model_type: str, working_dir: str, backend=Literal['triton'], **kwargs):
|
105
|
+
assert model_type in MODEL_TYPES
|
106
|
+
model_type = model_type
|
107
|
+
default_model_type_config: ModelConfigClass = get_model_config(model_type)
|
108
|
+
|
109
|
+
os.makedirs(working_dir, exist_ok=True)
|
110
|
+
|
111
|
+
def __write_to(filename, data):
|
112
|
+
with open(os.path.join(working_dir, filename), "w") as f:
|
113
|
+
f.write(data)
|
114
|
+
|
115
|
+
# create inference.py
|
116
|
+
_filename = "inference.py"
|
117
|
+
inference_py = _read_static_file(_filename)
|
118
|
+
inference_py = inference_py.replace("InferenceModel()",
|
119
|
+
f"InferenceModel({_TYPE_TO_CLASS[model_type]})")
|
120
|
+
inference_py = inference_py.replace("predict_docstring",
|
121
|
+
eval(_TYPE_TO_CLASS[model_type]).predict.__doc__)
|
122
|
+
# create config
|
123
|
+
config = asdict(default_model_type_config)
|
124
|
+
if backend == "triton":
|
125
|
+
max_batch_size = kwargs.get("max_batch_size", None)
|
126
|
+
image_shape = kwargs.get("image_shape", None)
|
127
|
+
if max_batch_size:
|
128
|
+
config['serving_backend']['triton']['max_batch_size'] = max_batch_size
|
129
|
+
if image_shape:
|
130
|
+
config['serving_backend']['triton']['image_shape'] = image_shape
|
131
|
+
config = parse_config(config).dump_to_user_config()
|
132
|
+
config_data = yaml.dump(config)
|
133
|
+
sample_yaml = _read_static_file("sample_clarifai_config.yaml")
|
134
|
+
config_data = sample_yaml + "\n\n" + config_data
|
135
|
+
__write_to("clarifai_config.yaml", config_data)
|
136
|
+
#
|
137
|
+
# create inference.py after checking all configs
|
138
|
+
__write_to(_filename, inference_py)
|
139
|
+
# create test.py
|
140
|
+
__write_to("test.py", _read_static_file("test.py"))
|
141
|
+
# create requirements.txt
|
142
|
+
__write_to("requirements.txt", _read_static_file("_requirements.txt"))
|
143
|
+
|
144
|
+
@staticmethod
|
145
|
+
def build(working_dir: str, output_dir: str = None, name: str = None, backend=Literal['triton']):
|
146
|
+
if not output_dir:
|
147
|
+
output_dir = working_dir
|
148
|
+
else:
|
149
|
+
os.makedirs(output_dir, exist_ok=True)
|
150
|
+
|
151
|
+
temp_folder = os.path.join(working_dir, ".cache")
|
152
|
+
os.makedirs(temp_folder, exist_ok=True)
|
153
|
+
|
154
|
+
user_config_file = os.path.join(working_dir, "clarifai_config.yaml")
|
155
|
+
assert os.path.exists(
|
156
|
+
user_config_file
|
157
|
+
), f"FileNotFound: please make sure `clarifai_config.yaml` exists in {working_dir}"
|
158
|
+
user_config = load_user_config(user_config_file)
|
159
|
+
|
160
|
+
if backend == "triton":
|
161
|
+
triton_1_ver = os.path.join(temp_folder, "1")
|
162
|
+
os.makedirs(triton_1_ver, exist_ok=True)
|
163
|
+
# check if labels exists
|
164
|
+
for output_config in user_config.serving_backend.triton.output:
|
165
|
+
if output_config.label_filename:
|
166
|
+
user_labels = user_config.clarifai_model.labels
|
167
|
+
assert user_labels, f"Model type `{user_config.clarifai_model.type}` requires labels, "\
|
168
|
+
f"but can not found value of `clarifai_model.labels` in {user_config_file}. Please update this attribute to build the model"
|
169
|
+
with open(os.path.join(temp_folder, "labels.txt"), "w") as f:
|
170
|
+
if not isinstance(user_labels, Iterable):
|
171
|
+
user_labels = [user_labels]
|
172
|
+
f.write("\n".join([str(lb) for lb in user_labels]) + "\n")
|
173
|
+
|
174
|
+
# copy model.py
|
175
|
+
shutil.copy(_get_static_file_path("triton/model.py"), triton_1_ver)
|
176
|
+
# copy requirements.txt
|
177
|
+
shutil.copy(os.path.join(working_dir, "requirements.txt"), temp_folder)
|
178
|
+
# copy all other files
|
179
|
+
copy_folder(
|
180
|
+
working_dir, triton_1_ver, exclude_items=["requirements.txt", ".cache", "__pycache__"])
|
181
|
+
# generate config.pbtxt
|
182
|
+
_config_pbtxt_serializer = Serializer(user_config.serving_backend.triton)
|
183
|
+
_config_pbtxt_serializer.to_file(temp_folder)
|
184
|
+
|
185
|
+
else:
|
186
|
+
raise ValueError(f"backend must be ['triton'], got {backend}")
|
187
|
+
|
188
|
+
clarifai_model_name = name or user_config.clarifai_model.clarifai_model_id or "model"
|
189
|
+
clarifai_model_name += BUILT_MODEL_EXT
|
190
|
+
clarifai_model_name = os.path.join(output_dir, clarifai_model_name)
|
191
|
+
|
192
|
+
print(
|
193
|
+
"Model building in progress; the duration may vary depending on the size of checkpoints/assets..."
|
194
|
+
)
|
195
|
+
zip_dir(temp_folder, clarifai_model_name)
|
196
|
+
print(f"Finished. Your model is located at {clarifai_model_name}")
|
197
|
+
|
198
|
+
return clarifai_model_name
|
@@ -0,0 +1,169 @@
|
|
1
|
+
import os
|
2
|
+
from copy import deepcopy
|
3
|
+
from typing import Dict, Iterable, List, Union
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
import yaml
|
7
|
+
|
8
|
+
from ...constants import IMAGE_TENSOR_NAME, TEXT_TENSOR_NAME
|
9
|
+
from ...model_config import (ClassifierOutput, EmbeddingOutput, ImageOutput, InferParam,
|
10
|
+
InferParamManager, MasksOutput, ModelTypes, TextOutput,
|
11
|
+
VisualDetector, load_user_config)
|
12
|
+
|
13
|
+
_default_texts = ["Photo of a cat", "A cat is playing around", "Hello, this is test"]
|
14
|
+
|
15
|
+
_default_images = [
|
16
|
+
np.zeros((100, 100, 3), dtype='uint8'), #black
|
17
|
+
np.ones((100, 100, 3), dtype='uint8') * 255, #white
|
18
|
+
np.random.uniform(0, 255, (100, 100, 3)).astype('uint8') #noise
|
19
|
+
]
|
20
|
+
|
21
|
+
|
22
|
+
def _is_valid_logit(x: np.array):
|
23
|
+
return np.all(0 <= x) and np.all(x <= 1)
|
24
|
+
|
25
|
+
|
26
|
+
def _is_non_negative(x: np.array):
|
27
|
+
return np.all(x >= 0)
|
28
|
+
|
29
|
+
|
30
|
+
def _is_integer(x):
|
31
|
+
return np.all(np.equal(np.mod(x, 1), 0))
|
32
|
+
|
33
|
+
|
34
|
+
class BaseTest:
|
35
|
+
init_inference_parameters = {}
|
36
|
+
|
37
|
+
def __init__(self, init_inference_parameters={}) -> None:
|
38
|
+
import sys
|
39
|
+
if 'inference' in sys.modules:
|
40
|
+
del sys.modules['inference']
|
41
|
+
import inference
|
42
|
+
from inference import InferenceModel
|
43
|
+
self.model = InferenceModel()
|
44
|
+
self._base_dir = os.path.dirname(inference.__file__)
|
45
|
+
self.cfg_path = os.path.join(self._base_dir, "clarifai_config.yaml")
|
46
|
+
self.user_config = load_user_config(self.cfg_path)
|
47
|
+
self._user_labels = None
|
48
|
+
# check if labels exists
|
49
|
+
for output_config in self.user_config.serving_backend.triton.output:
|
50
|
+
if output_config.label_filename:
|
51
|
+
self._user_labels = self.user_config.clarifai_model.labels
|
52
|
+
assert self._user_labels, f"Model type `{self.user_config.clarifai_model.type}` requires labels, "\
|
53
|
+
f"but can not found value of `clarifai_model.labels` in {self.cfg_path}. Please update this attribute to build the model"
|
54
|
+
|
55
|
+
# update init vs user_defined params
|
56
|
+
user_defined_infer_params = [
|
57
|
+
InferParam(**each) for each in self.user_config.clarifai_model.inference_parameters
|
58
|
+
]
|
59
|
+
total_infer_params = []
|
60
|
+
if init_inference_parameters:
|
61
|
+
self.init_inference_parameters = init_inference_parameters
|
62
|
+
for k, v in self.init_inference_parameters.items():
|
63
|
+
_exist = False
|
64
|
+
for user_param in user_defined_infer_params:
|
65
|
+
if user_param.path == k:
|
66
|
+
if user_param.default_value != v:
|
67
|
+
print(f"Warning: Overwrite parameter `{k}` with default value `{v}`")
|
68
|
+
user_param.default_value = v
|
69
|
+
_exist = True
|
70
|
+
total_infer_params.append(user_param)
|
71
|
+
user_defined_infer_params.remove(user_param)
|
72
|
+
break
|
73
|
+
if not _exist:
|
74
|
+
total_infer_params.append(InferParamManager.from_kwargs(**{k: v}).params[0])
|
75
|
+
|
76
|
+
self.infer_param_manager = InferParamManager(
|
77
|
+
params=total_infer_params + user_defined_infer_params)
|
78
|
+
self.user_config.clarifai_model.inference_parameters = self.infer_param_manager.get_list_params(
|
79
|
+
)
|
80
|
+
self._overwrite_cfg()
|
81
|
+
|
82
|
+
@property
|
83
|
+
def user_labels(self):
|
84
|
+
return self._user_labels
|
85
|
+
|
86
|
+
def _overwrite_cfg(self):
|
87
|
+
config = yaml.dump(self.user_config.dump_to_user_config(),)
|
88
|
+
with open(self.cfg_path, "w") as f:
|
89
|
+
f.write(config)
|
90
|
+
|
91
|
+
def predict(self, input_data: Union[List[np.ndarray], List[str], Dict[str, Union[List[
|
92
|
+
np.ndarray], List[str]]]], **inference_parameters) -> Iterable:
|
93
|
+
"""
|
94
|
+
Test Prediction method is exact `InferenceModel.predict` method with
|
95
|
+
checking inference paramters.
|
96
|
+
|
97
|
+
Args:
|
98
|
+
-----
|
99
|
+
- input_data: A list of input data item to predict on. The type depends on model input type:
|
100
|
+
* `image`: List[np.ndarray]
|
101
|
+
* `text`: List[str]
|
102
|
+
* `multimodal`:
|
103
|
+
input_data is list of dict where key is input type name e.i. `image`, `text` and value is list.
|
104
|
+
{"image": List[np.ndarray], "text": List[str]}
|
105
|
+
|
106
|
+
- **inference_parameters: keyword args of your inference parameters.
|
107
|
+
|
108
|
+
Returns:
|
109
|
+
--------
|
110
|
+
List of your inference model output type
|
111
|
+
"""
|
112
|
+
infer_params = self.infer_param_manager.validate(**inference_parameters)
|
113
|
+
outputs = self.model.predict(input_data=input_data, inference_parameters=infer_params)
|
114
|
+
outputs = self._verify_outputs(outputs)
|
115
|
+
return outputs
|
116
|
+
|
117
|
+
def _verify_outputs(self, outputs: List[Union[ClassifierOutput, VisualDetector, EmbeddingOutput,
|
118
|
+
TextOutput, ImageOutput, MasksOutput]]):
|
119
|
+
"""Test output value/dims
|
120
|
+
|
121
|
+
Args:
|
122
|
+
outputs (List[Union[ClassifierOutput, VisualDetector, EmbeddingOutput, TextOutput, ImageOutput, MasksOutput]]): Outputs of `predict` method
|
123
|
+
"""
|
124
|
+
_outputs = deepcopy(outputs)
|
125
|
+
_output = _outputs[0]
|
126
|
+
|
127
|
+
if isinstance(_output, EmbeddingOutput):
|
128
|
+
# not test
|
129
|
+
pass
|
130
|
+
elif isinstance(_output, ClassifierOutput):
|
131
|
+
for each in _outputs:
|
132
|
+
assert _is_valid_logit(each.predicted_scores), "`predicted_scores` must be in range [0, 1]"
|
133
|
+
assert len(each.predicted_scores) == len(
|
134
|
+
self.user_labels
|
135
|
+
), f"`predicted_scores` dim must be equal to labels, got {len(each.predicted_scores)} != labels {len(self.user_labels)}"
|
136
|
+
elif isinstance(_output, VisualDetector):
|
137
|
+
for each in _outputs:
|
138
|
+
assert _is_valid_logit(each.predicted_scores), "`predicted_scores` must be in range [0, 1]"
|
139
|
+
assert _is_integer(each.predicted_labels), "`predicted_labels` must be integer"
|
140
|
+
assert np.all(0 <= each.predicted_labels) and np.all(each.predicted_labels < len(
|
141
|
+
self.user_labels)), f"`predicted_labels` must be in [0, {len(self.user_labels) - 1}]"
|
142
|
+
assert _is_non_negative(each.predicted_bboxes), "`predicted_bboxes` must be >= 0"
|
143
|
+
elif isinstance(_output, MasksOutput):
|
144
|
+
for each in _outputs:
|
145
|
+
assert np.all(0 <= each.predicted_mask) and np.all(each.predicted_mask < len(
|
146
|
+
self.user_labels)), f"`predicted_mask` must be in [0, {len(self.user_labels) - 1}]"
|
147
|
+
elif isinstance(_output, TextOutput):
|
148
|
+
pass
|
149
|
+
elif isinstance(_output, ImageOutput):
|
150
|
+
for each in _outputs:
|
151
|
+
assert _is_non_negative(each.image), "`image` must be >= 0"
|
152
|
+
else:
|
153
|
+
pass
|
154
|
+
|
155
|
+
return outputs
|
156
|
+
|
157
|
+
def test_with_default_inputs(self):
|
158
|
+
model_type = self.user_config.clarifai_model.type
|
159
|
+
if model_type == ModelTypes.multimodal_embedder:
|
160
|
+
self.predict(input_data=[{IMAGE_TENSOR_NAME: each} for each in _default_images])
|
161
|
+
self.predict(input_data=[{TEXT_TENSOR_NAME: each} for each in _default_texts])
|
162
|
+
self.predict(input_data=[{
|
163
|
+
TEXT_TENSOR_NAME: text,
|
164
|
+
IMAGE_TENSOR_NAME: img
|
165
|
+
} for text, img in zip(_default_texts, _default_images)])
|
166
|
+
elif model_type.startswith("visual"):
|
167
|
+
self.predict(input_data=_default_images)
|
168
|
+
else:
|
169
|
+
self.predict(input_data=_default_texts)
|
@@ -0,0 +1,26 @@
|
|
1
|
+
# User model inference script.
|
2
|
+
|
3
|
+
import os
|
4
|
+
from pathlib import Path
|
5
|
+
from typing import Dict, Union
|
6
|
+
from clarifai.models.model_serving.model_config import * # noqa
|
7
|
+
|
8
|
+
|
9
|
+
class InferenceModel():
|
10
|
+
"""User model inference class."""
|
11
|
+
|
12
|
+
def __init__(self) -> None:
|
13
|
+
"""
|
14
|
+
Load inference time artifacts that are called frequently .e.g. models, tokenizers, etc.
|
15
|
+
in this method so they are loaded only once for faster inference.
|
16
|
+
"""
|
17
|
+
# current directory
|
18
|
+
self.base_path: Path = os.path.dirname(__file__)
|
19
|
+
|
20
|
+
def predict(self,
|
21
|
+
input_data: list,
|
22
|
+
inference_parameters: Dict[str, Union[bool, str, float, int]] = {}) -> list:
|
23
|
+
"""predict_docstring
|
24
|
+
"""
|
25
|
+
|
26
|
+
raise NotImplementedError()
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# Sample config of inference_parameters and labels
|
2
|
+
# For detail, please refer to docs
|
3
|
+
# --------------------
|
4
|
+
# inference_parameters:
|
5
|
+
# - path: boolean_var
|
6
|
+
# default_value: true
|
7
|
+
# field_type: 1
|
8
|
+
# description: a boolean variable
|
9
|
+
# - path: string_var
|
10
|
+
# default_value: "a string"
|
11
|
+
# field_type: 2
|
12
|
+
# description: a string variable
|
13
|
+
# - path: number_var
|
14
|
+
# default_value: 1
|
15
|
+
# field_type: 3
|
16
|
+
# description: a number variable
|
17
|
+
# - path: secret_string_var
|
18
|
+
# default_value: "YOUR_SECRET"
|
19
|
+
# field_type: 21
|
20
|
+
# description: a string variable contains secret like API key
|
21
|
+
# labels:
|
22
|
+
# - concept1
|
23
|
+
# - concept2
|
24
|
+
# - concept3
|
25
|
+
# - concept4
|
@@ -0,0 +1,40 @@
|
|
1
|
+
import unittest
|
2
|
+
|
3
|
+
from clarifai.models.model_serving.repo_build import BaseTest
|
4
|
+
|
5
|
+
|
6
|
+
class CustomTest(unittest.TestCase):
|
7
|
+
"""
|
8
|
+
BaseTest loads the InferenceModel from the inference.py file in the current working directory.
|
9
|
+
To execute the predict method of the InferenceModel, use the predict method in BaseTest.
|
10
|
+
It takes the exact same inputs and inference parameters, returning the same outputs as InferenceModel.predict.
|
11
|
+
The difference is that BaseTest.predict verifies your_infer_parameters against config.clarifai_models.inference_parameters and checks the output values.
|
12
|
+
|
13
|
+
For example, test input value of visual-classifier
|
14
|
+
|
15
|
+
def test_input(self):
|
16
|
+
import cv2
|
17
|
+
path = "path/to/image"
|
18
|
+
img = cv2.imread(path)
|
19
|
+
outputs = self.model.predict([img], infer_param1=..., infer_param2=...)
|
20
|
+
print(outputs)
|
21
|
+
assert outputs
|
22
|
+
|
23
|
+
"""
|
24
|
+
|
25
|
+
def setUp(self) -> None:
|
26
|
+
your_infer_parameter = dict(
|
27
|
+
) # for example dict(float_var=0.12, string_var="test", _secret_string_var="secret")
|
28
|
+
self.model = BaseTest(your_infer_parameter)
|
29
|
+
|
30
|
+
def test_default_cases(self):
|
31
|
+
"""Test your model with dummy inputs.
|
32
|
+
In general, you only need to run this test to check your InferneceModel implementation.
|
33
|
+
In case the default inputs makes your model failed for some reason (not because of assert in `test_with_default_inputs`),
|
34
|
+
you can comment out this test.
|
35
|
+
"""
|
36
|
+
self.model.test_with_default_inputs()
|
37
|
+
|
38
|
+
def test_specific_case1(self):
|
39
|
+
""" Implement your test case"""
|
40
|
+
pass
|
clarifai/models/model_serving/{models/pb_model.py → repo_build/static_files/triton/model.py}
RENAMED
@@ -19,8 +19,6 @@ try:
|
|
19
19
|
import triton_python_backend_utils as pb_utils
|
20
20
|
except ModuleNotFoundError:
|
21
21
|
pass
|
22
|
-
from google.protobuf import text_format
|
23
|
-
from tritonclient.grpc.model_config_pb2 import ModelConfig
|
24
22
|
from clarifai.models.model_serving.model_config.inference_parameter import parse_req_parameters
|
25
23
|
|
26
24
|
|
@@ -33,18 +31,13 @@ class TritonPythonModel:
|
|
33
31
|
"""
|
34
32
|
Triton server init.
|
35
33
|
"""
|
36
|
-
args["model_repository"] = args["model_repository"].replace("/1/model.py", "")
|
37
34
|
sys.path.append(os.path.dirname(__file__))
|
38
35
|
from inference import InferenceModel
|
39
36
|
|
40
37
|
self.inference_obj = InferenceModel()
|
41
38
|
|
42
39
|
# Read input_name from config file
|
43
|
-
self.
|
44
|
-
with open(os.path.join(args["model_repository"], "config.pbtxt"), "r") as f:
|
45
|
-
cfg = f.read()
|
46
|
-
text_format.Merge(cfg, self.config_msg)
|
47
|
-
self.input_names = [inp.name for inp in self.config_msg.input]
|
40
|
+
self.input_names = [inp.name for inp in self.inference_obj.config.serving_backend.triton.input]
|
48
41
|
|
49
42
|
def execute(self, requests):
|
50
43
|
"""
|
@@ -53,22 +46,30 @@ class TritonPythonModel:
|
|
53
46
|
responses = []
|
54
47
|
|
55
48
|
for request in requests:
|
56
|
-
|
49
|
+
try:
|
50
|
+
parameters = request.parameters()
|
51
|
+
except Exception:
|
52
|
+
print(
|
53
|
+
"It seems this triton version does not support `parameters()` in request. "
|
54
|
+
"Please upgrade tritonserver version otherwise can not use `inference_parameters`. Error message: {e}"
|
55
|
+
)
|
56
|
+
parameters = None
|
57
|
+
|
57
58
|
parameters = parse_req_parameters(parameters) if parameters else {}
|
58
59
|
|
59
60
|
if len(self.input_names) == 1:
|
60
61
|
in_batch = pb_utils.get_input_tensor_by_name(request, self.input_names[0])
|
61
62
|
in_batch = in_batch.as_numpy()
|
62
|
-
|
63
|
+
data = in_batch
|
63
64
|
else:
|
64
|
-
|
65
|
+
data = {}
|
65
66
|
for input_name in self.input_names:
|
66
67
|
in_batch = pb_utils.get_input_tensor_by_name(request, input_name)
|
67
68
|
in_batch = in_batch.as_numpy() if in_batch is not None else []
|
68
|
-
|
69
|
-
|
70
|
-
inference_response = self.inference_obj.get_predictions(multi_in_batch_dict, **parameters)
|
69
|
+
data.update({input_name: in_batch})
|
71
70
|
|
71
|
+
inference_response = self.inference_obj._tritonserver_predict(
|
72
|
+
input_data=data, inference_parameters=parameters)
|
72
73
|
responses.append(inference_response)
|
73
74
|
|
74
75
|
return responses
|
@@ -0,0 +1,21 @@
|
|
1
|
+
import os
|
2
|
+
|
3
|
+
from .constants import CLARIFAI_PAT_PATH
|
4
|
+
|
5
|
+
|
6
|
+
def _persist_pat(pat: str):
|
7
|
+
""" Write down pat to CLARIFAI_PAT_PATH """
|
8
|
+
with open(CLARIFAI_PAT_PATH, "w") as f:
|
9
|
+
f.write(pat)
|
10
|
+
|
11
|
+
|
12
|
+
def _read_pat():
|
13
|
+
if not os.path.exists(CLARIFAI_PAT_PATH):
|
14
|
+
return None
|
15
|
+
with open(CLARIFAI_PAT_PATH, "r") as f:
|
16
|
+
return f.read().replace("\n", "").replace("\r", "").strip()
|
17
|
+
|
18
|
+
|
19
|
+
def login(pat=None):
|
20
|
+
""" if pat provided, set pat to CLARIFAI_PAT otherwise read pat from file"""
|
21
|
+
os.environ["CLARIFAI_PAT"] = pat or _read_pat()
|
clarifai/rag/rag.py
CHANGED
@@ -17,6 +17,8 @@ from clarifai.rag.utils import (convert_messages_to_str, format_assistant_messag
|
|
17
17
|
split_document)
|
18
18
|
from clarifai.utils.logging import get_logger
|
19
19
|
|
20
|
+
DEFAULT_RAG_PROMPT_TEMPLATE = "Context information is below:\n{data.hits}\nGiven the context information and not prior knowledge, answer the query.\nQuery: {data.text.raw}\nAnswer: "
|
21
|
+
|
20
22
|
|
21
23
|
class RAG:
|
22
24
|
"""
|
@@ -24,7 +26,8 @@ class RAG:
|
|
24
26
|
|
25
27
|
Example:
|
26
28
|
>>> from clarifai.rag import RAG
|
27
|
-
>>> rag_agent = RAG()
|
29
|
+
>>> rag_agent = RAG(workflow_url=YOUR_WORKFLOW_URL)
|
30
|
+
>>> rag_agent.chat(messages=[{"role":"human", "content":"What is Clarifai"}])
|
28
31
|
"""
|
29
32
|
chat_state_id = None
|
30
33
|
|
@@ -49,40 +52,69 @@ class RAG:
|
|
49
52
|
@classmethod
|
50
53
|
def setup(cls,
|
51
54
|
user_id: str = None,
|
55
|
+
app_url: str = None,
|
52
56
|
llm_url: str = "https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct",
|
53
57
|
base_workflow: str = "Text",
|
54
58
|
workflow_yaml_filename: str = 'prompter_wf.yaml',
|
59
|
+
workflow_id: str = None,
|
55
60
|
base_url: str = "https://api.clarifai.com",
|
56
61
|
pat: str = None,
|
57
62
|
**kwargs):
|
58
63
|
"""Creates an app with `Text` as base workflow, create prompt model, create prompt workflow.
|
59
64
|
|
65
|
+
**kwargs: Additional keyword arguments to be passed to rag-promter model.
|
66
|
+
- min_score (float): The minimum score for search hits.
|
67
|
+
- max_results (float): The maximum number of search hits.
|
68
|
+
- prompt_template (str): The prompt template used. Must contain {data.hits} for the search hits and {data.text.raw} for the query string.
|
69
|
+
|
60
70
|
Example:
|
61
71
|
>>> from clarifai.rag import RAG
|
62
|
-
>>> rag_agent = RAG.setup()
|
72
|
+
>>> rag_agent = RAG.setup(user_id=YOUR_USER_ID)
|
73
|
+
>>> rag_agent.chat(messages=[{"role":"human", "content":"What is Clarifai"}])
|
74
|
+
|
75
|
+
Or if you already have an existing app with ingested data:
|
76
|
+
>>> rag_agent = RAG.setup(app_url=YOUR_APP_URL)
|
77
|
+
>>> rag_agent.chat(messages=[{"role":"human", "content":"What is Clarifai"}])
|
63
78
|
"""
|
64
|
-
|
79
|
+
|
80
|
+
if user_id and not app_url:
|
81
|
+
user = User(user_id=user_id, base_url=base_url, pat=pat)
|
82
|
+
## Create an App
|
83
|
+
now_ts = str(int(datetime.now().timestamp()))
|
84
|
+
app_id = f"rag_app_{now_ts}"
|
85
|
+
app = user.create_app(app_id=app_id, base_workflow=base_workflow)
|
86
|
+
|
87
|
+
if not user_id and app_url:
|
88
|
+
app = App(url=app_url, pat=pat)
|
89
|
+
|
90
|
+
if user_id and app_url:
|
91
|
+
raise UserError("Must provide one of user_id or app_url, not both.")
|
92
|
+
|
93
|
+
if not user_id and not app_url:
|
94
|
+
raise UserError(
|
95
|
+
"user_id or app_url must be provided. The user_id can be found at https://clarifai.com/settings."
|
96
|
+
)
|
97
|
+
|
65
98
|
llm = Model(llm_url)
|
66
99
|
|
100
|
+
min_score = kwargs.get("min_score", 0.95)
|
101
|
+
max_results = kwargs.get("max_results", 5)
|
102
|
+
prompt_template = kwargs.get("prompt_template", DEFAULT_RAG_PROMPT_TEMPLATE)
|
67
103
|
params = Struct()
|
68
104
|
params.update({
|
69
|
-
"
|
70
|
-
|
105
|
+
"min_score": min_score,
|
106
|
+
"max_results": max_results,
|
107
|
+
"prompt_template": prompt_template
|
71
108
|
})
|
72
109
|
prompter_model_params = {"params": params}
|
73
110
|
|
74
|
-
## Create an App
|
75
|
-
now_ts = str(int(datetime.now().timestamp()))
|
76
|
-
app_id = f"rag_app_{now_ts}"
|
77
|
-
app = user.create_app(app_id=app_id, base_workflow=base_workflow)
|
78
|
-
|
79
111
|
## Create rag-prompter model and version
|
80
112
|
prompter_model = app.create_model(
|
81
113
|
model_id=f"rag_prompter_{now_ts}", model_type_id="rag-prompter")
|
82
114
|
prompter_model = prompter_model.create_version(output_info=prompter_model_params)
|
83
115
|
|
84
116
|
## Generate a tmp yaml file for workflow creation
|
85
|
-
workflow_id = f"rag-wf-{now_ts}"
|
117
|
+
workflow_id = f"rag-wf-{now_ts}" if workflow_id is None else workflow_id
|
86
118
|
workflow_dict = {
|
87
119
|
"workflow": {
|
88
120
|
"id":
|
@@ -138,9 +170,10 @@ class RAG:
|
|
138
170
|
|
139
171
|
Example:
|
140
172
|
>>> from clarifai.rag import RAG
|
141
|
-
>>> rag_agent = RAG.setup()
|
173
|
+
>>> rag_agent = RAG.setup(user_id=YOUR_USER_ID)
|
142
174
|
>>> rag_agent.upload(folder_path = "~/work/docs")
|
143
175
|
>>> rag_agent.upload(file_path = "~/work/docs/manual.pdf")
|
176
|
+
>>> rag_agent.chat(messages=[{"role":"human", "content":"What is Clarifai"}])
|
144
177
|
"""
|
145
178
|
#set batch size
|
146
179
|
if batch_size > MAX_UPLOAD_BATCH_SIZE:
|
clarifai/rag/utils.py
CHANGED
@@ -3,8 +3,9 @@ from pathlib import Path
|
|
3
3
|
from typing import List
|
4
4
|
|
5
5
|
import requests
|
6
|
-
from llama_index import Document, SimpleDirectoryReader
|
7
|
-
from llama_index.node_parser.text import SentenceSplitter
|
6
|
+
from llama_index.core import Document, SimpleDirectoryReader
|
7
|
+
from llama_index.core.node_parser.text import SentenceSplitter
|
8
|
+
from llama_index.core.readers.download import download_loader
|
8
9
|
from pypdf import PdfReader
|
9
10
|
|
10
11
|
|