clarifai-grpc 11.10.6__py3-none-any.whl → 11.10.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7565,81 +7565,6 @@ class EvalTestSetEntry(google.protobuf.message.Message):
7565
7565
 
7566
7566
  global___EvalTestSetEntry = EvalTestSetEntry
7567
7567
 
7568
- @typing_extensions.final
7569
- class LOPQEvalResult(google.protobuf.message.Message):
7570
- """LOPQEvalResult"""
7571
-
7572
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
7573
-
7574
- K_FIELD_NUMBER: builtins.int
7575
- RECALL_VS_BRUTE_FORCE_FIELD_NUMBER: builtins.int
7576
- KENDALL_TAU_VS_BRUTE_FORCE_FIELD_NUMBER: builtins.int
7577
- MOST_FREQUENT_CODE_PERCENT_FIELD_NUMBER: builtins.int
7578
- LOPQ_NDCG_FIELD_NUMBER: builtins.int
7579
- BRUTE_FORCE_NDCG_FIELD_NUMBER: builtins.int
7580
- k: builtins.int
7581
- """Rank k for which all metrics are reported."""
7582
- recall_vs_brute_force: builtins.float
7583
- """Recall @ k assuming the brute force search is the ground truth."""
7584
- kendall_tau_vs_brute_force: builtins.float
7585
- """Kendall's tau correlation @ k assuming the brute force search is the ground truth."""
7586
- most_frequent_code_percent: builtins.float
7587
- """The percentage of the most frequent code in the indexed part of evaluation data."""
7588
- lopq_ndcg: builtins.float
7589
- """Normalized Discounted Cumulative Gain (NDCG) @ k with a ground truth inferred from annotations
7590
- and/or prediction for this evaluation LOPQ model.
7591
- NDCG uses individual relevance scores of each returned image to evaluate the usefulness, or
7592
- gain, of a document based on its position in the result list. The premise of DCG is that
7593
- highly relevant documents appearing lower in a search result list should be penalized as the
7594
- graded relevance value is reduced logarithmically proportional to the position of the result.
7595
- See: https://en.wikipedia.org/wiki/Information_retrieval#Discounted_cumulative_gain
7596
-
7597
- To compute the relevance score between two images we consider two cases:
7598
- 1) Only one label for each image
7599
- An image is relevant to an image query iff they are labeled the same (score 1), and
7600
- not relevant otherwise (score 0)
7601
- 2) Multiple labels for each image
7602
- Here an image relevancy with respect to a single image query is measured by f-beta score
7603
- assuming the query image list of labels as ground truth and comparing them with that of
7604
- the search result. These labels can come from image annotations or if substitute_annotation_misses
7605
- is set, predictions of base classifier where any prediction with prob < prob_threshold are
7606
- discarded. To quantify the relevancy score of a single search result we opt to compute precision
7607
- and recall @ k for simplicity, and combine them with f-beta score to obtain a single number.
7608
- """
7609
- brute_force_ndcg: builtins.float
7610
- """Brute force NDCG which gives a baseline to compare to and is a measure of how good
7611
- the embeddings are.
7612
- """
7613
- def __init__(
7614
- self,
7615
- *,
7616
- k: builtins.int = ...,
7617
- recall_vs_brute_force: builtins.float = ...,
7618
- kendall_tau_vs_brute_force: builtins.float = ...,
7619
- most_frequent_code_percent: builtins.float = ...,
7620
- lopq_ndcg: builtins.float = ...,
7621
- brute_force_ndcg: builtins.float = ...,
7622
- ) -> None: ...
7623
- def ClearField(
7624
- self,
7625
- field_name: typing_extensions.Literal[
7626
- "brute_force_ndcg",
7627
- b"brute_force_ndcg",
7628
- "k",
7629
- b"k",
7630
- "kendall_tau_vs_brute_force",
7631
- b"kendall_tau_vs_brute_force",
7632
- "lopq_ndcg",
7633
- b"lopq_ndcg",
7634
- "most_frequent_code_percent",
7635
- b"most_frequent_code_percent",
7636
- "recall_vs_brute_force",
7637
- b"recall_vs_brute_force",
7638
- ],
7639
- ) -> None: ...
7640
-
7641
- global___LOPQEvalResult = LOPQEvalResult
7642
-
7643
7568
  @typing_extensions.final
7644
7569
  class MetricsSummary(google.protobuf.message.Message):
7645
7570
  """MetricsSummary"""
@@ -7656,7 +7581,6 @@ class MetricsSummary(google.protobuf.message.Message):
7656
7581
  MACRO_AVG_RECALL_FIELD_NUMBER: builtins.int
7657
7582
  MEAN_AVG_PRECISION_IOU_50_FIELD_NUMBER: builtins.int
7658
7583
  MEAN_AVG_PRECISION_IOU_RANGE_FIELD_NUMBER: builtins.int
7659
- LOPQ_METRICS_FIELD_NUMBER: builtins.int
7660
7584
  top1_accuracy: builtins.float
7661
7585
  top5_accuracy: builtins.float
7662
7586
  macro_avg_roc_auc: builtins.float
@@ -7667,12 +7591,6 @@ class MetricsSummary(google.protobuf.message.Message):
7667
7591
  macro_avg_recall: builtins.float
7668
7592
  mean_avg_precision_iou_50: builtins.float
7669
7593
  mean_avg_precision_iou_range: builtins.float
7670
- @property
7671
- def lopq_metrics(
7672
- self,
7673
- ) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[
7674
- global___LOPQEvalResult
7675
- ]: ...
7676
7594
  def __init__(
7677
7595
  self,
7678
7596
  *,
@@ -7686,13 +7604,10 @@ class MetricsSummary(google.protobuf.message.Message):
7686
7604
  macro_avg_recall: builtins.float = ...,
7687
7605
  mean_avg_precision_iou_50: builtins.float = ...,
7688
7606
  mean_avg_precision_iou_range: builtins.float = ...,
7689
- lopq_metrics: collections.abc.Iterable[global___LOPQEvalResult] | None = ...,
7690
7607
  ) -> None: ...
7691
7608
  def ClearField(
7692
7609
  self,
7693
7610
  field_name: typing_extensions.Literal[
7694
- "lopq_metrics",
7695
- b"lopq_metrics",
7696
7611
  "macro_avg_f1_score",
7697
7612
  b"macro_avg_f1_score",
7698
7613
  "macro_avg_precision",
@@ -8783,83 +8698,6 @@ class Rank(google.protobuf.message.Message):
8783
8698
 
8784
8699
  global___Rank = Rank
8785
8700
 
8786
- @typing_extensions.final
8787
- class AnnotationSearchMetrics(google.protobuf.message.Message):
8788
- """AnnotationSearchMetrics"""
8789
-
8790
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
8791
-
8792
- GROUND_TRUTH_FIELD_NUMBER: builtins.int
8793
- SEARCH_TO_EVAL_FIELD_NUMBER: builtins.int
8794
- METRICS_FIELD_NUMBER: builtins.int
8795
- DATA_FIELD_NUMBER: builtins.int
8796
- ACTIVE_CONCEPT_COUNT_FIELD_NUMBER: builtins.int
8797
- VISIBILITY_FIELD_NUMBER: builtins.int
8798
- @property
8799
- def ground_truth(self) -> global___Search:
8800
- """The ground truth we are evaluating against"""
8801
- @property
8802
- def search_to_eval(self) -> global___Search:
8803
- """The set we are evaluating"""
8804
- @property
8805
- def metrics(self) -> global___EvalMetrics:
8806
- """The metric result"""
8807
- @property
8808
- def data(self) -> global___Data:
8809
- """data is filled out with the concepts used for this evaluation"""
8810
- active_concept_count: builtins.int
8811
- """active_concept_count is the number of concepts for this evaluation"""
8812
- @property
8813
- def visibility(self) -> global___Visibility:
8814
- """The visibility field represents whether this message is privately/publicly visible.
8815
- To be visible to the public the App that contains it AND the User that contains the App must
8816
- also be publicly visible.
8817
- """
8818
- def __init__(
8819
- self,
8820
- *,
8821
- ground_truth: global___Search | None = ...,
8822
- search_to_eval: global___Search | None = ...,
8823
- metrics: global___EvalMetrics | None = ...,
8824
- data: global___Data | None = ...,
8825
- active_concept_count: builtins.int = ...,
8826
- visibility: global___Visibility | None = ...,
8827
- ) -> None: ...
8828
- def HasField(
8829
- self,
8830
- field_name: typing_extensions.Literal[
8831
- "data",
8832
- b"data",
8833
- "ground_truth",
8834
- b"ground_truth",
8835
- "metrics",
8836
- b"metrics",
8837
- "search_to_eval",
8838
- b"search_to_eval",
8839
- "visibility",
8840
- b"visibility",
8841
- ],
8842
- ) -> builtins.bool: ...
8843
- def ClearField(
8844
- self,
8845
- field_name: typing_extensions.Literal[
8846
- "active_concept_count",
8847
- b"active_concept_count",
8848
- "data",
8849
- b"data",
8850
- "ground_truth",
8851
- b"ground_truth",
8852
- "metrics",
8853
- b"metrics",
8854
- "search_to_eval",
8855
- b"search_to_eval",
8856
- "visibility",
8857
- b"visibility",
8858
- ],
8859
- ) -> None: ...
8860
-
8861
- global___AnnotationSearchMetrics = AnnotationSearchMetrics
8862
-
8863
8701
  @typing_extensions.final
8864
8702
  class Text(google.protobuf.message.Message):
8865
8703
  """Text"""