chemotools 0.1.9__py3-none-any.whl → 0.1.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,188 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+
6
+ from sklearn.base import BaseEstimator, OutlierMixin
7
+ from sklearn.decomposition._base import _BasePCA
8
+ from sklearn.cross_decomposition._pls import _PLS
9
+ from sklearn.pipeline import Pipeline
10
+ from sklearn.utils.validation import check_is_fitted
11
+
12
+
13
+ ModelTypes = Union[_BasePCA, _PLS]
14
+
15
+
16
+ class _ModelResidualsBase(ABC, BaseEstimator, OutlierMixin):
17
+ """Base class for model outlier calculations.
18
+
19
+ Implements statistical calculations for outlier detection in dimensionality
20
+ reduction models like PCA and PLS.
21
+
22
+ Parameters
23
+ ----------
24
+ model : Union[ModelTypes, Pipeline]
25
+ A fitted _BasePCA or _PLS models or Pipeline ending with such a model
26
+ confidence : float
27
+ Confidence level for statistical calculations (between 0 and 1)
28
+
29
+ Attributes
30
+ ----------
31
+ estimator_ : ModelTypes
32
+ The fitted model of type _BasePCA or _PLS
33
+
34
+ transformer_ : Optional[Pipeline]
35
+ Preprocessing steps before the model
36
+
37
+ n_features_in_ : int
38
+ Number of features in the input data
39
+
40
+ n_components_ : int
41
+ Number of components in the model
42
+
43
+ n_samples_ : int
44
+ Number of samples used to train the model
45
+
46
+ critical_value_ : float
47
+ The calculated critical value for outlier detection
48
+ """
49
+
50
+ def __init__(
51
+ self,
52
+ model: Union[ModelTypes, Pipeline],
53
+ confidence: float,
54
+ ) -> None:
55
+ (
56
+ self.estimator_,
57
+ self.transformer_,
58
+ self.n_features_in_,
59
+ self.n_components_,
60
+ self.n_samples_,
61
+ ) = _validate_and_extract_model(model)
62
+ self.confidence = _validate_confidence(confidence)
63
+
64
+ def fit_predict_residuals(
65
+ self, X: np.ndarray, y: Optional[np.ndarray] = None
66
+ ) -> np.ndarray:
67
+ """Fit the model to the input data and calculate the residuals.
68
+
69
+ Parameters
70
+ ----------
71
+ X : array-like of shape (n_samples, n_features)
72
+ Input data
73
+
74
+ y : array-like of shape (n_samples,), default=None
75
+ Target values
76
+
77
+ Returns
78
+ -------
79
+ ndarray of shape (n_samples,)
80
+ The residuals of the model
81
+ """
82
+ self.fit(X, y)
83
+ return self.predict_residuals(X, y, validate=True)
84
+
85
+ @abstractmethod
86
+ def predict_residuals(
87
+ self, X: np.ndarray, y: Optional[np.ndarray], validate: bool
88
+ ) -> np.ndarray:
89
+ """Calculate the residuals of the model.
90
+
91
+ Returns
92
+ -------
93
+ ndarray of shape (n_samples,)
94
+ The residuals of the model
95
+ """
96
+
97
+ @abstractmethod
98
+ def _calculate_critical_value(self, X: np.ndarray) -> float:
99
+ """Calculate the critical value for outlier detection.
100
+
101
+ Returns
102
+ -------
103
+ float
104
+ The calculated critical value for outlier detection
105
+ """
106
+
107
+
108
+ def _get_model_parameters(model: ModelTypes) -> Tuple[int, int, int]:
109
+ """
110
+ Get the number of features, components and samples from a model with PLS or PCA. types.
111
+
112
+ Parameters
113
+ ----------
114
+ model : ModelType
115
+ A fitted model of type _BasePCA or _PLS
116
+
117
+ Returns
118
+ -------
119
+ Tuple[int, int, int]
120
+ The number of features, components and samples in the model
121
+ """
122
+ if isinstance(model, _BasePCA):
123
+ return model.n_features_in_, model.n_components_, model.n_samples_
124
+ elif isinstance(model, _PLS):
125
+ return model.n_features_in_, model.n_components, len(model.x_scores_)
126
+ else:
127
+ raise ValueError(
128
+ "Model not a valid model. Must be of base type _BasePCA or _PLS or a Pipeline ending with one of these types."
129
+ )
130
+
131
+
132
+ def _validate_confidence(confidence: float) -> float:
133
+ """Validate parameters using sklearn conventions.
134
+
135
+ Parameters
136
+ ----------
137
+ confidence : float
138
+ Confidence level for statistical calculations (between 0 and 1)
139
+
140
+ Returns
141
+ -------
142
+ float
143
+ The validated confidence level
144
+
145
+ Raises
146
+ ------
147
+ ValueError
148
+ If confidence is not between 0 and 1
149
+ """
150
+ if not 0 < confidence < 1:
151
+ raise ValueError("Confidence must be between 0 and 1")
152
+ return confidence
153
+
154
+
155
+ def _validate_and_extract_model(
156
+ model: Union[ModelTypes, Pipeline],
157
+ ) -> Tuple[ModelTypes, Optional[Pipeline], int, int, int]:
158
+ """Validate and extract the model and preprocessing steps.
159
+
160
+ Parameters
161
+ ----------
162
+ model : Union[ModelTypes, Pipeline]
163
+ A fitted PCA/PLS model or Pipeline ending with such a model
164
+
165
+ Returns
166
+ -------
167
+ Tuple[ModelTypes, Optional[Pipeline]]
168
+ The extracted model and preprocessing steps
169
+
170
+ Raises
171
+ ------
172
+ ValueError
173
+ If the model is not of type _BasePCA or _PLS or a Pipeline ending with one of these types or if the model is not fitted
174
+ """
175
+ if isinstance(model, Pipeline):
176
+ preprocessing = model[:-1]
177
+ model = model[-1]
178
+ else:
179
+ preprocessing = None
180
+
181
+ if not isinstance(model, (_BasePCA, _PLS)):
182
+ raise ValueError(
183
+ "Model not a valid model. Must be of base type _BasePCA or _PLS or a Pipeline ending with one of these types."
184
+ )
185
+
186
+ check_is_fitted(model)
187
+ n_features_in, n_components, n_samples = _get_model_parameters(model)
188
+ return model, preprocessing, n_features_in, n_components, n_samples
@@ -0,0 +1,164 @@
1
+ from typing import Optional, Union
2
+ import numpy as np
3
+
4
+ from sklearn.pipeline import Pipeline
5
+ from sklearn.utils.validation import validate_data, check_is_fitted
6
+ from scipy.stats import f as f_distribution
7
+
8
+
9
+ from ._base import _ModelResidualsBase, ModelTypes
10
+ from .utils import calculate_residual_spectrum
11
+
12
+
13
+ class DModX(_ModelResidualsBase):
14
+ """Calculate Distance to Model (DModX) statistics.
15
+
16
+ DModX measures the distance between an observation and the model plane
17
+ in the X-space, useful for detecting outliers.
18
+
19
+ Parameters
20
+ ----------
21
+ model : Union[ModelType, Pipeline]
22
+ A fitted PCA/PLS model or Pipeline ending with such a model
23
+
24
+ confidence : float, default=0.95
25
+ Confidence level for statistical calculations (between 0 and 1)
26
+
27
+ Attributes
28
+ ----------
29
+ estimator_ : ModelType
30
+ The fitted model of type _BasePCA or _PLS
31
+
32
+ transformer_ : Optional[Pipeline]
33
+ Preprocessing steps before the model
34
+
35
+ n_features_in_ : int
36
+ Number of features in the input data
37
+
38
+ n_components_ : int
39
+ Number of components in the model
40
+
41
+ n_samples_ : int
42
+ Number of samples used to train the model
43
+
44
+ critical_value_ : float
45
+ The calculated critical value for outlier detection
46
+
47
+ train_spe_: float
48
+ The training sum of squared errors (SSE) for the model normalized by degrees of freedom
49
+ """
50
+
51
+ def __init__(
52
+ self,
53
+ model: Union[ModelTypes, Pipeline],
54
+ confidence: float = 0.95,
55
+ ) -> None:
56
+ model, confidence = model, confidence
57
+ super().__init__(model, confidence)
58
+
59
+ def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> "DModX":
60
+ """
61
+ Fit the model to the input data.
62
+
63
+ This step calculates the critical value for the outlier detection. In the DmodX method,
64
+ the critical value is not depend on the input data but on the model parameters.
65
+ """
66
+ X = validate_data(
67
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
68
+ )
69
+
70
+ # Calculate the critical value
71
+ self.critical_value_ = self._calculate_critical_value()
72
+
73
+ # Calculate the degrees of freedom normalized SPE of the training set
74
+ residuals = calculate_residual_spectrum(X, self.estimator_)
75
+ squared_errors = np.sum((residuals) ** 2, axis=1)
76
+ self.train_spe_ = np.sqrt(
77
+ squared_errors
78
+ / (self.n_samples_ - self.n_components_ - 1)
79
+ * (self.n_features_in_ - self.n_components_)
80
+ )
81
+
82
+ return self
83
+
84
+ def predict(self, X: np.ndarray) -> np.ndarray:
85
+ """Identify outliers in the input data.
86
+
87
+ Parameters
88
+ ----------
89
+ X : array-like of shape (n_samples, n_features)
90
+ Input data
91
+
92
+ Returns
93
+ -------
94
+ ndarray of shape (n_samples,)
95
+ Boolean array indicating outliers
96
+ """
97
+ # Check the estimator has been fitted
98
+ check_is_fitted(self, ["critical_value_"])
99
+
100
+ # Validate the input data
101
+ X = validate_data(
102
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
103
+ )
104
+
105
+ # Calculate outliers based on the DModX statistics
106
+ dmodx_values = self.predict_residuals(X, validate=False)
107
+ return np.where(dmodx_values > self.critical_value_, -1, 1)
108
+
109
+ def predict_residuals(
110
+ self, X: np.ndarray, y: Optional[np.ndarray] = None, validate: bool = True
111
+ ) -> np.ndarray:
112
+ """Calculate DModX statistics for input data.
113
+
114
+ Parameters
115
+ ----------
116
+ X : array-like of shape (n_samples, n_features)
117
+ Input data
118
+
119
+ validate : bool, default=True
120
+ Whether to validate the input data
121
+
122
+ Returns
123
+ -------
124
+ ndarray of shape (n_samples,)
125
+ DModX statistics for each sample
126
+ """
127
+ # Check the estimator has been fitted
128
+ check_is_fitted(self, ["critical_value_"])
129
+
130
+ # Validate the input data
131
+ if validate:
132
+ X = validate_data(
133
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
134
+ )
135
+
136
+ # Apply preprocessing if available
137
+ if self.transformer_:
138
+ X = self.transformer_.transform(X)
139
+
140
+ # Calculate the DModX statistics
141
+ residual = calculate_residual_spectrum(X, self.estimator_)
142
+ squared_errors = np.sum((residual) ** 2, axis=1)
143
+
144
+ return (
145
+ np.sqrt(squared_errors / (self.n_features_in_ - self.n_components_))
146
+ / self.train_spe_
147
+ )
148
+
149
+ def _calculate_critical_value(self, X: Optional[np.ndarray] = None) -> float:
150
+ """Calculate F-distribution based critical value.
151
+
152
+ Returns
153
+ -------
154
+ float
155
+ The critical value for outlier detection
156
+ """
157
+
158
+ dof_numerator = self.n_features_in_ - self.n_components_
159
+ dof_denominator = self.n_features_in_ - self.n_components_ - 1
160
+
161
+ upper_control_limit = f_distribution.ppf(
162
+ self.confidence, dof_numerator, dof_denominator
163
+ )
164
+ return np.sqrt(upper_control_limit)
@@ -0,0 +1,156 @@
1
+ from typing import Optional, Union
2
+ import numpy as np
3
+
4
+ from sklearn.cross_decomposition._pls import _PLS
5
+ from sklearn.decomposition._base import _BasePCA
6
+ from sklearn.pipeline import Pipeline
7
+ from sklearn.utils.validation import validate_data, check_is_fitted
8
+ from scipy.stats import f as f_distribution
9
+
10
+ from ._base import _ModelResidualsBase, ModelTypes
11
+
12
+
13
+ class HotellingT2(_ModelResidualsBase):
14
+ """
15
+ Calculate Hotelling's T-squared statistics for PCA or PLS like models.
16
+
17
+ Parameters
18
+ ----------
19
+ model : Union[ModelType, Pipeline]
20
+ A fitted PCA/PLS model or Pipeline ending with such a model
21
+
22
+ confidence : float, default=0.95
23
+ Confidence level for statistical calculations (between 0 and 1)
24
+
25
+ Attributes
26
+ ----------
27
+ estimator_ : ModelType
28
+ The fitted model of type _BasePCA or _PLS
29
+
30
+ transformer_ : Optional[Pipeline]
31
+ Preprocessing steps before the model
32
+
33
+ n_features_in_ : int
34
+ Number of features in the input data
35
+
36
+ n_components_ : int
37
+ Number of components in the model
38
+
39
+ n_samples_ : int
40
+ Number of samples used to train the model
41
+
42
+ critical_value_ : float
43
+ The calculated critical value for outlier detection
44
+
45
+ References
46
+ ----------
47
+ Johan A. Westerhuis, Stephen P. Gurden, Age K. Smilde (2001) Generalized contribution plots in multivariate statistical process
48
+ monitoring Chemometrics and Intelligent Laboratory Systems 51 2000 95–114
49
+ """
50
+
51
+ def __init__(
52
+ self, model: Union[ModelTypes, Pipeline], confidence: float = 0.95
53
+ ) -> None:
54
+ self.model, self.confidence = model, confidence
55
+ super().__init__(model, confidence)
56
+
57
+ def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> "HotellingT2":
58
+ """
59
+ Fit the model to the input data.
60
+
61
+ This step calculates the critical value for the outlier detection. In the DmodX method,
62
+ the critical value is not depend on the input data but on the model parameters.
63
+ """
64
+ X = validate_data(
65
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
66
+ )
67
+
68
+ self.critical_value_ = self._calculate_critical_value()
69
+ return self
70
+
71
+ def predict(self, X: np.ndarray) -> np.ndarray:
72
+ """Identify outliers in the input data.
73
+
74
+ Parameters
75
+ ----------
76
+ X : array-like of shape (n_samples, n_features)
77
+ Input data
78
+
79
+ Returns
80
+ -------
81
+ ndarray of shape (n_samples,)
82
+ Boolean array indicating outliers
83
+ """
84
+ # Check the estimator has been fitted
85
+ check_is_fitted(self, ["critical_value_"])
86
+
87
+ # Validate the input data
88
+ X = validate_data(
89
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
90
+ )
91
+
92
+ # Calculate the Hotelling's T-squared statistics
93
+ hotelling_t2_values = self.predict_residuals(X, y=None, validate=False)
94
+ return np.where(hotelling_t2_values > self.critical_value_, -1, 1)
95
+
96
+ def predict_residuals(
97
+ self, X: np.ndarray, y: Optional[np.ndarray] = None, validate: bool = True
98
+ ) -> np.ndarray:
99
+ """Calculate Hotelling's T-squared statistics for input data.
100
+
101
+ Parameters
102
+ ----------
103
+ X : array-like of shape (n_samples, n_features)
104
+ Input data
105
+
106
+ Returns
107
+ -------
108
+ ndarray of shape (n_samples,)
109
+ Hotellin's T-squared statistics for each sample
110
+ """
111
+ # Check the estimator has been fitted
112
+ check_is_fitted(self, ["critical_value_"])
113
+
114
+ # Validate the input data
115
+ if validate:
116
+ X = validate_data(
117
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
118
+ )
119
+
120
+ # Apply preprocessing steps
121
+ if self.transformer_:
122
+ X = self.transformer_.transform(X)
123
+
124
+ # Calculate the Hotelling's T-squared statistics
125
+ if isinstance(self.estimator_, _BasePCA):
126
+ # For PCA-like models
127
+ variances = self.estimator_.explained_variance_
128
+
129
+ if isinstance(self.estimator_, _PLS):
130
+ # For PLS-like models
131
+ variances = np.var(self.estimator_.x_scores_, axis=0)
132
+
133
+ # Equivalent to X @ model.components_.T for _BasePCA and X @ model.x_rotations_ for _PLS
134
+ X_transformed = self.estimator_.transform(X)
135
+
136
+ return np.sum((X_transformed**2) / variances, axis=1)
137
+
138
+ def _calculate_critical_value(self, X: Optional[np.ndarray] = None) -> float:
139
+ """
140
+ Calculate the critical value for the Hotelling's T-squared statistics.
141
+
142
+ Returns
143
+ -------
144
+ float
145
+ The critical value for the Hotelling's T-squared statistics
146
+ """
147
+
148
+ critical_value = f_distribution.ppf(
149
+ self.confidence, self.n_components_, self.n_samples_ - self.n_components_
150
+ )
151
+ return (
152
+ critical_value
153
+ * self.n_components_
154
+ * (self.n_samples_ - 1)
155
+ / (self.n_samples_ - self.n_components_)
156
+ )
@@ -0,0 +1,151 @@
1
+ from typing import Optional, Union
2
+ import numpy as np
3
+
4
+ from sklearn.pipeline import Pipeline
5
+ from sklearn.utils.validation import validate_data, check_is_fitted
6
+
7
+
8
+ from ._base import _ModelResidualsBase, ModelTypes
9
+
10
+
11
+ class Leverage(_ModelResidualsBase):
12
+ """
13
+ Calculate the leverage of the training samples on the latent space of a PCA or PLS models.
14
+ This method allows to detect datapoints with high leverage in the model.
15
+
16
+ Parameters
17
+ ----------
18
+ model : Union[ModelType, Pipeline]
19
+ A fitted PCA/PLS model or Pipeline ending with such a model
20
+
21
+ Attributes
22
+ ----------
23
+ estimator_ : ModelType
24
+ The fitted model of type _BasePCA or _PLS
25
+
26
+ transformer_ : Optional[Pipeline]
27
+ Preprocessing steps before the model
28
+
29
+ References
30
+ ----------
31
+
32
+ """
33
+
34
+ def __init__(
35
+ self, model: Union[ModelTypes, Pipeline], confidence: float = 0.95
36
+ ) -> None:
37
+ model, confidence = model, confidence
38
+ super().__init__(model, confidence)
39
+
40
+ def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> "Leverage":
41
+ """
42
+ Fit the model to the input data.
43
+
44
+ Parameters
45
+
46
+ """
47
+ X = validate_data(
48
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
49
+ )
50
+
51
+ if self.transformer_:
52
+ X = self.transformer_.fit_transform(X)
53
+
54
+ # Compute the critical threshold
55
+ self.critical_value_ = self._calculate_critical_value(X)
56
+
57
+ return self
58
+
59
+ def predict(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray:
60
+ """Calculate Leverage for training data on the model.
61
+
62
+ Parameters
63
+ ----------
64
+ X : array-like of shape (n_samples, n_features)
65
+ Input data
66
+
67
+ Returns
68
+ -------
69
+ ndarray of shape (n_samples,)
70
+ Bool with samples with a leverage above the critical value
71
+ """
72
+ # Check the estimator has been fitted
73
+ check_is_fitted(self, ["critical_value_"])
74
+
75
+ # Validate the input data
76
+ X = validate_data(
77
+ self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
78
+ )
79
+
80
+ # Preprocess the data
81
+ if self.transformer_:
82
+ X = self.transformer_.transform(X)
83
+
84
+ # Calculate outliers based on samples with too high leverage
85
+ leverage = calculate_leverage(X, self.estimator_)
86
+ return np.where(leverage > self.critical_value_, -1, 1)
87
+
88
+ def predict_residuals(
89
+ self, X: np.ndarray, y: Optional[np.ndarray] = None, validate: bool = True
90
+ ) -> np.ndarray:
91
+ """Calculate the leverage of the samples.
92
+
93
+ Parameters
94
+ ----------
95
+ X : array-like of shape (n_samples, n_features)
96
+ Input data
97
+
98
+ Returns
99
+ -------
100
+ np.ndarray
101
+ Leverage of the samples
102
+ """
103
+ # Check the estimator has been fitted
104
+ check_is_fitted(self, ["critical_value_"])
105
+
106
+ # Validate the input data
107
+ if validate:
108
+ X = validate_data(self, X, ensure_2d=True, dtype=np.float64)
109
+
110
+ # Apply preprocessing if available
111
+ if self.transformer_:
112
+ X = self.transformer_.transform(X)
113
+
114
+ # Calculate the leverage
115
+ return calculate_leverage(X, self.estimator_)
116
+
117
+ def _calculate_critical_value(self, X: np.ndarray) -> float:
118
+ """Calculate the critical value for outlier detection using the percentile outlier method."""
119
+
120
+ # Calculate the leverage of the samples
121
+ leverage = calculate_leverage(X, self.estimator_)
122
+
123
+ # Calculate the critical value
124
+ return np.percentile(leverage, self.confidence * 100)
125
+
126
+
127
+ def calculate_leverage(X: np.ndarray, model: ModelTypes) -> np.ndarray:
128
+ """
129
+ Calculate the leverage of the training samples in a PLS/PCA-like model.
130
+
131
+ Parameters
132
+ ----------
133
+ model : Union[_BasePCA, _PLS]
134
+ A fitted PCA/PLS model
135
+
136
+ X : np.ndarray
137
+ Preprocessed input data
138
+
139
+ Returns
140
+ -------
141
+ np.ndarray
142
+ Leverage of the samples
143
+ """
144
+
145
+ X_transformed = model.transform(X)
146
+
147
+ X_hat = (
148
+ X_transformed @ np.linalg.inv(X_transformed.T @ X_transformed) @ X_transformed.T
149
+ )
150
+
151
+ return np.diag(X_hat)