checkpoint-engine 0.1.3__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checkpoint_engine/_version.py +2 -2
- checkpoint_engine/ps.py +249 -108
- {checkpoint_engine-0.1.3.dist-info → checkpoint_engine-0.2.0.dist-info}/METADATA +18 -11
- checkpoint_engine-0.2.0.dist-info/RECORD +9 -0
- checkpoint_engine-0.1.3.dist-info/RECORD +0 -9
- {checkpoint_engine-0.1.3.dist-info → checkpoint_engine-0.2.0.dist-info}/WHEEL +0 -0
- {checkpoint_engine-0.1.3.dist-info → checkpoint_engine-0.2.0.dist-info}/licenses/LICENCE +0 -0
- {checkpoint_engine-0.1.3.dist-info → checkpoint_engine-0.2.0.dist-info}/top_level.txt +0 -0
checkpoint_engine/_version.py
CHANGED
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.
|
|
32
|
-
__version_tuple__ = version_tuple = (0,
|
|
31
|
+
__version__ = version = '0.2.0'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 2, 0)
|
|
33
33
|
|
|
34
34
|
__commit_id__ = commit_id = None
|
checkpoint_engine/ps.py
CHANGED
|
@@ -25,6 +25,8 @@ from torch.multiprocessing.reductions import reduce_tensor
|
|
|
25
25
|
|
|
26
26
|
|
|
27
27
|
if TYPE_CHECKING:
|
|
28
|
+
from typing import TypeVar
|
|
29
|
+
|
|
28
30
|
from typing_extensions import TypedDict
|
|
29
31
|
|
|
30
32
|
class FileMeta(TypedDict):
|
|
@@ -34,6 +36,8 @@ if TYPE_CHECKING:
|
|
|
34
36
|
type: type
|
|
35
37
|
tp_concat_dim: int
|
|
36
38
|
|
|
39
|
+
T = TypeVar("T")
|
|
40
|
+
|
|
37
41
|
|
|
38
42
|
def _dt_validate(value: Any) -> torch.dtype:
|
|
39
43
|
if isinstance(value, str):
|
|
@@ -117,6 +121,7 @@ class MemoryBuffer(BaseModel):
|
|
|
117
121
|
class MemoryBufferMetaList(BaseModel):
|
|
118
122
|
p2p_store_addr: str | None
|
|
119
123
|
memory_buffer_metas_list: list[MemoryBufferMetas]
|
|
124
|
+
rdma_device: str
|
|
120
125
|
|
|
121
126
|
|
|
122
127
|
class DataToGather(MemoryBufferMetaList):
|
|
@@ -303,14 +308,7 @@ def _get_rdma_devices() -> list[str]:
|
|
|
303
308
|
return devices_str.split(",")
|
|
304
309
|
# if PS_P2P_STORE_RDMA_DEVICES is not set, try to use NCCL_IB_HCA to get RDMA devices
|
|
305
310
|
hca = os.getenv("NCCL_IB_HCA", None)
|
|
306
|
-
|
|
307
|
-
hca_list = hca.split(",")
|
|
308
|
-
if len(hca_list) > 1:
|
|
309
|
-
# if NCCL_IB_HCA has multiple values, just return
|
|
310
|
-
return hca_list
|
|
311
|
-
else:
|
|
312
|
-
hca = hca_list[0]
|
|
313
|
-
return [device for device in sorted(_ibv_get_device_list()) if hca is None or hca in device]
|
|
311
|
+
return _parse_NCCL_IB_HCA(hca or "", _ibv_get_device_list()) or _ibv_get_device_list()
|
|
314
312
|
|
|
315
313
|
|
|
316
314
|
def _get_my_rdma_device(local_rank: int, gpu_count: int, devices: list[str]) -> str:
|
|
@@ -328,6 +326,75 @@ def _get_my_rdma_device(local_rank: int, gpu_count: int, devices: list[str]) ->
|
|
|
328
326
|
return devices[local_rank // (gpu_count // len(devices))]
|
|
329
327
|
|
|
330
328
|
|
|
329
|
+
def _parse_NCCL_IB_HCA(value: str, available_devices: list[str]) -> list[str]:
|
|
330
|
+
"""
|
|
331
|
+
The acceptable value by NCCL_IB_HCA is documented in https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#id8.
|
|
332
|
+
The Python version parser is referred to the CPP parser in NCCL: https://github.com/NVIDIA/nccl/blob/v2.28.3-1/src/transport/net_ib.cc#L658-L662.
|
|
333
|
+
|
|
334
|
+
The list is comma-separated; port numbers are NOT supported yet.
|
|
335
|
+
An optional prefix '^' indicates the list is an exclude list.
|
|
336
|
+
A second optional prefix '=' indicates that the tokens are exact names, otherwise by default NCCL would treat each token as a prefix.
|
|
337
|
+
Please note that when '^' and '=' appear together, only '^=' is allowed, '=^' is not supported.
|
|
338
|
+
|
|
339
|
+
Examples:
|
|
340
|
+
- `NCCL_IB_HCA="mlx5"`: Use all cards starting with `mlx5`.
|
|
341
|
+
- `NCCL_IB_HCA="=mlx5_0,mlx5_1"`: Use specific cards `mlx5_0` and `mlx5_1`.
|
|
342
|
+
- `NCCL_IB_HCA="^mlx5"`: Use all cards except those starting with `mlx5`.
|
|
343
|
+
- `NCCL_IB_HCA="^=mlx5_0,mlx5_1"`: Use all cards except `mlx5_0` and `mlx5_1`.
|
|
344
|
+
"""
|
|
345
|
+
max_hcas = 32
|
|
346
|
+
if not value or value.strip() == "":
|
|
347
|
+
return available_devices[:max_hcas]
|
|
348
|
+
|
|
349
|
+
value = value.strip()
|
|
350
|
+
result = []
|
|
351
|
+
is_exclude = value.startswith("^")
|
|
352
|
+
if is_exclude:
|
|
353
|
+
value = value.removeprefix("^")
|
|
354
|
+
is_exact_match = value.startswith("=")
|
|
355
|
+
if is_exact_match:
|
|
356
|
+
value = value.removeprefix("=")
|
|
357
|
+
|
|
358
|
+
device_specs = [spec.strip() for spec in value.split(",") if spec.strip()]
|
|
359
|
+
|
|
360
|
+
result = _resolve_device_specs(device_specs, is_exact_match, available_devices)
|
|
361
|
+
if is_exclude:
|
|
362
|
+
result = [dev for dev in available_devices if dev not in result]
|
|
363
|
+
if len(result) > max_hcas:
|
|
364
|
+
result = result[:max_hcas]
|
|
365
|
+
|
|
366
|
+
logger.info(f"RDMA Devices from 'NCCL_IB_HCA': {result}")
|
|
367
|
+
|
|
368
|
+
return result
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
def _resolve_device_specs(
|
|
372
|
+
device_specs: list[str], is_exact_match: bool, available_devices: list[str]
|
|
373
|
+
) -> list[str]:
|
|
374
|
+
devices = set()
|
|
375
|
+
for spec in device_specs:
|
|
376
|
+
parts = spec.split(":", 1)
|
|
377
|
+
device_name = parts[0].strip()
|
|
378
|
+
# HACK: mooncake transfer engine does not support port specification yet, so we ignore it
|
|
379
|
+
# port = parts[1].strip() if len(parts) > 1 else None
|
|
380
|
+
base_devices = (
|
|
381
|
+
[device_name]
|
|
382
|
+
if device_name in available_devices
|
|
383
|
+
else []
|
|
384
|
+
if is_exact_match
|
|
385
|
+
else [dev for dev in available_devices if dev.startswith(device_name)]
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
if not base_devices:
|
|
389
|
+
logger.warning(f"No RDMA device match {device_name=} where {is_exact_match=}.")
|
|
390
|
+
continue
|
|
391
|
+
|
|
392
|
+
for base_dev in base_devices:
|
|
393
|
+
devices.add(base_dev)
|
|
394
|
+
|
|
395
|
+
return sorted(devices)
|
|
396
|
+
|
|
397
|
+
|
|
331
398
|
def _load_checkpoint(files: list[str]) -> dict[str, torch.Tensor]:
|
|
332
399
|
class TPMeta(BaseModel):
|
|
333
400
|
concat_dim: int
|
|
@@ -490,8 +557,12 @@ def request_inference_to_update(
|
|
|
490
557
|
|
|
491
558
|
|
|
492
559
|
def _gen_h2d_buckets(
|
|
493
|
-
global_metas: dict[int, MemoryBufferMetaList],
|
|
494
|
-
|
|
560
|
+
global_metas: dict[int, MemoryBufferMetaList],
|
|
561
|
+
bucket_size: int,
|
|
562
|
+
local_topo: dict[str, set[int]],
|
|
563
|
+
remote_topo: dict[str, set[int]],
|
|
564
|
+
ranks: list[int] | None = None,
|
|
565
|
+
) -> list[tuple[int, int, H2DBucket]]:
|
|
495
566
|
buckets: list[tuple[int, H2DBucket]] = []
|
|
496
567
|
|
|
497
568
|
for owner_rank, items in global_metas.items():
|
|
@@ -514,7 +585,73 @@ def _gen_h2d_buckets(
|
|
|
514
585
|
assert buckets[-1][1].size > 0, (
|
|
515
586
|
f"buckets[-1][1].size {buckets[-1][1].size} should be greater than 0"
|
|
516
587
|
)
|
|
517
|
-
|
|
588
|
+
ranks_set = set(ranks) if ranks else set()
|
|
589
|
+
actual_local_topo = (
|
|
590
|
+
{k: v & ranks_set for k, v in local_topo.items() if v & ranks_set} if ranks else local_topo
|
|
591
|
+
)
|
|
592
|
+
# if ranks is empty, assign the owner_rank as receiver_rank, this is used for colocate architecture
|
|
593
|
+
if not ranks:
|
|
594
|
+
return [(owner_rank, owner_rank, bucket) for owner_rank, bucket in buckets]
|
|
595
|
+
else:
|
|
596
|
+
return _assign_receiver_ranks(buckets, actual_local_topo, remote_topo)
|
|
597
|
+
|
|
598
|
+
|
|
599
|
+
def _assign_receiver_ranks(
|
|
600
|
+
buckets: list[tuple[int, "T"]],
|
|
601
|
+
local_topo: dict[str, set[int]],
|
|
602
|
+
remote_topo: dict[str, set[int]],
|
|
603
|
+
) -> list[tuple[int, int, "T"]]:
|
|
604
|
+
"""
|
|
605
|
+
(owner_rank, bucket) -> (receiver_rank, owner_rank, bucket)
|
|
606
|
+
|
|
607
|
+
Assign receiver ranks to buckets. If ranks is empty, assign the owner_rank as receiver_rank.
|
|
608
|
+
GPU-rdma_device topology will be considered to make full use of the bandwidth.
|
|
609
|
+
"""
|
|
610
|
+
if not buckets:
|
|
611
|
+
logger.warning("bucket list is empty, no need to assign receiver ranks")
|
|
612
|
+
return []
|
|
613
|
+
rank_to_rdma_device = {
|
|
614
|
+
rank: rdma_device for rdma_device, ranks in remote_topo.items() for rank in ranks
|
|
615
|
+
}
|
|
616
|
+
|
|
617
|
+
# group buckets by owner RDMA devices
|
|
618
|
+
buckets_by_rdma_device = defaultdict(list)
|
|
619
|
+
for owner_rank, bucket in buckets:
|
|
620
|
+
owner_rdma_device = rank_to_rdma_device[owner_rank]
|
|
621
|
+
buckets_by_rdma_device[owner_rdma_device].append((owner_rank, bucket))
|
|
622
|
+
|
|
623
|
+
buckets_matrix = list(buckets_by_rdma_device.values())
|
|
624
|
+
assert buckets_matrix, "buckets_matrix should not be empty"
|
|
625
|
+
|
|
626
|
+
# Select receiver ranks. We use the minimum rank in each local RDMA device group as receiver rank
|
|
627
|
+
num_receivers = min(len(local_topo), len(buckets_by_rdma_device))
|
|
628
|
+
receiver_list = [min(ranks) for ranks in list(local_topo.values())[:num_receivers]]
|
|
629
|
+
|
|
630
|
+
flattened_buckets = [
|
|
631
|
+
buckets_matrix[row][col]
|
|
632
|
+
for col in range(
|
|
633
|
+
max(len(matrix_row) for matrix_row in buckets_matrix) if buckets_matrix else 0
|
|
634
|
+
)
|
|
635
|
+
for row in range(len(buckets_matrix))
|
|
636
|
+
if col < len(buckets_matrix[row])
|
|
637
|
+
]
|
|
638
|
+
|
|
639
|
+
buckets_with_receiver = []
|
|
640
|
+
assigned_cnt = 0
|
|
641
|
+
while assigned_cnt < len(flattened_buckets):
|
|
642
|
+
occupied_devices = set()
|
|
643
|
+
for receiver_rank in receiver_list:
|
|
644
|
+
if assigned_cnt >= len(flattened_buckets):
|
|
645
|
+
break
|
|
646
|
+
owner_rank, bucket = flattened_buckets[assigned_cnt]
|
|
647
|
+
rdma_device = rank_to_rdma_device[owner_rank]
|
|
648
|
+
if rdma_device in occupied_devices:
|
|
649
|
+
break
|
|
650
|
+
buckets_with_receiver.append((receiver_rank, owner_rank, bucket))
|
|
651
|
+
occupied_devices.add(rdma_device)
|
|
652
|
+
assigned_cnt += 1
|
|
653
|
+
|
|
654
|
+
return buckets_with_receiver
|
|
518
655
|
|
|
519
656
|
|
|
520
657
|
def _get_master_port(master_port: int | None = None) -> int:
|
|
@@ -525,6 +662,20 @@ def _get_master_port(master_port: int | None = None) -> int:
|
|
|
525
662
|
return master_port
|
|
526
663
|
|
|
527
664
|
|
|
665
|
+
def _get_bcast_rank_map(world_size: int, ranks: list[int] | None) -> dict[int, int]:
|
|
666
|
+
"""
|
|
667
|
+
map the real ranks (receiver_rank) to the bcast ranks (0 ~ len(ranks) - 1),
|
|
668
|
+
which are generated in self.init_process_group_for_ranks
|
|
669
|
+
"""
|
|
670
|
+
bcast_rank_map: dict[int, int] = {}
|
|
671
|
+
if not ranks:
|
|
672
|
+
bcast_rank_map = {r: r for r in range(world_size)}
|
|
673
|
+
else:
|
|
674
|
+
for i, r in enumerate(ranks):
|
|
675
|
+
bcast_rank_map[r] = i
|
|
676
|
+
return bcast_rank_map
|
|
677
|
+
|
|
678
|
+
|
|
528
679
|
class P2PStore:
|
|
529
680
|
def __init__(self):
|
|
530
681
|
from mooncake.engine import TransferEngine
|
|
@@ -532,14 +683,14 @@ class P2PStore:
|
|
|
532
683
|
self.rank = int(os.getenv("RANK"))
|
|
533
684
|
gpu_count = torch.cuda.device_count()
|
|
534
685
|
local_rank = self.rank % gpu_count
|
|
535
|
-
device = _get_my_rdma_device(local_rank, gpu_count, _get_rdma_devices())
|
|
686
|
+
self.device = _get_my_rdma_device(local_rank, gpu_count, _get_rdma_devices())
|
|
536
687
|
self.ip = _get_ip()
|
|
537
688
|
|
|
538
689
|
# we will start at most 8 ps processes, so we use 8 retries to avoid port conflicts in extreme cases
|
|
539
690
|
retry_count = 8
|
|
540
691
|
for i in range(retry_count):
|
|
541
692
|
self.engine = TransferEngine()
|
|
542
|
-
ret = self.engine.initialize(self.ip, "P2PHANDSHAKE", "rdma", device)
|
|
693
|
+
ret = self.engine.initialize(self.ip, "P2PHANDSHAKE", "rdma", self.device)
|
|
543
694
|
if ret == 0:
|
|
544
695
|
break
|
|
545
696
|
# sleep 0.5 ~ 2.0s, to avoid port conflicts when two processes retry at the same time
|
|
@@ -553,7 +704,7 @@ class P2PStore:
|
|
|
553
704
|
self.port = self.engine.get_rpc_port()
|
|
554
705
|
self.named_tensors: dict[str, torch.Tensor] = {}
|
|
555
706
|
logger.info(
|
|
556
|
-
f"[rank{self.rank}] p2p store initialized, addr is {self.addr}, rdma device is {device}"
|
|
707
|
+
f"[rank{self.rank}] p2p store initialized, addr is {self.addr}, rdma device is {self.device}"
|
|
557
708
|
)
|
|
558
709
|
|
|
559
710
|
@property
|
|
@@ -615,6 +766,8 @@ class ParameterServer:
|
|
|
615
766
|
self._auto_pg = auto_pg
|
|
616
767
|
self._all_hosts = []
|
|
617
768
|
self._global_device_uuids: list[str] = []
|
|
769
|
+
self._local_rdma_devices: dict[str, set[int]] = defaultdict(set)
|
|
770
|
+
self._remote_rdma_devices: dict[str, set[int]] = defaultdict(set)
|
|
618
771
|
self._mem_fraction = mem_fraction or 0.9
|
|
619
772
|
|
|
620
773
|
assert self._rank is not None and self._rank >= 0, self._rank
|
|
@@ -643,6 +796,7 @@ class ParameterServer:
|
|
|
643
796
|
device_index = self._local_rank
|
|
644
797
|
torch.cuda.set_device(device_index)
|
|
645
798
|
self._device_uuid = _get_physical_gpu_id(device_index)
|
|
799
|
+
self._rdma_device = None if self._p2p_store is None else self._p2p_store.device
|
|
646
800
|
|
|
647
801
|
def _logger_rank0(self, msg: str):
|
|
648
802
|
if self._local_rank == 0:
|
|
@@ -653,6 +807,13 @@ class ParameterServer:
|
|
|
653
807
|
|
|
654
808
|
def load_metas(self, metas: dict[int, MemoryBufferMetaList]):
|
|
655
809
|
self._current_global_parameter_metas = metas
|
|
810
|
+
self._remote_rdma_devices = defaultdict(set)
|
|
811
|
+
for i, meta in self._current_global_parameter_metas.items():
|
|
812
|
+
assert meta.rdma_device is not None, "meta.rdma_device should not be None"
|
|
813
|
+
assert meta.p2p_store_addr is not None, "meta.p2p_store_addr should not be None"
|
|
814
|
+
self._remote_rdma_devices[
|
|
815
|
+
meta.rdma_device + "@" + meta.p2p_store_addr.split(":")[0]
|
|
816
|
+
].add(i)
|
|
656
817
|
|
|
657
818
|
def register_checkpoint(
|
|
658
819
|
self,
|
|
@@ -726,11 +887,11 @@ class ParameterServer:
|
|
|
726
887
|
p2p_store_addr=None if self._p2p_store is None else self._p2p_store.addr,
|
|
727
888
|
host_ip=_get_ip(),
|
|
728
889
|
device_uuid=self._device_uuid,
|
|
890
|
+
rdma_device=self._rdma_device or "",
|
|
729
891
|
)
|
|
730
892
|
|
|
731
893
|
dist.all_gather_object(metas_lst, metas)
|
|
732
894
|
|
|
733
|
-
self._current_global_parameter_metas = {}
|
|
734
895
|
num_parameters = 0
|
|
735
896
|
all_hosts: list[str] = []
|
|
736
897
|
global_device_uuids: list[str] = []
|
|
@@ -741,12 +902,24 @@ class ParameterServer:
|
|
|
741
902
|
if not self._global_device_uuids:
|
|
742
903
|
global_device_uuids.append(metas_buckets.device_uuid)
|
|
743
904
|
if metas_buckets.memory_buffer_metas_list:
|
|
744
|
-
self._current_global_parameter_metas[i] =
|
|
905
|
+
self._current_global_parameter_metas[i] = MemoryBufferMetaList(
|
|
906
|
+
memory_buffer_metas_list=metas_buckets.memory_buffer_metas_list,
|
|
907
|
+
p2p_store_addr=metas_buckets.p2p_store_addr,
|
|
908
|
+
rdma_device=metas_buckets.rdma_device,
|
|
909
|
+
)
|
|
745
910
|
num_parameters += sum(len(x.metas) for x in metas_buckets.memory_buffer_metas_list)
|
|
911
|
+
self._local_rdma_devices[
|
|
912
|
+
metas_buckets.rdma_device + "@" + metas_buckets.p2p_store_addr.split(":")[0]
|
|
913
|
+
if metas_buckets.p2p_store_addr
|
|
914
|
+
else metas_buckets.host_ip
|
|
915
|
+
].add(i)
|
|
746
916
|
if not self._all_hosts:
|
|
747
917
|
self._all_hosts = all_hosts
|
|
748
918
|
if not self._global_device_uuids:
|
|
749
919
|
self._global_device_uuids = global_device_uuids
|
|
920
|
+
# Sender node and Receiver node have the same GPU-rdma_device topology is considered as default.
|
|
921
|
+
# Rewrite the sender's topology (_remote_rdma_devices) by calling load_metas.
|
|
922
|
+
self._remote_rdma_devices = self._local_rdma_devices.copy()
|
|
750
923
|
logger.info(
|
|
751
924
|
f"[rank{self._rank}] gather parameter metas finished, num_parameters: {num_parameters}"
|
|
752
925
|
)
|
|
@@ -801,6 +974,7 @@ class ParameterServer:
|
|
|
801
974
|
If set, will use p2p to update to the ranks, this is flexible to update to a group of ranks,
|
|
802
975
|
which is useful in disaggregated architecture.
|
|
803
976
|
"""
|
|
977
|
+
assert req_func is not None, "req_func is required"
|
|
804
978
|
try:
|
|
805
979
|
# if both ranks is None or [], it will use fully broadcast to update to all ranks
|
|
806
980
|
if not ranks:
|
|
@@ -808,17 +982,15 @@ class ParameterServer:
|
|
|
808
982
|
self.init_process_group()
|
|
809
983
|
self._update_per_bucket(checkpoint_name, req_func)
|
|
810
984
|
else:
|
|
811
|
-
if not self._auto_pg and self._rank not in ranks:
|
|
812
|
-
return
|
|
813
985
|
if self._auto_pg:
|
|
814
986
|
if dist.is_initialized():
|
|
815
987
|
dist.destroy_process_group()
|
|
816
988
|
# HACK: wait 2s to ensure destroy is finished
|
|
817
989
|
time.sleep(2)
|
|
818
|
-
if self._rank not in ranks:
|
|
819
|
-
return
|
|
820
990
|
self.init_process_group_for_ranks(ranks)
|
|
821
|
-
self.
|
|
991
|
+
if self._rank not in ranks:
|
|
992
|
+
return
|
|
993
|
+
self._update_per_bucket(checkpoint_name, req_func, ranks)
|
|
822
994
|
if self._auto_pg:
|
|
823
995
|
dist.destroy_process_group()
|
|
824
996
|
|
|
@@ -963,71 +1135,6 @@ class ParameterServer:
|
|
|
963
1135
|
backend="nccl", world_size=len(ranks), rank=rank, timeout=timeout, store=store
|
|
964
1136
|
)
|
|
965
1137
|
|
|
966
|
-
def _update_per_bucket_p2p(
|
|
967
|
-
self,
|
|
968
|
-
checkpoint_name: str,
|
|
969
|
-
req_func: Callable[[list[tuple[str, str]]], None],
|
|
970
|
-
ranks: list[int],
|
|
971
|
-
):
|
|
972
|
-
assert self._p2p_store is not None, "p2p store is not initialized"
|
|
973
|
-
assert ranks, "ranks should be set"
|
|
974
|
-
if len(self._current_global_parameter_metas) == 0:
|
|
975
|
-
raise ValueError("parameter metas is empty")
|
|
976
|
-
assert dist.is_initialized(), (
|
|
977
|
-
"process group is not initialized when update model per bucket p2p"
|
|
978
|
-
)
|
|
979
|
-
|
|
980
|
-
need_update = self._rank in ranks
|
|
981
|
-
logger.info(
|
|
982
|
-
f"[rank{self._rank}] update checkpoint {checkpoint_name} p2p, {need_update=} with {ranks=}, "
|
|
983
|
-
f"gpu_count {self._gpu_count}, world_size {self._world_size}"
|
|
984
|
-
)
|
|
985
|
-
|
|
986
|
-
if not need_update:
|
|
987
|
-
return
|
|
988
|
-
|
|
989
|
-
# first execute a barrier to avoid subsequent cuda oom
|
|
990
|
-
dist.barrier()
|
|
991
|
-
|
|
992
|
-
bucket_size, _ = self._detect_bucket_size(disable_h2d_buffer=True)
|
|
993
|
-
buffer = torch.empty(bucket_size * 2, dtype=torch.uint8, device="cuda")
|
|
994
|
-
ipc_buffer_name = "__ipc_buffer___"
|
|
995
|
-
self._p2p_store.register_named_tensors({ipc_buffer_name: buffer})
|
|
996
|
-
logger.info(
|
|
997
|
-
f"[rank{self._rank}] register buffer, shape={buffer.shape}, dtype={buffer.dtype}, data_ptr={buffer.data_ptr()}, nbytes={buffer.nbytes}"
|
|
998
|
-
)
|
|
999
|
-
handle = reduce_tensor(buffer)
|
|
1000
|
-
|
|
1001
|
-
buckets = _gen_h2d_buckets(self._current_global_parameter_metas, bucket_size)
|
|
1002
|
-
socket, socket_paths = self._bind_zmq_socket()
|
|
1003
|
-
req_thread = threading.Thread(
|
|
1004
|
-
target=req_func,
|
|
1005
|
-
args=(socket_paths,),
|
|
1006
|
-
)
|
|
1007
|
-
req_thread.start()
|
|
1008
|
-
socket.send_pyobj(handle)
|
|
1009
|
-
for gidx, (owner_rank, bucket) in enumerate(buckets):
|
|
1010
|
-
self._logger_rank0(
|
|
1011
|
-
f"[rank{self._rank}] begin to update bucket {gidx + 1}/{len(buckets)} owner_rank {owner_rank} in checkpoint {checkpoint_name}, bucket_size: {bucket.size / 1024 / 1024:.2f}MiB, length: {len(bucket.items)}. "
|
|
1012
|
-
)
|
|
1013
|
-
_buffer = buffer[gidx % 2 * bucket_size : gidx % 2 * bucket_size + bucket.size]
|
|
1014
|
-
if dist.get_rank() == 0:
|
|
1015
|
-
self._copy_to_buffer(checkpoint_name, bucket, _buffer, owner_rank)
|
|
1016
|
-
# broadcast the collected data to all ranks
|
|
1017
|
-
dist.broadcast(_buffer, src=0)
|
|
1018
|
-
socket.recv()
|
|
1019
|
-
dist.barrier()
|
|
1020
|
-
socket.send_pyobj(_to_named_tensor(bucket.items, gidx % 2 * bucket_size))
|
|
1021
|
-
|
|
1022
|
-
socket.recv()
|
|
1023
|
-
socket.send_pyobj(None)
|
|
1024
|
-
socket.recv()
|
|
1025
|
-
req_thread.join()
|
|
1026
|
-
dist.barrier()
|
|
1027
|
-
socket.close()
|
|
1028
|
-
self._p2p_store.unregister_named_tensors([ipc_buffer_name])
|
|
1029
|
-
torch.cuda.empty_cache()
|
|
1030
|
-
|
|
1031
1138
|
def _get_addr_ptrs(self, owner_rank: int) -> tuple[str, list[tuple[int, int]]]:
|
|
1032
1139
|
addr = self._current_global_parameter_metas[owner_rank].p2p_store_addr
|
|
1033
1140
|
metas_list = self._current_global_parameter_metas[owner_rank].memory_buffer_metas_list
|
|
@@ -1057,38 +1164,63 @@ class ParameterServer:
|
|
|
1057
1164
|
self,
|
|
1058
1165
|
checkpoint_name: str,
|
|
1059
1166
|
req_func: Callable[[list[tuple[str, str]]], None],
|
|
1167
|
+
ranks: list[int] | None = None,
|
|
1060
1168
|
):
|
|
1061
|
-
|
|
1062
|
-
raise ValueError("parameter metas is empty")
|
|
1063
|
-
|
|
1169
|
+
assert len(self._current_global_parameter_metas) != 0, "parameter metas is empty"
|
|
1064
1170
|
assert dist.is_initialized(), "process group is not initialized"
|
|
1171
|
+
# if both ranks is None or [], it will use fully broadcast to update to all ranks
|
|
1172
|
+
if not ranks:
|
|
1173
|
+
logger.info(f"[rank{self._rank}] update checkpoint {checkpoint_name}")
|
|
1174
|
+
# if ranks is set, it will use p2p to update to the ranks
|
|
1175
|
+
else:
|
|
1176
|
+
assert self._p2p_store is not None, "p2p store is not initialized"
|
|
1177
|
+
assert ranks, "ranks should be set"
|
|
1065
1178
|
|
|
1066
|
-
|
|
1179
|
+
need_update = self._rank in ranks
|
|
1180
|
+
logger.info(
|
|
1181
|
+
f"[rank{self._rank}] update checkpoint {checkpoint_name} p2p, {need_update=} with {ranks=}, "
|
|
1182
|
+
f"gpu_count {self._gpu_count}, world_size {self._world_size}"
|
|
1183
|
+
)
|
|
1184
|
+
|
|
1185
|
+
if not need_update:
|
|
1186
|
+
return
|
|
1187
|
+
# first execute a barrier to avoid subsequent cuda oom
|
|
1188
|
+
dist.barrier()
|
|
1067
1189
|
|
|
1068
1190
|
bucket_size, disable_h2d_buffer = self._detect_bucket_size()
|
|
1069
|
-
buckets = _gen_h2d_buckets(
|
|
1191
|
+
buckets = _gen_h2d_buckets(
|
|
1192
|
+
self._current_global_parameter_metas,
|
|
1193
|
+
bucket_size,
|
|
1194
|
+
self._local_rdma_devices,
|
|
1195
|
+
self._remote_rdma_devices,
|
|
1196
|
+
ranks,
|
|
1197
|
+
)
|
|
1070
1198
|
|
|
1071
1199
|
h2d_buffer: torch.Tensor | None = (
|
|
1072
1200
|
None
|
|
1073
1201
|
if disable_h2d_buffer
|
|
1074
1202
|
else torch.empty(bucket_size, dtype=torch.uint8, device="cuda")
|
|
1075
1203
|
)
|
|
1076
|
-
|
|
1077
|
-
|
|
1078
|
-
|
|
1079
|
-
if
|
|
1204
|
+
# p2p store need to register h2d_buffer to let other ranks read
|
|
1205
|
+
if ranks:
|
|
1206
|
+
h2d_buffer_name = "__h2d_buffer__"
|
|
1207
|
+
if h2d_buffer is not None and self._p2p_store is not None:
|
|
1208
|
+
self._p2p_store.register_named_tensors({h2d_buffer_name: h2d_buffer})
|
|
1209
|
+
receiver_rank_buckets: list[tuple[int, H2DBucket]] = []
|
|
1210
|
+
for receiver_rank, owner_rank, bucket in buckets:
|
|
1211
|
+
if receiver_rank != self._rank:
|
|
1080
1212
|
continue
|
|
1081
|
-
|
|
1213
|
+
receiver_rank_buckets.append((owner_rank, bucket))
|
|
1082
1214
|
|
|
1083
1215
|
buffer = torch.empty(bucket_size * 2, dtype=torch.uint8, device="cuda")
|
|
1084
1216
|
handle = reduce_tensor(buffer)
|
|
1085
1217
|
|
|
1086
|
-
|
|
1218
|
+
buckets_by_receiver_rank: dict[int, list[H2DBucket]] = defaultdict(list)
|
|
1087
1219
|
max_len = 0
|
|
1088
|
-
for
|
|
1089
|
-
|
|
1090
|
-
if len(
|
|
1091
|
-
max_len = len(
|
|
1220
|
+
for receiver_rank, _, bucket in buckets:
|
|
1221
|
+
buckets_by_receiver_rank[receiver_rank].append(bucket)
|
|
1222
|
+
if len(buckets_by_receiver_rank[receiver_rank]) > max_len:
|
|
1223
|
+
max_len = len(buckets_by_receiver_rank[receiver_rank])
|
|
1092
1224
|
|
|
1093
1225
|
socket, socket_paths = self._bind_zmq_socket()
|
|
1094
1226
|
req_thread = threading.Thread(
|
|
@@ -1099,11 +1231,16 @@ class ParameterServer:
|
|
|
1099
1231
|
socket.send_pyobj(handle)
|
|
1100
1232
|
|
|
1101
1233
|
gidx = 0
|
|
1234
|
+
bcast_rank_map = _get_bcast_rank_map(self._world_size, ranks)
|
|
1102
1235
|
for i in range(max_len):
|
|
1103
|
-
if i < len(
|
|
1104
|
-
self._copy_to_buffer(
|
|
1105
|
-
|
|
1106
|
-
|
|
1236
|
+
if i < len(receiver_rank_buckets) and not disable_h2d_buffer:
|
|
1237
|
+
self._copy_to_buffer(
|
|
1238
|
+
checkpoint_name,
|
|
1239
|
+
receiver_rank_buckets[i][1],
|
|
1240
|
+
h2d_buffer,
|
|
1241
|
+
receiver_rank_buckets[i][0] if ranks else None,
|
|
1242
|
+
)
|
|
1243
|
+
for receiver_rank, _buckets in buckets_by_receiver_rank.items():
|
|
1107
1244
|
if i >= len(_buckets):
|
|
1108
1245
|
continue
|
|
1109
1246
|
bucket = _buckets[i]
|
|
@@ -1112,18 +1249,19 @@ class ParameterServer:
|
|
|
1112
1249
|
torch.cuda.memory_reserved() / 1024 / 1024,
|
|
1113
1250
|
)
|
|
1114
1251
|
self._logger_rank0(
|
|
1115
|
-
f"[rank{self._rank}] begin to update bucket {gidx + 1}/{len(buckets)}
|
|
1252
|
+
f"[rank{self._rank}] begin to update bucket {gidx + 1}/{len(buckets)} receiver_rank {receiver_rank} in checkpoint {checkpoint_name}, bucket_size: {bucket.size / 1024 / 1024:.2f}MiB, length: {len(bucket.items)}. "
|
|
1116
1253
|
f"Current CUDA allocated {alloc:.2f} MB, "
|
|
1117
1254
|
f"reserved {reserved:.2f} MB."
|
|
1118
1255
|
)
|
|
1119
1256
|
start = gidx % 2 * bucket_size
|
|
1120
1257
|
buffer_b: torch.Tensor = buffer[start : start + bucket.size]
|
|
1121
|
-
if
|
|
1258
|
+
if receiver_rank == self._rank:
|
|
1122
1259
|
if disable_h2d_buffer:
|
|
1123
1260
|
self._copy_to_buffer(checkpoint_name, bucket, buffer_b)
|
|
1124
1261
|
else:
|
|
1125
1262
|
buffer_b.data.copy_(h2d_buffer[: bucket.size])
|
|
1126
|
-
|
|
1263
|
+
brank = bcast_rank_map[receiver_rank]
|
|
1264
|
+
dist.broadcast(buffer_b, src=brank)
|
|
1127
1265
|
socket.recv()
|
|
1128
1266
|
dist.barrier()
|
|
1129
1267
|
socket.send_pyobj(_to_named_tensor(bucket.items, gidx % 2 * bucket_size))
|
|
@@ -1135,6 +1273,9 @@ class ParameterServer:
|
|
|
1135
1273
|
req_thread.join()
|
|
1136
1274
|
dist.barrier()
|
|
1137
1275
|
socket.close()
|
|
1276
|
+
if ranks and h2d_buffer is not None:
|
|
1277
|
+
self._p2p_store.unregister_named_tensors([h2d_buffer_name])
|
|
1278
|
+
|
|
1138
1279
|
torch.cuda.empty_cache()
|
|
1139
1280
|
|
|
1140
1281
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: checkpoint-engine
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.2.0
|
|
4
4
|
Summary: checkpoint-engine is a lightweight, decoupling and efficient weight update middleware
|
|
5
5
|
Project-URL: Homepage, https://github.com/MoonshotAI/checkpoint-engine
|
|
6
6
|
Project-URL: Repository, https://github.com/MoonshotAI/checkpoint-engine
|
|
@@ -38,8 +38,8 @@ updating our [Kimi-K2](https://github.com/MoonshotAI/Kimi-K2) model (1 Trillion
|
|
|
38
38
|
|
|
39
39
|
The core weight update logic is in `ParameterServer` class, a service colocated with inference engines. It provides two implementations of weight update: Broadcast and P2P.
|
|
40
40
|
|
|
41
|
-
- **Broadcast**: Used when a large number of inference instances need to update weights in synchronous. This is the fastest implementation and should be used as the default update method. See `_update_per_bucket`.
|
|
42
|
-
- **P2P**: Used when new inference instances are dynamically added (due to restarts or dynamic availability) while the existing instances are already serving requests. Under this scenario, to avoid affecting the workloads on existing instances, we use the [`mooncake-transfer-engine`](https://github.com/kvcache-ai/Mooncake?tab=readme-ov-file#use-python-package) to P2P send weights from CPUs in existing instances to GPUs in new instances. See `
|
|
41
|
+
- **Broadcast**: Used when a large number of inference instances need to update weights in synchronous. This is the fastest implementation and should be used as the default update method. See `_update_per_bucket` with `ranks == None or []`.
|
|
42
|
+
- **P2P**: Used when new inference instances are dynamically added (due to restarts or dynamic availability) while the existing instances are already serving requests. Under this scenario, to avoid affecting the workloads on existing instances, we use the [`mooncake-transfer-engine`](https://github.com/kvcache-ai/Mooncake?tab=readme-ov-file#use-python-package) to P2P send weights from CPUs in existing instances to GPUs in new instances. See `_update_per_bucket` with `ranks` specified.
|
|
43
43
|
|
|
44
44
|
### Optimized Weight Broadcast
|
|
45
45
|
In the *Broadcast* implementation, the checkpoint-engine holds references to sharded weights in CPU memory, and need to efficiently broadcast them to a cluster of inference instances, often under a different sharding pattern.
|
|
@@ -60,16 +60,22 @@ It then executes the transfer, where it controls the inference engine through a
|
|
|
60
60
|
|
|
61
61
|
Pipelining naturally requires more GPU memory. When memory is not enough, checkpoint-engine will fallback to serial execution.
|
|
62
62
|
|
|
63
|
+
### Optimized P2P Bucket Assignment
|
|
64
|
+
In the *P2P* implementation, checkpoint-engine needs to send weights from existing instances to new instances.
|
|
65
|
+
To minimize the overall transfer time, checkpoint-engine optimizes the bucket assignment for each sender-receiver pair.
|
|
66
|
+
The optimization goal is to make full use of the available network bandwidth for each sender and receiver.
|
|
67
|
+
See [issue #25](https://github.com/MoonshotAI/checkpoint-engine/issues/25)
|
|
68
|
+
|
|
63
69
|
## Benchmark
|
|
64
70
|
|
|
65
71
|
| Model | Device Info | GatherMetas | Update (Broadcast) | Update (P2P) |
|
|
66
72
|
| :----------------------------------- | :----------- | :---------- |:-------------------| :---------------------- |
|
|
67
|
-
| GLM-4.5-Air (BF16) | 8xH800 TP8
|
|
68
|
-
| Qwen3-235B-A22B-Instruct-2507 (BF16) | 8xH800 TP8
|
|
69
|
-
| DeepSeek-V3.1 (FP8) | 16xH20 TP16 | 1.
|
|
70
|
-
| Kimi-K2-Instruct (FP8) | 16xH20 TP16 | 1.
|
|
71
|
-
| DeepSeek-V3.1 (FP8) | 256xH20 TP16 |
|
|
72
|
-
| Kimi-K2-Instruct (FP8) | 256xH20 TP16 | 1.
|
|
73
|
+
| GLM-4.5-Air (BF16) | 8xH800 TP8 | 0.12s | 3.47s (3.02GiB) | 4.12s (3.02GiB) |
|
|
74
|
+
| Qwen3-235B-A22B-Instruct-2507 (BF16) | 8xH800 TP8 | 0.33s | 6.22s (2.67GiB) | 7.10s (2.68GiB) |
|
|
75
|
+
| DeepSeek-V3.1 (FP8) | 16xH20 TP16 | 1.17s | 10.19s (5.39GiB) | 11.80s (5.41GiB) |
|
|
76
|
+
| Kimi-K2-Instruct (FP8) | 16xH20 TP16 | 1.33s | 14.36s (5.89GiB) | 17.49s (5.91GiB) |
|
|
77
|
+
| DeepSeek-V3.1 (FP8) | 256xH20 TP16 | 0.80s | 11.33s (8.00GiB) | 11.81s (8.00GiB) |
|
|
78
|
+
| Kimi-K2-Instruct (FP8) | 256xH20 TP16 | 1.22s | 16.04s (8.00GiB) | 16.75s (8.00GiB) |
|
|
73
79
|
|
|
74
80
|
All results above are tested by [`examples/update.py`](./examples/update.py) and use [vLLM v0.10.2rc1](https://github.com/vllm-project/vllm/tree/v0.10.2rc1) as inference engine. Some notes:
|
|
75
81
|
|
|
@@ -77,6 +83,7 @@ All results above are tested by [`examples/update.py`](./examples/update.py) and
|
|
|
77
83
|
* Device Info: we tested various combination of devices and parallelism setups. For example, a 256-GPU TP16 setup means that we deploy 16 vLLM instances, each with 16-way tensor parallelism.
|
|
78
84
|
* Since update duration is related to IPC bucket size, we provide the bucket size in the table.
|
|
79
85
|
* The P2P time were tested for updating no more than two nodes (16 GPUs) (`ParameterServer.update(ranks=range(0, 16))`) out of the entire cluster.
|
|
86
|
+
* We bind each GPU to its corresponding NUMA node to ensure stable H2D transfer speeds.
|
|
80
87
|
|
|
81
88
|
## Installation
|
|
82
89
|
|
|
@@ -92,7 +99,7 @@ Use the flexible P2P implementation, notice this will install `mooncake-transfer
|
|
|
92
99
|
pip install 'checkpoint-engine[p2p]'
|
|
93
100
|
```
|
|
94
101
|
|
|
95
|
-
If set `NCCL_IB_HCA` env, checkpoint-engine will use it to auto select net devices for different ranks. If not set, it will read all RDMA devices and try to divide them into each rank.
|
|
102
|
+
If set `NCCL_IB_HCA` env, checkpoint-engine will use it to auto select net devices for different ranks. Available patterns can be found from [NCCL documentation](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#id8). If not set, it will read all RDMA devices and try to divide them into each rank.
|
|
96
103
|
|
|
97
104
|
## Getting Started
|
|
98
105
|
|
|
@@ -165,11 +172,11 @@ Run a simple correctness test for checkpoint_engine
|
|
|
165
172
|
torchrun --nproc-per-node 8 tests/test_update.py
|
|
166
173
|
```
|
|
167
174
|
|
|
175
|
+
Other unit tests can be done with pytest.
|
|
168
176
|
## Limitations and Future Work
|
|
169
177
|
|
|
170
178
|
- This project is currently only tested with vLLM. But it is easy to integrate with other frameworks like SGLang.
|
|
171
179
|
- The perfect three-stage pipeline mentioned in our paper is currently not implemented. This could be useful for architectures where H2D and broadcast do not conflict in PCIE.
|
|
172
|
-
- The P2P update method is currently not the optimal implementation since it will receive data only in rank 0 and broadcast to others synchronizely. This is a potential optimization in the future.
|
|
173
180
|
|
|
174
181
|
## Acknowledgments
|
|
175
182
|
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
checkpoint_engine/__init__.py,sha256=Zj4I008kn9R6fYr0lVBzcQSnvckLpX2s1ljCOOqV1c8,87
|
|
2
|
+
checkpoint_engine/_version.py,sha256=Dg8AmJomLVpjKL6prJylOONZAPRtB86LOce7dorQS_A,704
|
|
3
|
+
checkpoint_engine/ps.py,sha256=OpGocqJv0TfGgVC1cPKARfz6qehfCLMzQ5KpDQNxb0o,55291
|
|
4
|
+
checkpoint_engine/worker.py,sha256=ZmJTHeNPbnE8sPInfrghj9jeRDkMUSQO906o1UoJv-E,3748
|
|
5
|
+
checkpoint_engine-0.2.0.dist-info/licenses/LICENCE,sha256=D3gPmHKpGtF1yxYNhqjtBtZY_brZjDotJTzpnmClzlY,1067
|
|
6
|
+
checkpoint_engine-0.2.0.dist-info/METADATA,sha256=tbAq45YlRvRAfQHDB0XV8w4ZP0zmVJ3RMTAx_wTm154,9896
|
|
7
|
+
checkpoint_engine-0.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
8
|
+
checkpoint_engine-0.2.0.dist-info/top_level.txt,sha256=66sik_1eLakLYmcllOEJzFaNbSfjsueuP0tHYEzhMSs,18
|
|
9
|
+
checkpoint_engine-0.2.0.dist-info/RECORD,,
|
|
@@ -1,9 +0,0 @@
|
|
|
1
|
-
checkpoint_engine/__init__.py,sha256=Zj4I008kn9R6fYr0lVBzcQSnvckLpX2s1ljCOOqV1c8,87
|
|
2
|
-
checkpoint_engine/_version.py,sha256=q5nF98G8SoVeJqaknL0xdyxtv0egsqb0fK06_84Izu8,704
|
|
3
|
-
checkpoint_engine/ps.py,sha256=9dXRXi0QDPoRYrgGKAYvdmDFBXejgusjR0ltbii5_B0,49134
|
|
4
|
-
checkpoint_engine/worker.py,sha256=ZmJTHeNPbnE8sPInfrghj9jeRDkMUSQO906o1UoJv-E,3748
|
|
5
|
-
checkpoint_engine-0.1.3.dist-info/licenses/LICENCE,sha256=D3gPmHKpGtF1yxYNhqjtBtZY_brZjDotJTzpnmClzlY,1067
|
|
6
|
-
checkpoint_engine-0.1.3.dist-info/METADATA,sha256=y96dMjEOKWaO_PA0h5BX8G3Ku7Tt1jCU09uIf8iYgic,9322
|
|
7
|
-
checkpoint_engine-0.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
8
|
-
checkpoint_engine-0.1.3.dist-info/top_level.txt,sha256=66sik_1eLakLYmcllOEJzFaNbSfjsueuP0tHYEzhMSs,18
|
|
9
|
-
checkpoint_engine-0.1.3.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|