chatterer 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- chatterer/__init__.py +12 -0
- chatterer/language_model.py +78 -34
- chatterer/messages.py +8 -0
- chatterer/strategies/atom_of_thoughts.py +1 -2
- chatterer/tools/__init__.py +2 -0
- chatterer/tools/citation_chunking/__init__.py +3 -0
- chatterer/tools/citation_chunking/chunks.py +53 -0
- chatterer/tools/citation_chunking/citation_chunker.py +118 -0
- chatterer/tools/citation_chunking/citations.py +285 -0
- chatterer/tools/citation_chunking/prompt.py +157 -0
- chatterer/tools/citation_chunking/reference.py +26 -0
- chatterer/tools/citation_chunking/utils.py +138 -0
- chatterer/tools/convert_to_text.py +40 -41
- chatterer/tools/webpage_to_markdown/playwright_bot.py +28 -10
- chatterer/tools/webpage_to_markdown/utils.py +11 -238
- chatterer/utils/image.py +288 -0
- {chatterer-0.1.6.dist-info → chatterer-0.1.8.dist-info}/METADATA +2 -2
- chatterer-0.1.8.dist-info/RECORD +24 -0
- {chatterer-0.1.6.dist-info → chatterer-0.1.8.dist-info}/WHEEL +1 -1
- chatterer-0.1.6.dist-info/RECORD +0 -15
- {chatterer-0.1.6.dist-info → chatterer-0.1.8.dist-info}/top_level.txt +0 -0
chatterer/__init__.py
CHANGED
@@ -1,4 +1,10 @@
|
|
1
1
|
from .language_model import Chatterer
|
2
|
+
from .messages import (
|
3
|
+
AIMessage,
|
4
|
+
BaseMessage,
|
5
|
+
HumanMessage,
|
6
|
+
SystemMessage,
|
7
|
+
)
|
2
8
|
from .strategies import (
|
3
9
|
AoTPipeline,
|
4
10
|
AoTPrompter,
|
@@ -7,6 +13,7 @@ from .strategies import (
|
|
7
13
|
)
|
8
14
|
from .tools import (
|
9
15
|
anything_to_markdown,
|
16
|
+
citation_chunker,
|
10
17
|
get_default_html_to_markdown_options,
|
11
18
|
html_to_markdown,
|
12
19
|
pdf_to_text,
|
@@ -24,4 +31,9 @@ __all__ = [
|
|
24
31
|
"pdf_to_text",
|
25
32
|
"get_default_html_to_markdown_options",
|
26
33
|
"pyscripts_to_snippets",
|
34
|
+
"citation_chunker",
|
35
|
+
"BaseMessage",
|
36
|
+
"HumanMessage",
|
37
|
+
"SystemMessage",
|
38
|
+
"AIMessage",
|
27
39
|
]
|
chatterer/language_model.py
CHANGED
@@ -8,15 +8,18 @@ from typing import (
|
|
8
8
|
Type,
|
9
9
|
TypeAlias,
|
10
10
|
TypeVar,
|
11
|
+
cast,
|
12
|
+
overload,
|
11
13
|
)
|
12
14
|
|
13
15
|
from langchain_core.language_models.base import LanguageModelInput
|
14
16
|
from langchain_core.language_models.chat_models import BaseChatModel
|
15
|
-
from langchain_core.messages import HumanMessage
|
16
17
|
from langchain_core.runnables.base import Runnable
|
17
18
|
from langchain_core.runnables.config import RunnableConfig
|
18
19
|
from pydantic import BaseModel, Field
|
19
20
|
|
21
|
+
from .messages import AIMessage, BaseMessage, HumanMessage
|
22
|
+
|
20
23
|
if TYPE_CHECKING:
|
21
24
|
from instructor import Partial
|
22
25
|
|
@@ -32,19 +35,37 @@ class Chatterer(BaseModel):
|
|
32
35
|
client: BaseChatModel
|
33
36
|
structured_output_kwargs: dict[str, Any] = Field(default_factory=dict)
|
34
37
|
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
38
|
+
@overload
|
39
|
+
def __call__(
|
40
|
+
self,
|
41
|
+
messages: LanguageModelInput,
|
42
|
+
response_model: Type[PydanticModelT],
|
43
|
+
config: Optional[RunnableConfig] = None,
|
44
|
+
stop: Optional[list[str]] = None,
|
45
|
+
**kwargs: Any,
|
46
|
+
) -> PydanticModelT: ...
|
47
|
+
|
48
|
+
@overload
|
49
|
+
def __call__(
|
50
|
+
self,
|
51
|
+
messages: LanguageModelInput,
|
52
|
+
response_model: None = None,
|
53
|
+
config: Optional[RunnableConfig] = None,
|
54
|
+
stop: Optional[list[str]] = None,
|
55
|
+
**kwargs: Any,
|
56
|
+
) -> str: ...
|
57
|
+
|
58
|
+
def __call__(
|
59
|
+
self,
|
60
|
+
messages: LanguageModelInput,
|
61
|
+
response_model: Optional[Type[PydanticModelT]] = None,
|
62
|
+
config: Optional[RunnableConfig] = None,
|
63
|
+
stop: Optional[list[str]] = None,
|
64
|
+
**kwargs: Any,
|
65
|
+
) -> str | PydanticModelT:
|
66
|
+
if response_model:
|
67
|
+
return self.generate_pydantic(response_model, messages, config, stop, **kwargs)
|
68
|
+
return self.client.invoke(input=messages, config=config, stop=stop, **kwargs).text()
|
48
69
|
|
49
70
|
@classmethod
|
50
71
|
def openai(
|
@@ -233,6 +254,40 @@ class Chatterer(BaseModel):
|
|
233
254
|
)
|
234
255
|
])
|
235
256
|
|
257
|
+
@staticmethod
|
258
|
+
def get_num_tokens_from_message(message: BaseMessage) -> Optional[tuple[int, int]]:
|
259
|
+
try:
|
260
|
+
if isinstance(message, AIMessage) and (usage_metadata := message.usage_metadata):
|
261
|
+
input_tokens = int(usage_metadata["input_tokens"])
|
262
|
+
output_tokens = int(usage_metadata["output_tokens"])
|
263
|
+
else:
|
264
|
+
# Dynamic extraction for unknown structures
|
265
|
+
input_tokens: Optional[int] = None
|
266
|
+
output_tokens: Optional[int] = None
|
267
|
+
|
268
|
+
def _find_tokens(obj: object) -> None:
|
269
|
+
nonlocal input_tokens, output_tokens
|
270
|
+
if isinstance(obj, dict):
|
271
|
+
for key, value in cast(dict[object, object], obj).items():
|
272
|
+
if isinstance(value, int):
|
273
|
+
if "input" in str(key) or "prompt" in str(key):
|
274
|
+
input_tokens = value
|
275
|
+
elif "output" in str(key) or "completion" in str(key):
|
276
|
+
output_tokens = value
|
277
|
+
else:
|
278
|
+
_find_tokens(value)
|
279
|
+
elif isinstance(obj, list):
|
280
|
+
for item in cast(list[object], obj):
|
281
|
+
_find_tokens(item)
|
282
|
+
|
283
|
+
_find_tokens(message.model_dump())
|
284
|
+
|
285
|
+
if input_tokens is None or output_tokens is None:
|
286
|
+
return None
|
287
|
+
return input_tokens, output_tokens
|
288
|
+
except Exception:
|
289
|
+
return None
|
290
|
+
|
236
291
|
|
237
292
|
def with_structured_output(
|
238
293
|
client: BaseChatModel,
|
@@ -255,36 +310,25 @@ if __name__ == "__main__":
|
|
255
310
|
|
256
311
|
# === Synchronous Tests ===
|
257
312
|
|
258
|
-
#
|
313
|
+
# generate
|
259
314
|
print("=== Synchronous generate ===")
|
260
|
-
result_sync = chatterer
|
315
|
+
result_sync = chatterer(prompt)
|
261
316
|
print("Result (generate):", result_sync)
|
262
317
|
|
263
|
-
#
|
264
|
-
print("\n=== Synchronous __call__ ===")
|
265
|
-
result_call = chatterer(prompt)
|
266
|
-
print("Result (__call__):", result_call)
|
267
|
-
|
268
|
-
# 3. generate_stream
|
318
|
+
# generate_stream
|
269
319
|
print("\n=== Synchronous generate_stream ===")
|
270
320
|
for i, chunk in enumerate(chatterer.generate_stream(prompt)):
|
271
321
|
print(f"Chunk {i}:", chunk)
|
272
322
|
|
273
|
-
#
|
323
|
+
# generate_pydantic
|
274
324
|
print("\n=== Synchronous generate_pydantic ===")
|
275
|
-
|
276
|
-
|
277
|
-
print("Result (generate_pydantic):", result_pydantic)
|
278
|
-
except Exception as e:
|
279
|
-
print("Error in generate_pydantic:", e)
|
325
|
+
result_pydantic = chatterer(prompt, Propositions)
|
326
|
+
print("Result (generate_pydantic):", result_pydantic)
|
280
327
|
|
281
|
-
#
|
328
|
+
# generate_pydantic_stream
|
282
329
|
print("\n=== Synchronous generate_pydantic_stream ===")
|
283
|
-
|
284
|
-
|
285
|
-
print(f"Pydantic Chunk {i}:", chunk)
|
286
|
-
except Exception as e:
|
287
|
-
print("Error in generate_pydantic_stream:", e)
|
330
|
+
for i, chunk in enumerate(chatterer.generate_pydantic_stream(Propositions, prompt)):
|
331
|
+
print(f"Pydantic Chunk {i}:", chunk)
|
288
332
|
|
289
333
|
# === Asynchronous Tests ===
|
290
334
|
|
chatterer/messages.py
ADDED
@@ -6,11 +6,10 @@ from dataclasses import dataclass, field
|
|
6
6
|
from enum import StrEnum
|
7
7
|
from typing import Optional, Type, TypeVar
|
8
8
|
|
9
|
-
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
10
9
|
from pydantic import BaseModel, Field, ValidationError
|
11
10
|
|
12
|
-
# Import your Chatterer interface (do not remove)
|
13
11
|
from ..language_model import Chatterer, LanguageModelInput
|
12
|
+
from ..messages import AIMessage, BaseMessage, HumanMessage
|
14
13
|
from .base import BaseStrategy
|
15
14
|
|
16
15
|
# ---------------------------------------------------------------------------------
|
chatterer/tools/__init__.py
CHANGED
@@ -1,3 +1,4 @@
|
|
1
|
+
from .citation_chunking import citation_chunker
|
1
2
|
from .convert_to_text import (
|
2
3
|
anything_to_markdown,
|
3
4
|
get_default_html_to_markdown_options,
|
@@ -12,4 +13,5 @@ __all__ = [
|
|
12
13
|
"pdf_to_text",
|
13
14
|
"get_default_html_to_markdown_options",
|
14
15
|
"pyscripts_to_snippets",
|
16
|
+
"citation_chunker",
|
15
17
|
]
|
@@ -0,0 +1,53 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Callable, Optional, Self
|
3
|
+
|
4
|
+
from pydantic import BaseModel, Field
|
5
|
+
|
6
|
+
from ...language_model import Chatterer
|
7
|
+
from ...messages import AIMessage, BaseMessage, HumanMessage
|
8
|
+
from .prompt import (
|
9
|
+
generate_fewshot_affirmative_response,
|
10
|
+
generate_human_assistant_fewshot_examples,
|
11
|
+
generate_instruction,
|
12
|
+
)
|
13
|
+
from .reference import Reference
|
14
|
+
|
15
|
+
logger = logging.getLogger(__name__)
|
16
|
+
|
17
|
+
|
18
|
+
class CitationChunk(BaseModel):
|
19
|
+
subject: str = Field(description="The main topic or subject that the citations capture.")
|
20
|
+
references: list[Reference] = Field(description="A list of citation objects and/or regex patterns for the subject.")
|
21
|
+
|
22
|
+
|
23
|
+
class CitationChunks(BaseModel):
|
24
|
+
citation_chunks: list[CitationChunk] = Field(
|
25
|
+
description="A list of citation chunks, each capturing a specific topic in the document."
|
26
|
+
)
|
27
|
+
|
28
|
+
@classmethod
|
29
|
+
def from_llm(
|
30
|
+
cls,
|
31
|
+
chatterer: Chatterer,
|
32
|
+
document: str,
|
33
|
+
fewshot_examples_generator: Optional[
|
34
|
+
Callable[[], list[tuple[str, str]]]
|
35
|
+
] = generate_human_assistant_fewshot_examples,
|
36
|
+
instruction_generator: Optional[Callable[[], str]] = generate_instruction,
|
37
|
+
fewshot_affirmative_response: Optional[Callable[[], str]] = generate_fewshot_affirmative_response,
|
38
|
+
) -> Self:
|
39
|
+
messages: list[BaseMessage] = []
|
40
|
+
if instruction_generator:
|
41
|
+
messages.append(HumanMessage(content=instruction_generator()))
|
42
|
+
if fewshot_examples_generator is not None:
|
43
|
+
if fewshot_affirmative_response:
|
44
|
+
messages.append(AIMessage(content=generate_fewshot_affirmative_response()))
|
45
|
+
for human_ask, ai_answer in fewshot_examples_generator():
|
46
|
+
messages.append(HumanMessage(content=human_ask))
|
47
|
+
messages.append(AIMessage(content=ai_answer))
|
48
|
+
messages.append(HumanMessage(content=document))
|
49
|
+
try:
|
50
|
+
return chatterer.generate_pydantic(response_model=cls, messages=messages)
|
51
|
+
except Exception as e:
|
52
|
+
logger.error(f"Error obtaining CitationChunks from LLM: {e}")
|
53
|
+
raise e
|
@@ -0,0 +1,118 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Callable, NamedTuple, Optional, Self
|
3
|
+
|
4
|
+
import colorama
|
5
|
+
from colorama import Fore
|
6
|
+
|
7
|
+
from ...language_model import Chatterer
|
8
|
+
from .chunks import CitationChunks
|
9
|
+
from .citations import Citations
|
10
|
+
from .prompt import (
|
11
|
+
generate_fewshot_affirmative_response,
|
12
|
+
generate_human_assistant_fewshot_examples,
|
13
|
+
generate_instruction,
|
14
|
+
)
|
15
|
+
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
colorama.init()
|
18
|
+
|
19
|
+
|
20
|
+
class GlobalCoverage(NamedTuple):
|
21
|
+
coverage: float
|
22
|
+
matched_intervals: list[tuple[int, int]]
|
23
|
+
|
24
|
+
@staticmethod
|
25
|
+
def merge_intervals(intervals: list[tuple[int, int]]) -> list[tuple[int, int]]:
|
26
|
+
if not intervals:
|
27
|
+
return []
|
28
|
+
sorted_intervals = sorted(intervals, key=lambda x: x[0])
|
29
|
+
merged: list[tuple[int, int]] = [sorted_intervals[0]]
|
30
|
+
for current in sorted_intervals[1:]:
|
31
|
+
prev = merged[-1]
|
32
|
+
if current[0] <= prev[1]:
|
33
|
+
merged[-1] = (prev[0], max(prev[1], current[1]))
|
34
|
+
else:
|
35
|
+
merged.append(current)
|
36
|
+
return merged
|
37
|
+
|
38
|
+
@classmethod
|
39
|
+
def from_verified_citations(cls, verified_chunks: list[Citations], document: str) -> Self:
|
40
|
+
all_intervals: list[tuple[int, int]] = []
|
41
|
+
for chunk in verified_chunks:
|
42
|
+
for matches in chunk.references.values():
|
43
|
+
for m in matches:
|
44
|
+
all_intervals.append((m.start_idx, m.end_idx))
|
45
|
+
merged: list[tuple[int, int]] = cls.merge_intervals(all_intervals)
|
46
|
+
doc_length: int = len(document)
|
47
|
+
total_matched = sum((e - s for s, e in merged))
|
48
|
+
coverage: float = total_matched / doc_length if doc_length > 0 else 0.0
|
49
|
+
return cls(coverage=coverage, matched_intervals=merged)
|
50
|
+
|
51
|
+
|
52
|
+
def citation_chunker(
|
53
|
+
document: str,
|
54
|
+
chatterer: Chatterer,
|
55
|
+
global_coverage_threshold: float = 0.9,
|
56
|
+
num_refinement_steps: int = 3,
|
57
|
+
fewshot_examples_generator: Optional[
|
58
|
+
Callable[[], list[tuple[str, str]]]
|
59
|
+
] = generate_human_assistant_fewshot_examples,
|
60
|
+
instruction_generator: Optional[Callable[[], str]] = generate_instruction,
|
61
|
+
fewshot_affirmative_response: Optional[Callable[[], str]] = generate_fewshot_affirmative_response,
|
62
|
+
test_global_coverage: bool = False,
|
63
|
+
) -> list[Citations]:
|
64
|
+
"""
|
65
|
+
1) Obtain CitationChunks via the LLM.
|
66
|
+
2) Process each chunk to extract MatchedText using snippet-based index correction.
|
67
|
+
3) Calculate overall document coverage and print results.
|
68
|
+
"""
|
69
|
+
unverified_chunks: CitationChunks = CitationChunks.from_llm(
|
70
|
+
chatterer=chatterer,
|
71
|
+
document=document,
|
72
|
+
fewshot_examples_generator=fewshot_examples_generator,
|
73
|
+
instruction_generator=instruction_generator,
|
74
|
+
fewshot_affirmative_response=fewshot_affirmative_response,
|
75
|
+
)
|
76
|
+
|
77
|
+
verified_chunks: list[Citations] = []
|
78
|
+
for chunk in unverified_chunks.citation_chunks:
|
79
|
+
try:
|
80
|
+
vc: Citations = Citations.from_unverified(
|
81
|
+
unverified_chunk=chunk,
|
82
|
+
document=document,
|
83
|
+
model_and_refinement_steps=(chatterer, num_refinement_steps),
|
84
|
+
)
|
85
|
+
verified_chunks.append(vc)
|
86
|
+
except Exception as e:
|
87
|
+
logger.error(f"Error processing chunk for subject '{chunk.subject}': {e}")
|
88
|
+
|
89
|
+
if test_global_coverage:
|
90
|
+
gc = GlobalCoverage.from_verified_citations(verified_chunks, document)
|
91
|
+
logger.info(f"Global coverage: {gc.coverage * 100:.1f}%")
|
92
|
+
if gc.coverage < global_coverage_threshold:
|
93
|
+
logger.info(
|
94
|
+
f"Global coverage {gc.coverage * 100:.1f}% is below the threshold {global_coverage_threshold * 100:.1f}%."
|
95
|
+
)
|
96
|
+
print("=== Final Global Coverage Check ===")
|
97
|
+
print(f"Overall coverage: {gc.coverage * 100:.1f}% of the document.")
|
98
|
+
if gc.matched_intervals:
|
99
|
+
print("Merged matched intervals:")
|
100
|
+
for interval in gc.matched_intervals:
|
101
|
+
print(f" - {interval}")
|
102
|
+
else:
|
103
|
+
print("No matches found across all chunks.")
|
104
|
+
print("\n=== Raw Semantic Chunking Result ===")
|
105
|
+
for vc in verified_chunks:
|
106
|
+
print(f"{Fore.LIGHTGREEN_EX}[SUBJECT] {Fore.GREEN}{vc.name}{Fore.RESET}")
|
107
|
+
if vc.references:
|
108
|
+
for source_key, matches in vc.references.items():
|
109
|
+
print(f"{Fore.LIGHTBLUE_EX} [SOURCE] {Fore.BLUE}{source_key}{Fore.RESET}")
|
110
|
+
for mt in matches:
|
111
|
+
snippet = repr(mt.text)
|
112
|
+
print(
|
113
|
+
f" {Fore.LIGHTYELLOW_EX}[MATCH @ {mt.start_idx}~{mt.end_idx}] {Fore.YELLOW}{snippet}{Fore.RESET}"
|
114
|
+
)
|
115
|
+
else:
|
116
|
+
print(" - (No matches found even after refinement.)")
|
117
|
+
|
118
|
+
return verified_chunks
|
@@ -0,0 +1,285 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
import difflib
|
4
|
+
import logging
|
5
|
+
from typing import NamedTuple, Optional, Self, TypeAlias
|
6
|
+
|
7
|
+
from pydantic import Field
|
8
|
+
from regex import DOTALL
|
9
|
+
from regex import compile as regex_compile
|
10
|
+
from regex import error as regex_error
|
11
|
+
|
12
|
+
from ...language_model import Chatterer
|
13
|
+
from ...messages import HumanMessage
|
14
|
+
from .chunks import CitationChunk
|
15
|
+
from .reference import MultiMatchRegex, Reference, SingleMatchCitation
|
16
|
+
from .utils import MatchedText
|
17
|
+
|
18
|
+
ModelAndSteps: TypeAlias = tuple[Chatterer, int]
|
19
|
+
logger = logging.getLogger(__name__)
|
20
|
+
|
21
|
+
|
22
|
+
class Citations(NamedTuple):
|
23
|
+
"""
|
24
|
+
Holds the verified citation chunks and their matching information.
|
25
|
+
"""
|
26
|
+
|
27
|
+
name: str
|
28
|
+
references: dict[Reference, list[ReferencedTextMatch]]
|
29
|
+
|
30
|
+
@classmethod
|
31
|
+
def from_unverified(
|
32
|
+
cls,
|
33
|
+
unverified_chunk: CitationChunk,
|
34
|
+
document: str,
|
35
|
+
model_and_refinement_steps: Optional[ModelAndSteps] = None, # Optional LLM for refinement
|
36
|
+
) -> Self:
|
37
|
+
subject: str = unverified_chunk.subject
|
38
|
+
self: Self = cls(name=subject, references={})
|
39
|
+
for reference in unverified_chunk.references or ():
|
40
|
+
if isinstance(reference, SingleMatchCitation):
|
41
|
+
try:
|
42
|
+
mt: Optional[ReferencedTextMatch] = ReferencedTextMatch.from_citation(
|
43
|
+
subject=subject,
|
44
|
+
citation=reference,
|
45
|
+
document=document,
|
46
|
+
model_and_refinement_steps=model_and_refinement_steps,
|
47
|
+
)
|
48
|
+
if mt is None or not mt.text.strip():
|
49
|
+
logger.warning(f"Failed to extract text for citation {reference} in subject '{subject}'.")
|
50
|
+
else:
|
51
|
+
self.references[reference] = [mt]
|
52
|
+
except Exception as e:
|
53
|
+
logger.error(f"Error processing citation {reference} for subject '{subject}': {e}")
|
54
|
+
else:
|
55
|
+
try:
|
56
|
+
regex_matches: list[ReferencedTextMatch] = ReferencedTextMatch.from_regex(
|
57
|
+
regex=reference, subject=subject, document=document
|
58
|
+
)
|
59
|
+
if regex_matches:
|
60
|
+
self.references[reference] = regex_matches
|
61
|
+
except regex_error as e:
|
62
|
+
logger.error(f"Regex error for subject '{subject}' with pattern '{reference}': {e}")
|
63
|
+
return self
|
64
|
+
|
65
|
+
|
66
|
+
class ReferencedTextMatch(MatchedText):
|
67
|
+
@classmethod
|
68
|
+
def from_citation(
|
69
|
+
cls,
|
70
|
+
subject: str,
|
71
|
+
citation: SingleMatchCitation,
|
72
|
+
document: str,
|
73
|
+
model_and_refinement_steps: Optional[ModelAndSteps] = None, # Optional LLM for quality-check refinement
|
74
|
+
) -> Optional[Self]:
|
75
|
+
"""
|
76
|
+
Extract text from the document using the adjusted citation indices.
|
77
|
+
Additionally, if a language model is provided, evaluate the extraction quality
|
78
|
+
and refine it if needed.
|
79
|
+
"""
|
80
|
+
citation_id: Optional[SingleMatchCitationWithIndex] = SingleMatchCitationWithIndex.from_indexless_citation(
|
81
|
+
indexless_citation=citation,
|
82
|
+
document=document,
|
83
|
+
subject=subject,
|
84
|
+
model_and_refinement_steps=model_and_refinement_steps,
|
85
|
+
)
|
86
|
+
if citation_id is None:
|
87
|
+
return
|
88
|
+
|
89
|
+
return cls(
|
90
|
+
start_idx=citation_id.start,
|
91
|
+
end_idx=citation_id.end,
|
92
|
+
text=citation_id.extracted_text,
|
93
|
+
)
|
94
|
+
|
95
|
+
@classmethod
|
96
|
+
def from_regex(cls, regex: MultiMatchRegex, subject: str, document: str) -> list[Self]:
|
97
|
+
"""
|
98
|
+
Apply the given regex to the document and return all matching results as a list of MatchedText.
|
99
|
+
"""
|
100
|
+
try:
|
101
|
+
compiled_pattern = regex_compile(regex.regular_expression, flags=DOTALL)
|
102
|
+
except regex_error as e:
|
103
|
+
logger.error(f"Regex compilation error for pattern /{regex.regular_expression}/: {e}")
|
104
|
+
raise e
|
105
|
+
try:
|
106
|
+
matches = list(compiled_pattern.finditer(document, timeout=1.0))
|
107
|
+
except regex_error as e:
|
108
|
+
logger.error(f"Regex matching error for pattern /{regex.regular_expression}/: {e}")
|
109
|
+
raise e
|
110
|
+
return [cls(start_idx=m.start(), end_idx=m.end(), text=m.group()) for m in matches]
|
111
|
+
|
112
|
+
|
113
|
+
class SingleMatchCitationWithIndex(SingleMatchCitation):
|
114
|
+
start: int = Field(description="The computed start index of the citation in the document.")
|
115
|
+
end: int = Field(description="The computed end index of the citation in the document.")
|
116
|
+
extracted_text: str = Field(description="The extracted text from the document using the computed indices.")
|
117
|
+
|
118
|
+
@classmethod
|
119
|
+
def from_indexless_citation(
|
120
|
+
cls,
|
121
|
+
indexless_citation: SingleMatchCitation,
|
122
|
+
document: str,
|
123
|
+
subject: str,
|
124
|
+
model_and_refinement_steps: Optional[ModelAndSteps] = None, # Optional LLM for quality-check refinement
|
125
|
+
) -> Optional[Self]:
|
126
|
+
"""
|
127
|
+
Compute the correct start and end indices for the citation based on the provided text snippets.
|
128
|
+
This method ignores any indices provided by the LLM and computes them using a similarity-based search.
|
129
|
+
If multiple high-scoring candidates are found, the one with the highest effective score is chosen.
|
130
|
+
"""
|
131
|
+
if model_and_refinement_steps is None:
|
132
|
+
model = None
|
133
|
+
num_refinement_steps = 1
|
134
|
+
else:
|
135
|
+
model, num_refinement_steps = model_and_refinement_steps
|
136
|
+
for _ in range(num_refinement_steps):
|
137
|
+
result = cls.from_indexless_citation_with_refinement(
|
138
|
+
indexless_citation=indexless_citation,
|
139
|
+
document=document,
|
140
|
+
subject=subject,
|
141
|
+
chatterer=model,
|
142
|
+
)
|
143
|
+
if result is None:
|
144
|
+
continue
|
145
|
+
return result
|
146
|
+
|
147
|
+
@staticmethod
|
148
|
+
def find_best_match_index(snippet: str, document: str, target_index: int) -> Optional[int]:
|
149
|
+
"""
|
150
|
+
Extracts a candidate window centered around the specified target_index,
|
151
|
+
with a size equal to the length of the snippet. Within this region,
|
152
|
+
it calculates the similarity with the snippet using a sliding window approach.
|
153
|
+
|
154
|
+
The index of the candidate with the highest effective_score is returned.
|
155
|
+
If no suitable candidate is found, the target_index is returned.
|
156
|
+
|
157
|
+
Note: If multiple high-scoring candidates are found, the one with the highest effective score is chosen.
|
158
|
+
"""
|
159
|
+
snippet = snippet.strip()
|
160
|
+
if not snippet:
|
161
|
+
return
|
162
|
+
snippet_len: int = len(snippet)
|
163
|
+
best_index: int = -1
|
164
|
+
best_effective_score = 0.0
|
165
|
+
max_radius = max(target_index, len(document) - target_index)
|
166
|
+
for offset in range(max_radius):
|
167
|
+
for candidate_index in (
|
168
|
+
target_index - offset,
|
169
|
+
target_index + offset,
|
170
|
+
):
|
171
|
+
if candidate_index < 0 or candidate_index + snippet_len > len(document):
|
172
|
+
continue
|
173
|
+
candidate_segment = document[candidate_index : min(candidate_index + snippet_len, len(document))]
|
174
|
+
if len(candidate_segment) < snippet_len:
|
175
|
+
continue
|
176
|
+
local_best_similarity = 0.0
|
177
|
+
local_best_offset = 0
|
178
|
+
for i in range(0, len(candidate_segment) - snippet_len + 1):
|
179
|
+
candidate_window = candidate_segment[i : i + snippet_len]
|
180
|
+
similarity = difflib.SequenceMatcher(None, snippet, candidate_window).ratio()
|
181
|
+
if similarity > local_best_similarity:
|
182
|
+
local_best_similarity = similarity
|
183
|
+
local_best_offset = i
|
184
|
+
candidate_final_index = candidate_index + local_best_offset
|
185
|
+
if candidate_final_index + snippet_len > len(document):
|
186
|
+
candidate_final_index = len(document) - snippet_len
|
187
|
+
if local_best_similarity > best_effective_score:
|
188
|
+
best_effective_score = local_best_similarity
|
189
|
+
best_index = candidate_final_index
|
190
|
+
if not 0 <= best_index < len(document):
|
191
|
+
logger.warning(f"Snippet '{snippet}' not found with sufficient similarity.")
|
192
|
+
return
|
193
|
+
else:
|
194
|
+
logger.debug(
|
195
|
+
f"Found best match for snippet '{snippet}' at index {best_index} with effective score {best_effective_score:.2f}."
|
196
|
+
)
|
197
|
+
return best_index
|
198
|
+
|
199
|
+
@classmethod
|
200
|
+
def from_indexless_citation_with_refinement(
|
201
|
+
cls,
|
202
|
+
indexless_citation: SingleMatchCitation,
|
203
|
+
document: str,
|
204
|
+
subject: str,
|
205
|
+
chatterer: Optional[Chatterer],
|
206
|
+
) -> Optional[Self]:
|
207
|
+
if chatterer is None:
|
208
|
+
logger.error("No LLM provided for indexless citation refinement.")
|
209
|
+
new_indexless_citation = indexless_citation
|
210
|
+
else:
|
211
|
+
new_indexless_citation = chatterer.generate_pydantic(
|
212
|
+
response_model=SingleMatchCitation,
|
213
|
+
messages=[
|
214
|
+
HumanMessage(
|
215
|
+
content=(
|
216
|
+
"I tried to find the `SNIPPET` in the `original-raw-document` to extract a text citation for the subject `subject-to-parse`, but I couldn't find it. "
|
217
|
+
"Please provide `citation-start-from` and `citation-end-at` to help me locate the correct text span.\n"
|
218
|
+
"---\n"
|
219
|
+
"<original-raw-document>\n"
|
220
|
+
f"{document}\n"
|
221
|
+
"</original-raw-document>\n"
|
222
|
+
"---\n"
|
223
|
+
"<subject-to-parse>\n"
|
224
|
+
f"{subject}\n"
|
225
|
+
"</subject-to-parse>\n"
|
226
|
+
"---\n"
|
227
|
+
"<current-citation-start-from>\n"
|
228
|
+
f"{indexless_citation.start_from}\n"
|
229
|
+
"</current-citation-start-from>\n"
|
230
|
+
"---\n"
|
231
|
+
"<current-citation-end-at>\n"
|
232
|
+
f"{indexless_citation.end_at}\n"
|
233
|
+
"</current-citation-end-at>\n"
|
234
|
+
)
|
235
|
+
),
|
236
|
+
],
|
237
|
+
)
|
238
|
+
doc_len: int = len(document)
|
239
|
+
|
240
|
+
start_snippet: str = new_indexless_citation.start_from.strip()
|
241
|
+
if start_snippet:
|
242
|
+
target_for_start = document.find(start_snippet)
|
243
|
+
if target_for_start == -1:
|
244
|
+
target_for_start = 0
|
245
|
+
new_start: Optional[int] = cls.find_best_match_index(
|
246
|
+
snippet=start_snippet,
|
247
|
+
document=document,
|
248
|
+
target_index=target_for_start,
|
249
|
+
)
|
250
|
+
if new_start is None:
|
251
|
+
return
|
252
|
+
else:
|
253
|
+
logger.warning("No start_text provided")
|
254
|
+
return
|
255
|
+
end_snippet: str = new_indexless_citation.end_at.strip()
|
256
|
+
if end_snippet:
|
257
|
+
target_for_end = document.find(end_snippet, new_start)
|
258
|
+
if target_for_end == -1:
|
259
|
+
target_for_end = new_start
|
260
|
+
candidate_end: Optional[int] = cls.find_best_match_index(
|
261
|
+
snippet=end_snippet,
|
262
|
+
document=document,
|
263
|
+
target_index=target_for_end,
|
264
|
+
)
|
265
|
+
if candidate_end is None:
|
266
|
+
return
|
267
|
+
new_end: int = candidate_end + len(end_snippet)
|
268
|
+
else:
|
269
|
+
logger.warning("No end_text provided; defaulting end index to document length.")
|
270
|
+
new_end = doc_len
|
271
|
+
if not 0 <= new_start < new_end <= doc_len:
|
272
|
+
logger.error(f"Adjusted citation indices invalid: start {new_start}, end {new_end}, doc_len {doc_len}.")
|
273
|
+
return
|
274
|
+
try:
|
275
|
+
extracted_text = document[new_start:new_end]
|
276
|
+
except IndexError as e:
|
277
|
+
logger.error(f"Error extracting text using adjusted citation indices: {e}")
|
278
|
+
return
|
279
|
+
return cls(
|
280
|
+
start=new_start,
|
281
|
+
end=new_end,
|
282
|
+
start_from=new_indexless_citation.start_from,
|
283
|
+
end_at=new_indexless_citation.end_at,
|
284
|
+
extracted_text=extracted_text,
|
285
|
+
)
|