chatlas 0.9.2__py3-none-any.whl → 0.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of chatlas might be problematic. Click here for more details.

@@ -0,0 +1,171 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional, cast
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._turn import Turn
10
+ from ._utils import MISSING, MISSING_TYPE, is_testing
11
+
12
+ if TYPE_CHECKING:
13
+ from openai.types.chat import ChatCompletion, ChatCompletionMessageParam
14
+
15
+ from .types.openai import ChatClientArgs, SubmitInputArgs
16
+
17
+
18
+ def ChatDeepSeek(
19
+ *,
20
+ system_prompt: Optional[str] = None,
21
+ model: Optional[str] = None,
22
+ api_key: Optional[str] = None,
23
+ base_url: str = "https://api.deepseek.com",
24
+ seed: Optional[int] | MISSING_TYPE = MISSING,
25
+ kwargs: Optional["ChatClientArgs"] = None,
26
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
27
+ """
28
+ Chat with a model hosted on DeepSeek.
29
+
30
+ DeepSeek is a platform for AI inference with competitive pricing
31
+ and performance.
32
+
33
+ Prerequisites
34
+ -------------
35
+
36
+ ::: {.callout-note}
37
+ ## API key
38
+
39
+ Sign up at <https://platform.deepseek.com> to get an API key.
40
+ :::
41
+
42
+ Examples
43
+ --------
44
+
45
+ ```python
46
+ import os
47
+ from chatlas import ChatDeepSeek
48
+
49
+ chat = ChatDeepSeek(api_key=os.getenv("DEEPSEEK_API_KEY"))
50
+ chat.chat("What is the capital of France?")
51
+ ```
52
+
53
+ Known limitations
54
+ --------------
55
+
56
+ * Structured data extraction is not supported.
57
+ * Images are not supported.
58
+
59
+ Parameters
60
+ ----------
61
+ system_prompt
62
+ A system prompt to set the behavior of the assistant.
63
+ model
64
+ The model to use for the chat. The default, None, will pick a reasonable
65
+ default, and warn you about it. We strongly recommend explicitly choosing
66
+ a model for all but the most casual use.
67
+ api_key
68
+ The API key to use for authentication. You generally should not supply
69
+ this directly, but instead set the `DEEPSEEK_API_KEY` environment variable.
70
+ base_url
71
+ The base URL to the endpoint; the default uses DeepSeek's API.
72
+ seed
73
+ Optional integer seed that DeepSeek uses to try and make output more
74
+ reproducible.
75
+ kwargs
76
+ Additional arguments to pass to the `openai.OpenAI()` client constructor.
77
+
78
+ Returns
79
+ -------
80
+ Chat
81
+ A chat object that retains the state of the conversation.
82
+
83
+ Note
84
+ ----
85
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`) with
86
+ the defaults tweaked for DeepSeek.
87
+
88
+ Note
89
+ ----
90
+ Pasting an API key into a chat constructor (e.g., `ChatDeepSeek(api_key="...")`)
91
+ is the simplest way to get started, and is fine for interactive use, but is
92
+ problematic for code that may be shared with others.
93
+
94
+ Instead, consider using environment variables or a configuration file to manage
95
+ your credentials. One popular way to manage credentials is to use a `.env` file
96
+ to store your credentials, and then use the `python-dotenv` package to load them
97
+ into your environment.
98
+
99
+ ```shell
100
+ pip install python-dotenv
101
+ ```
102
+
103
+ ```shell
104
+ # .env
105
+ DEEPSEEK_API_KEY=...
106
+ ```
107
+
108
+ ```python
109
+ from chatlas import ChatDeepSeek
110
+ from dotenv import load_dotenv
111
+
112
+ load_dotenv()
113
+ chat = ChatDeepSeek()
114
+ chat.console()
115
+ ```
116
+
117
+ Another, more general, solution is to load your environment variables into the shell
118
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
119
+
120
+ ```shell
121
+ export DEEPSEEK_API_KEY=...
122
+ ```
123
+ """
124
+ if model is None:
125
+ model = log_model_default("deepseek-chat")
126
+
127
+ if api_key is None:
128
+ api_key = os.getenv("DEEPSEEK_API_KEY")
129
+
130
+ if isinstance(seed, MISSING_TYPE):
131
+ seed = 1014 if is_testing() else None
132
+
133
+ return Chat(
134
+ provider=DeepSeekProvider(
135
+ api_key=api_key,
136
+ model=model,
137
+ base_url=base_url,
138
+ seed=seed,
139
+ name="DeepSeek",
140
+ kwargs=kwargs,
141
+ ),
142
+ system_prompt=system_prompt,
143
+ )
144
+
145
+
146
+ class DeepSeekProvider(OpenAIProvider):
147
+ @staticmethod
148
+ def _as_message_param(turns: list[Turn]) -> list["ChatCompletionMessageParam"]:
149
+ from openai.types.chat import (
150
+ ChatCompletionAssistantMessageParam,
151
+ ChatCompletionUserMessageParam,
152
+ )
153
+
154
+ params = OpenAIProvider._as_message_param(turns)
155
+
156
+ # Content must be a string
157
+ for i, param in enumerate(params):
158
+ if param["role"] in ["assistant", "user"]:
159
+ param = cast(
160
+ ChatCompletionAssistantMessageParam
161
+ | ChatCompletionUserMessageParam,
162
+ param,
163
+ )
164
+ contents = param.get("content", None)
165
+ if not isinstance(contents, list):
166
+ continue
167
+ params[i]["content"] = "".join(
168
+ content.get("text", "") for content in contents
169
+ )
170
+
171
+ return params
@@ -3,9 +3,11 @@ from __future__ import annotations
3
3
  import os
4
4
  from typing import TYPE_CHECKING, Optional
5
5
 
6
+ import requests
7
+
6
8
  from ._chat import Chat
7
9
  from ._logging import log_model_default
8
- from ._provider_openai import OpenAIProvider
10
+ from ._provider_openai import ModelInfo, OpenAIProvider
9
11
  from ._utils import MISSING, MISSING_TYPE, is_testing
10
12
 
11
13
  if TYPE_CHECKING:
@@ -18,7 +20,7 @@ def ChatGithub(
18
20
  system_prompt: Optional[str] = None,
19
21
  model: Optional[str] = None,
20
22
  api_key: Optional[str] = None,
21
- base_url: str = "https://models.inference.ai.azure.com/",
23
+ base_url: str = "https://models.github.ai/inference/",
22
24
  seed: Optional[int] | MISSING_TYPE = MISSING,
23
25
  kwargs: Optional["ChatClientArgs"] = None,
24
26
  ) -> Chat["SubmitInputArgs", ChatCompletion]:
@@ -125,7 +127,7 @@ def ChatGithub(
125
127
  seed = 1014 if is_testing() else None
126
128
 
127
129
  return Chat(
128
- provider=OpenAIProvider(
130
+ provider=GitHubProvider(
129
131
  api_key=api_key,
130
132
  model=model,
131
133
  base_url=base_url,
@@ -135,3 +137,61 @@ def ChatGithub(
135
137
  ),
136
138
  system_prompt=system_prompt,
137
139
  )
140
+
141
+
142
+ class GitHubProvider(OpenAIProvider):
143
+ def __init__(self, base_url: str, **kwargs):
144
+ super().__init__(**kwargs)
145
+ self._base_url = base_url
146
+
147
+ def list_models(self) -> list[ModelInfo]:
148
+ # For some reason the OpenAI SDK API fails here? So perform request manually
149
+ # models = self._client.models.list()
150
+
151
+ base_url = self._base_url
152
+ if not base_url.endswith("/"):
153
+ base_url += "/"
154
+
155
+ if "azure" in base_url:
156
+ # i.e., https://models.inference.ai.azure.com
157
+ return list_models_gh_azure(base_url)
158
+ else:
159
+ # i.e., https://models.github.ai/inference/
160
+ return list_models_gh(base_url)
161
+
162
+
163
+ def list_models_gh(base_url: str = "https://models.github.ai/inference/"):
164
+ # replace /inference endpoint with /catalog
165
+ base_url = base_url.replace("/inference", "/catalog")
166
+ response = requests.get(f"{base_url}models")
167
+ response.raise_for_status()
168
+ models = response.json()
169
+
170
+ res: list[ModelInfo] = []
171
+ for m in models:
172
+ _id = m["id"].split("/")[-1]
173
+ info: ModelInfo = {
174
+ "id": _id,
175
+ "name": m["name"],
176
+ "provider": m["publisher"],
177
+ "url": m["html_url"],
178
+ }
179
+ res.append(info)
180
+
181
+ return res
182
+
183
+
184
+ def list_models_gh_azure(base_url: str = "https://models.inference.ai.azure.com"):
185
+ response = requests.get(f"{base_url}models")
186
+ response.raise_for_status()
187
+ models = response.json()
188
+
189
+ res: list[ModelInfo] = []
190
+ for m in models:
191
+ info: ModelInfo = {
192
+ "id": m["name"],
193
+ "provider": m["publisher"]
194
+ }
195
+ res.append(info)
196
+
197
+ return res
@@ -21,8 +21,8 @@ from ._content import (
21
21
  )
22
22
  from ._logging import log_model_default
23
23
  from ._merge import merge_dicts
24
- from ._provider import Provider, StandardModelParamNames, StandardModelParams
25
- from ._tokens import tokens_log
24
+ from ._provider import ModelInfo, Provider, StandardModelParamNames, StandardModelParams
25
+ from ._tokens import get_token_pricing, tokens_log
26
26
  from ._tools import Tool
27
27
  from ._turn import Turn, user_turn
28
28
 
@@ -180,6 +180,30 @@ class GoogleProvider(
180
180
 
181
181
  self._client = genai.Client(**kwargs_full)
182
182
 
183
+ def list_models(self):
184
+ models = self._client.models.list()
185
+
186
+ res: list[ModelInfo] = []
187
+ for m in models:
188
+ name = m.name or "[unknown]"
189
+ pricing = get_token_pricing(self.name, name) or {}
190
+ info: ModelInfo = {
191
+ "id": name,
192
+ "name": m.display_name or "[unknown]",
193
+ "input": pricing.get("input"),
194
+ "output": pricing.get("output"),
195
+ "cached_input": pricing.get("cached_input"),
196
+ }
197
+ res.append(info)
198
+
199
+ # Sort list by created_by field (more recent first)
200
+ res.sort(
201
+ key=lambda x: x.get("created", 0),
202
+ reverse=True,
203
+ )
204
+
205
+ return res
206
+
183
207
  @overload
184
208
  def chat_perform(
185
209
  self,
@@ -0,0 +1,155 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+
10
+ if TYPE_CHECKING:
11
+ from openai.types.chat import ChatCompletion
12
+
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatHuggingFace(
17
+ *,
18
+ system_prompt: Optional[str] = None,
19
+ model: Optional[str] = None,
20
+ api_key: Optional[str] = None,
21
+ kwargs: Optional["ChatClientArgs"] = None,
22
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
23
+ """
24
+ Chat with a model hosted on Hugging Face Inference API.
25
+
26
+ [Hugging Face](https://huggingface.co/) hosts a variety of open-source
27
+ and proprietary AI models available via their Inference API.
28
+ To use the Hugging Face API, you must have an Access Token, which you can obtain
29
+ from your [Hugging Face account](https://huggingface.co/settings/tokens).
30
+ Ensure that at least "Make calls to Inference Providers" and
31
+ "Make calls to your Inference Endpoints" is checked.
32
+
33
+ Prerequisites
34
+ --------------
35
+
36
+ ::: {.callout-note}
37
+ ## API key
38
+
39
+ You will need to create a Hugging Face account and generate an API token
40
+ from your [account settings](https://huggingface.co/settings/tokens).
41
+ Make sure to enable "Make calls to Inference Providers" permission.
42
+ :::
43
+
44
+ Examples
45
+ --------
46
+ ```python
47
+ import os
48
+ from chatlas import ChatHuggingFace
49
+
50
+ chat = ChatHuggingFace(api_key=os.getenv("HUGGINGFACE_API_KEY"))
51
+ chat.chat("What is the capital of France?")
52
+ ```
53
+
54
+ Parameters
55
+ ----------
56
+ system_prompt
57
+ A system prompt to set the behavior of the assistant.
58
+ model
59
+ The model to use for the chat. The default, None, will pick a reasonable
60
+ default, and warn you about it. We strongly recommend explicitly
61
+ choosing a model for all but the most casual use.
62
+ api_key
63
+ The API key to use for authentication. You generally should not supply
64
+ this directly, but instead set the `HUGGINGFACE_API_KEY` environment
65
+ variable.
66
+ kwargs
67
+ Additional arguments to pass to the underlying OpenAI client
68
+ constructor.
69
+
70
+ Returns
71
+ -------
72
+ Chat
73
+ A chat object that retains the state of the conversation.
74
+
75
+ Known limitations
76
+ -----------------
77
+
78
+ * Some models do not support the chat interface or parts of it, for example
79
+ `google/gemma-2-2b-it` does not support a system prompt. You will need to
80
+ carefully choose the model.
81
+ * Tool calling support varies by model - many models do not support it.
82
+
83
+ Note
84
+ ----
85
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`), with
86
+ the defaults tweaked for Hugging Face.
87
+
88
+ Note
89
+ ----
90
+ Pasting an API key into a chat constructor (e.g., `ChatHuggingFace(api_key="...")`)
91
+ is the simplest way to get started, and is fine for interactive use, but is
92
+ problematic for code that may be shared with others.
93
+
94
+ Instead, consider using environment variables or a configuration file to manage
95
+ your credentials. One popular way to manage credentials is to use a `.env` file
96
+ to store your credentials, and then use the `python-dotenv` package to load them
97
+ into your environment.
98
+
99
+ ```shell
100
+ pip install python-dotenv
101
+ ```
102
+
103
+ ```shell
104
+ # .env
105
+ HUGGINGFACE_API_KEY=...
106
+ ```
107
+
108
+ ```python
109
+ from chatlas import ChatHuggingFace
110
+ from dotenv import load_dotenv
111
+
112
+ load_dotenv()
113
+ chat = ChatHuggingFace()
114
+ chat.console()
115
+ ```
116
+
117
+ Another, more general, solution is to load your environment variables into the shell
118
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
119
+
120
+ ```shell
121
+ export HUGGINGFACE_API_KEY=...
122
+ ```
123
+ """
124
+ if api_key is None:
125
+ api_key = os.getenv("HUGGINGFACE_API_KEY")
126
+
127
+ if model is None:
128
+ model = log_model_default("meta-llama/Llama-3.1-8B-Instruct")
129
+
130
+ return Chat(
131
+ provider=HuggingFaceProvider(
132
+ api_key=api_key,
133
+ model=model,
134
+ kwargs=kwargs,
135
+ ),
136
+ system_prompt=system_prompt,
137
+ )
138
+
139
+
140
+ class HuggingFaceProvider(OpenAIProvider):
141
+ def __init__(
142
+ self,
143
+ *,
144
+ api_key: Optional[str] = None,
145
+ model: str,
146
+ kwargs: Optional["ChatClientArgs"] = None,
147
+ ):
148
+ # https://huggingface.co/docs/inference-providers/en/index?python-clients=requests#http--curl
149
+ super().__init__(
150
+ name="HuggingFace",
151
+ model=model,
152
+ api_key=api_key,
153
+ base_url="https://router.huggingface.co/v1",
154
+ kwargs=kwargs,
155
+ )
@@ -0,0 +1,181 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import MISSING, MISSING_TYPE, is_testing
10
+
11
+ if TYPE_CHECKING:
12
+ from openai.types.chat import ChatCompletion
13
+
14
+ from .types.openai import ChatClientArgs, SubmitInputArgs
15
+
16
+
17
+ def ChatMistral(
18
+ *,
19
+ system_prompt: Optional[str] = None,
20
+ model: Optional[str] = None,
21
+ api_key: Optional[str] = None,
22
+ base_url: str = "https://api.mistral.ai/v1/",
23
+ seed: int | None | MISSING_TYPE = MISSING,
24
+ kwargs: Optional["ChatClientArgs"] = None,
25
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
26
+ """
27
+ Chat with a model hosted on Mistral's La Plateforme.
28
+
29
+ Mistral AI provides high-performance language models through their API platform.
30
+
31
+ Prerequisites
32
+ -------------
33
+
34
+ ::: {.callout-note}
35
+ ## API credentials
36
+
37
+ Get your API key from https://console.mistral.ai/api-keys.
38
+ :::
39
+
40
+ Examples
41
+ --------
42
+ ```python
43
+ import os
44
+ from chatlas import ChatMistral
45
+
46
+ chat = ChatMistral(api_key=os.getenv("MISTRAL_API_KEY"))
47
+ chat.chat("Tell me three jokes about statisticians")
48
+ ```
49
+
50
+ Known limitations
51
+ -----------------
52
+
53
+ * Tool calling may be unstable.
54
+ * Images require a model that supports vision.
55
+
56
+ Parameters
57
+ ----------
58
+ system_prompt
59
+ A system prompt to set the behavior of the assistant.
60
+ model
61
+ The model to use for the chat. The default, None, will pick a reasonable
62
+ default, and warn you about it. We strongly recommend explicitly
63
+ choosing a model for all but the most casual use.
64
+ api_key
65
+ The API key to use for authentication. You generally should not supply
66
+ this directly, but instead set the `MISTRAL_API_KEY` environment
67
+ variable.
68
+ base_url
69
+ The base URL to the endpoint; the default uses Mistral AI.
70
+ seed
71
+ Optional integer seed that Mistral uses to try and make output more
72
+ reproducible.
73
+ kwargs
74
+ Additional arguments to pass to the `openai.OpenAI()` client
75
+ constructor (Mistral uses OpenAI-compatible API).
76
+
77
+ Returns
78
+ -------
79
+ Chat
80
+ A chat object that retains the state of the conversation.
81
+
82
+ Note
83
+ ----
84
+ Pasting an API key into a chat constructor (e.g., `ChatMistral(api_key="...")`)
85
+ is the simplest way to get started, and is fine for interactive use, but is
86
+ problematic for code that may be shared with others.
87
+
88
+ Instead, consider using environment variables or a configuration file to manage
89
+ your credentials. One popular way to manage credentials is to use a `.env` file
90
+ to store your credentials, and then use the `python-dotenv` package to load them
91
+ into your environment.
92
+
93
+ ```shell
94
+ pip install python-dotenv
95
+ ```
96
+
97
+ ```shell
98
+ # .env
99
+ MISTRAL_API_KEY=...
100
+ ```
101
+
102
+ ```python
103
+ from chatlas import ChatMistral
104
+ from dotenv import load_dotenv
105
+
106
+ load_dotenv()
107
+ chat = ChatMistral()
108
+ chat.console()
109
+ ```
110
+
111
+ Another, more general, solution is to load your environment variables into the shell
112
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
113
+
114
+ ```shell
115
+ export MISTRAL_API_KEY=...
116
+ ```
117
+ """
118
+ if isinstance(seed, MISSING_TYPE):
119
+ seed = 1014 if is_testing() else None
120
+
121
+ if model is None:
122
+ model = log_model_default("mistral-large-latest")
123
+
124
+ if api_key is None:
125
+ api_key = os.getenv("MISTRAL_API_KEY")
126
+
127
+ return Chat(
128
+ provider=MistralProvider(
129
+ api_key=api_key,
130
+ model=model,
131
+ base_url=base_url,
132
+ seed=seed,
133
+ kwargs=kwargs,
134
+ ),
135
+ system_prompt=system_prompt,
136
+ )
137
+
138
+
139
+ class MistralProvider(OpenAIProvider):
140
+ def __init__(
141
+ self,
142
+ *,
143
+ api_key: Optional[str] = None,
144
+ model: str,
145
+ base_url: str = "https://api.mistral.ai/v1/",
146
+ seed: Optional[int] = None,
147
+ name: str = "Mistral",
148
+ kwargs: Optional["ChatClientArgs"] = None,
149
+ ):
150
+ super().__init__(
151
+ api_key=api_key,
152
+ model=model,
153
+ base_url=base_url,
154
+ seed=seed,
155
+ name=name,
156
+ kwargs=kwargs,
157
+ )
158
+
159
+ # Mistral is essentially OpenAI-compatible, with a couple small differences.
160
+ # We _could_ bring in the Mistral SDK and use it directly for more precise typing,
161
+ # etc., but for now that doesn't seem worth it.
162
+ def _chat_perform_args(
163
+ self, stream, turns, tools, data_model=None, kwargs=None
164
+ ) -> "SubmitInputArgs":
165
+ # Get the base arguments from OpenAI provider
166
+ kwargs2 = super()._chat_perform_args(stream, turns, tools, data_model, kwargs)
167
+
168
+ # Mistral doesn't support stream_options
169
+ if "stream_options" in kwargs2:
170
+ del kwargs2["stream_options"]
171
+
172
+ # Mistral wants random_seed, not seed
173
+ if seed := kwargs2.pop("seed", None):
174
+ if isinstance(seed, int):
175
+ kwargs2["extra_body"] = {"random_seed": seed}
176
+ elif seed is not None:
177
+ raise ValueError(
178
+ "MistralProvider only accepts an integer seed, or None."
179
+ )
180
+
181
+ return kwargs2