chatlas 0.9.2__py3-none-any.whl → 0.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of chatlas might be problematic. Click here for more details.

chatlas/__init__.py CHANGED
@@ -7,13 +7,19 @@ from ._content_pdf import content_pdf_file, content_pdf_url
7
7
  from ._interpolate import interpolate, interpolate_file
8
8
  from ._provider import Provider
9
9
  from ._provider_anthropic import ChatAnthropic, ChatBedrockAnthropic
10
+ from ._provider_cloudflare import ChatCloudflare
10
11
  from ._provider_databricks import ChatDatabricks
12
+ from ._provider_deepseek import ChatDeepSeek
11
13
  from ._provider_github import ChatGithub
12
14
  from ._provider_google import ChatGoogle, ChatVertex
13
15
  from ._provider_groq import ChatGroq
16
+ from ._provider_huggingface import ChatHuggingFace
17
+ from ._provider_mistral import ChatMistral
14
18
  from ._provider_ollama import ChatOllama
15
19
  from ._provider_openai import ChatAzureOpenAI, ChatOpenAI
20
+ from ._provider_openrouter import ChatOpenRouter
16
21
  from ._provider_perplexity import ChatPerplexity
22
+ from ._provider_portkey import ChatPortkey
17
23
  from ._provider_snowflake import ChatSnowflake
18
24
  from ._tokens import token_usage
19
25
  from ._tools import Tool, ToolRejectError
@@ -28,14 +34,20 @@ __all__ = (
28
34
  "ChatAnthropic",
29
35
  "ChatAuto",
30
36
  "ChatBedrockAnthropic",
37
+ "ChatCloudflare",
31
38
  "ChatDatabricks",
39
+ "ChatDeepSeek",
32
40
  "ChatGithub",
33
41
  "ChatGoogle",
34
42
  "ChatGroq",
43
+ "ChatHuggingFace",
44
+ "ChatMistral",
35
45
  "ChatOllama",
36
46
  "ChatOpenAI",
47
+ "ChatOpenRouter",
37
48
  "ChatAzureOpenAI",
38
49
  "ChatPerplexity",
50
+ "ChatPortkey",
39
51
  "ChatSnowflake",
40
52
  "ChatVertex",
41
53
  "Chat",
chatlas/_chat.py CHANGED
@@ -395,8 +395,8 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
395
395
  )
396
396
 
397
397
  input_token_price = price_token["input"] / 1e6
398
- output_token_price = price_token["output"] / 1e6
399
- cached_token_price = price_token["cached_input"] / 1e6
398
+ output_token_price = price_token.get("output", 0) / 1e6
399
+ cached_token_price = price_token.get("cached_input", 0) / 1e6
400
400
 
401
401
  if len(turns_tokens) == 0:
402
402
  return 0.0
@@ -163,7 +163,7 @@ def ChatAnthropic(
163
163
  """
164
164
 
165
165
  if model is None:
166
- model = log_model_default("claude-3-7-sonnet-latest")
166
+ model = log_model_default("claude-sonnet-4-0")
167
167
 
168
168
  return Chat(
169
169
  provider=AnthropicProvider(
@@ -742,8 +742,7 @@ def ChatBedrockAnthropic(
742
742
  """
743
743
 
744
744
  if model is None:
745
- # Default model from https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#aws-bedrock
746
- model = log_model_default("anthropic.claude-3-5-sonnet-20241022-v2:0")
745
+ model = log_model_default("us.anthropic.claude-sonnet-4-20250514-v1:0")
747
746
 
748
747
  return Chat(
749
748
  provider=AnthropicBedrockProvider(
@@ -0,0 +1,165 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import MISSING, MISSING_TYPE, is_testing
10
+
11
+ if TYPE_CHECKING:
12
+ from ._provider_openai import ChatCompletion
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatCloudflare(
17
+ *,
18
+ account: Optional[str] = None,
19
+ system_prompt: Optional[str] = None,
20
+ model: Optional[str] = None,
21
+ api_key: Optional[str] = None,
22
+ seed: Optional[int] | MISSING_TYPE = MISSING,
23
+ kwargs: Optional["ChatClientArgs"] = None,
24
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
25
+ """
26
+ Chat with a model hosted on Cloudflare Workers AI.
27
+
28
+ Cloudflare Workers AI hosts a variety of open-source AI models.
29
+
30
+ Prerequisites
31
+ -------------
32
+
33
+ ::: {.callout-note}
34
+ ## API credentials
35
+
36
+ To use the Cloudflare API, you must have an Account ID and an Access Token,
37
+ which you can obtain by following the instructions at
38
+ <https://developers.cloudflare.com/workers-ai/get-started/rest-api/>.
39
+ :::
40
+
41
+ Examples
42
+ --------
43
+
44
+ ```python
45
+ import os
46
+ from chatlas import ChatCloudflare
47
+
48
+ chat = ChatCloudflare(
49
+ api_key=os.getenv("CLOUDFLARE_API_KEY"),
50
+ account=os.getenv("CLOUDFLARE_ACCOUNT_ID"),
51
+ )
52
+ chat.chat("What is the capital of France?")
53
+ ```
54
+
55
+ Known limitations
56
+ -----------------
57
+
58
+ - Tool calling does not appear to work.
59
+ - Images don't appear to work.
60
+
61
+ Parameters
62
+ ----------
63
+ account
64
+ The Cloudflare account ID. You generally should not supply this directly,
65
+ but instead set the `CLOUDFLARE_ACCOUNT_ID` environment variable.
66
+ system_prompt
67
+ A system prompt to set the behavior of the assistant.
68
+ model
69
+ The model to use for the chat. The default, None, will pick a reasonable
70
+ default, and warn you about it. We strongly recommend explicitly choosing
71
+ a model for all but the most casual use.
72
+ api_key
73
+ The API key to use for authentication. You generally should not supply
74
+ this directly, but instead set the `CLOUDFLARE_API_KEY` environment
75
+ variable.
76
+ seed
77
+ Optional integer seed that ChatGPT uses to try and make output more
78
+ reproducible.
79
+ kwargs
80
+ Additional arguments to pass to the `openai.OpenAI()` client constructor.
81
+
82
+ Returns
83
+ -------
84
+ Chat
85
+ A chat object that retains the state of the conversation.
86
+
87
+ Note
88
+ ----
89
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`) with
90
+ the defaults tweaked for Cloudflare.
91
+
92
+ Note
93
+ ----
94
+ Pasting credentials into a chat constructor (e.g.,
95
+ `ChatCloudflare(api_key="...", account="...")`) is the simplest way to get
96
+ started, and is fine for interactive use, but is problematic for code that
97
+ may be shared with others.
98
+
99
+ Instead, consider using environment variables or a configuration file to manage
100
+ your credentials. One popular way to manage credentials is to use a `.env` file
101
+ to store your credentials, and then use the `python-dotenv` package to load them
102
+ into your environment.
103
+
104
+ ```shell
105
+ pip install python-dotenv
106
+ ```
107
+
108
+ ```shell
109
+ # .env
110
+ CLOUDFLARE_API_KEY=...
111
+ CLOUDFLARE_ACCOUNT_ID=...
112
+ ```
113
+
114
+ ```python
115
+ from chatlas import ChatCloudflare
116
+ from dotenv import load_dotenv
117
+
118
+ load_dotenv()
119
+ chat = ChatCloudflare()
120
+ chat.console()
121
+ ```
122
+
123
+ Another, more general, solution is to load your environment variables into the shell
124
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
125
+
126
+ ```shell
127
+ export CLOUDFLARE_API_KEY=...
128
+ export CLOUDFLARE_ACCOUNT_ID=...
129
+ ```
130
+ """
131
+ # List at https://developers.cloudflare.com/workers-ai/models/
132
+ # `@cf` appears to be part of the model name
133
+ if model is None:
134
+ model = log_model_default("@cf/meta/llama-3.3-70b-instruct-fp8-fast")
135
+
136
+ if api_key is None:
137
+ api_key = os.getenv("CLOUDFLARE_API_KEY")
138
+
139
+ if account is None:
140
+ account = os.getenv("CLOUDFLARE_ACCOUNT_ID")
141
+
142
+ if account is None:
143
+ raise ValueError(
144
+ "Cloudflare account ID is required. Set the CLOUDFLARE_ACCOUNT_ID "
145
+ "environment variable or pass the `account` parameter."
146
+ )
147
+
148
+ if isinstance(seed, MISSING_TYPE):
149
+ seed = 1014 if is_testing() else None
150
+
151
+ # https://developers.cloudflare.com/workers-ai/configuration/open-ai-compatibility/
152
+ cloudflare_api = "https://api.cloudflare.com/client/v4/accounts"
153
+ base_url = f"{cloudflare_api}/{account}/ai/v1/"
154
+
155
+ return Chat(
156
+ provider=OpenAIProvider(
157
+ api_key=api_key,
158
+ model=model,
159
+ base_url=base_url,
160
+ seed=seed,
161
+ name="Cloudflare",
162
+ kwargs=kwargs,
163
+ ),
164
+ system_prompt=system_prompt,
165
+ )
@@ -127,3 +127,14 @@ class DatabricksProvider(OpenAIProvider):
127
127
  api_key="no-token", # A placeholder to pass validations, this will not be used
128
128
  http_client=httpx.AsyncClient(auth=client._client.auth),
129
129
  )
130
+
131
+ # Databricks doesn't support stream_options
132
+ def _chat_perform_args(
133
+ self, stream, turns, tools, data_model=None, kwargs=None
134
+ ) -> "SubmitInputArgs":
135
+ kwargs2 = super()._chat_perform_args(stream, turns, tools, data_model, kwargs)
136
+
137
+ if "stream_options" in kwargs2:
138
+ del kwargs2["stream_options"]
139
+
140
+ return kwargs2
@@ -0,0 +1,171 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional, cast
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._turn import Turn
10
+ from ._utils import MISSING, MISSING_TYPE, is_testing
11
+
12
+ if TYPE_CHECKING:
13
+ from openai.types.chat import ChatCompletion, ChatCompletionMessageParam
14
+
15
+ from .types.openai import ChatClientArgs, SubmitInputArgs
16
+
17
+
18
+ def ChatDeepSeek(
19
+ *,
20
+ system_prompt: Optional[str] = None,
21
+ model: Optional[str] = None,
22
+ api_key: Optional[str] = None,
23
+ base_url: str = "https://api.deepseek.com",
24
+ seed: Optional[int] | MISSING_TYPE = MISSING,
25
+ kwargs: Optional["ChatClientArgs"] = None,
26
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
27
+ """
28
+ Chat with a model hosted on DeepSeek.
29
+
30
+ DeepSeek is a platform for AI inference with competitive pricing
31
+ and performance.
32
+
33
+ Prerequisites
34
+ -------------
35
+
36
+ ::: {.callout-note}
37
+ ## API key
38
+
39
+ Sign up at <https://platform.deepseek.com> to get an API key.
40
+ :::
41
+
42
+ Examples
43
+ --------
44
+
45
+ ```python
46
+ import os
47
+ from chatlas import ChatDeepSeek
48
+
49
+ chat = ChatDeepSeek(api_key=os.getenv("DEEPSEEK_API_KEY"))
50
+ chat.chat("What is the capital of France?")
51
+ ```
52
+
53
+ Known limitations
54
+ --------------
55
+
56
+ * Structured data extraction is not supported.
57
+ * Images are not supported.
58
+
59
+ Parameters
60
+ ----------
61
+ system_prompt
62
+ A system prompt to set the behavior of the assistant.
63
+ model
64
+ The model to use for the chat. The default, None, will pick a reasonable
65
+ default, and warn you about it. We strongly recommend explicitly choosing
66
+ a model for all but the most casual use.
67
+ api_key
68
+ The API key to use for authentication. You generally should not supply
69
+ this directly, but instead set the `DEEPSEEK_API_KEY` environment variable.
70
+ base_url
71
+ The base URL to the endpoint; the default uses DeepSeek's API.
72
+ seed
73
+ Optional integer seed that DeepSeek uses to try and make output more
74
+ reproducible.
75
+ kwargs
76
+ Additional arguments to pass to the `openai.OpenAI()` client constructor.
77
+
78
+ Returns
79
+ -------
80
+ Chat
81
+ A chat object that retains the state of the conversation.
82
+
83
+ Note
84
+ ----
85
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`) with
86
+ the defaults tweaked for DeepSeek.
87
+
88
+ Note
89
+ ----
90
+ Pasting an API key into a chat constructor (e.g., `ChatDeepSeek(api_key="...")`)
91
+ is the simplest way to get started, and is fine for interactive use, but is
92
+ problematic for code that may be shared with others.
93
+
94
+ Instead, consider using environment variables or a configuration file to manage
95
+ your credentials. One popular way to manage credentials is to use a `.env` file
96
+ to store your credentials, and then use the `python-dotenv` package to load them
97
+ into your environment.
98
+
99
+ ```shell
100
+ pip install python-dotenv
101
+ ```
102
+
103
+ ```shell
104
+ # .env
105
+ DEEPSEEK_API_KEY=...
106
+ ```
107
+
108
+ ```python
109
+ from chatlas import ChatDeepSeek
110
+ from dotenv import load_dotenv
111
+
112
+ load_dotenv()
113
+ chat = ChatDeepSeek()
114
+ chat.console()
115
+ ```
116
+
117
+ Another, more general, solution is to load your environment variables into the shell
118
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
119
+
120
+ ```shell
121
+ export DEEPSEEK_API_KEY=...
122
+ ```
123
+ """
124
+ if model is None:
125
+ model = log_model_default("deepseek-chat")
126
+
127
+ if api_key is None:
128
+ api_key = os.getenv("DEEPSEEK_API_KEY")
129
+
130
+ if isinstance(seed, MISSING_TYPE):
131
+ seed = 1014 if is_testing() else None
132
+
133
+ return Chat(
134
+ provider=DeepSeekProvider(
135
+ api_key=api_key,
136
+ model=model,
137
+ base_url=base_url,
138
+ seed=seed,
139
+ name="DeepSeek",
140
+ kwargs=kwargs,
141
+ ),
142
+ system_prompt=system_prompt,
143
+ )
144
+
145
+
146
+ class DeepSeekProvider(OpenAIProvider):
147
+ @staticmethod
148
+ def _as_message_param(turns: list[Turn]) -> list["ChatCompletionMessageParam"]:
149
+ from openai.types.chat import (
150
+ ChatCompletionAssistantMessageParam,
151
+ ChatCompletionUserMessageParam,
152
+ )
153
+
154
+ params = OpenAIProvider._as_message_param(turns)
155
+
156
+ # Content must be a string
157
+ for i, param in enumerate(params):
158
+ if param["role"] in ["assistant", "user"]:
159
+ param = cast(
160
+ ChatCompletionAssistantMessageParam
161
+ | ChatCompletionUserMessageParam,
162
+ param,
163
+ )
164
+ contents = param.get("content", None)
165
+ if not isinstance(contents, list):
166
+ continue
167
+ params[i]["content"] = "".join(
168
+ content.get("text", "") for content in contents
169
+ )
170
+
171
+ return params
@@ -0,0 +1,155 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+
10
+ if TYPE_CHECKING:
11
+ from openai.types.chat import ChatCompletion
12
+
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatHuggingFace(
17
+ *,
18
+ system_prompt: Optional[str] = None,
19
+ model: Optional[str] = None,
20
+ api_key: Optional[str] = None,
21
+ kwargs: Optional["ChatClientArgs"] = None,
22
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
23
+ """
24
+ Chat with a model hosted on Hugging Face Inference API.
25
+
26
+ [Hugging Face](https://huggingface.co/) hosts a variety of open-source
27
+ and proprietary AI models available via their Inference API.
28
+ To use the Hugging Face API, you must have an Access Token, which you can obtain
29
+ from your [Hugging Face account](https://huggingface.co/settings/tokens).
30
+ Ensure that at least "Make calls to Inference Providers" and
31
+ "Make calls to your Inference Endpoints" is checked.
32
+
33
+ Prerequisites
34
+ --------------
35
+
36
+ ::: {.callout-note}
37
+ ## API key
38
+
39
+ You will need to create a Hugging Face account and generate an API token
40
+ from your [account settings](https://huggingface.co/settings/tokens).
41
+ Make sure to enable "Make calls to Inference Providers" permission.
42
+ :::
43
+
44
+ Examples
45
+ --------
46
+ ```python
47
+ import os
48
+ from chatlas import ChatHuggingFace
49
+
50
+ chat = ChatHuggingFace(api_key=os.getenv("HUGGINGFACE_API_KEY"))
51
+ chat.chat("What is the capital of France?")
52
+ ```
53
+
54
+ Parameters
55
+ ----------
56
+ system_prompt
57
+ A system prompt to set the behavior of the assistant.
58
+ model
59
+ The model to use for the chat. The default, None, will pick a reasonable
60
+ default, and warn you about it. We strongly recommend explicitly
61
+ choosing a model for all but the most casual use.
62
+ api_key
63
+ The API key to use for authentication. You generally should not supply
64
+ this directly, but instead set the `HUGGINGFACE_API_KEY` environment
65
+ variable.
66
+ kwargs
67
+ Additional arguments to pass to the underlying OpenAI client
68
+ constructor.
69
+
70
+ Returns
71
+ -------
72
+ Chat
73
+ A chat object that retains the state of the conversation.
74
+
75
+ Known limitations
76
+ -----------------
77
+
78
+ * Some models do not support the chat interface or parts of it, for example
79
+ `google/gemma-2-2b-it` does not support a system prompt. You will need to
80
+ carefully choose the model.
81
+ * Tool calling support varies by model - many models do not support it.
82
+
83
+ Note
84
+ ----
85
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`), with
86
+ the defaults tweaked for Hugging Face.
87
+
88
+ Note
89
+ ----
90
+ Pasting an API key into a chat constructor (e.g., `ChatHuggingFace(api_key="...")`)
91
+ is the simplest way to get started, and is fine for interactive use, but is
92
+ problematic for code that may be shared with others.
93
+
94
+ Instead, consider using environment variables or a configuration file to manage
95
+ your credentials. One popular way to manage credentials is to use a `.env` file
96
+ to store your credentials, and then use the `python-dotenv` package to load them
97
+ into your environment.
98
+
99
+ ```shell
100
+ pip install python-dotenv
101
+ ```
102
+
103
+ ```shell
104
+ # .env
105
+ HUGGINGFACE_API_KEY=...
106
+ ```
107
+
108
+ ```python
109
+ from chatlas import ChatHuggingFace
110
+ from dotenv import load_dotenv
111
+
112
+ load_dotenv()
113
+ chat = ChatHuggingFace()
114
+ chat.console()
115
+ ```
116
+
117
+ Another, more general, solution is to load your environment variables into the shell
118
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
119
+
120
+ ```shell
121
+ export HUGGINGFACE_API_KEY=...
122
+ ```
123
+ """
124
+ if api_key is None:
125
+ api_key = os.getenv("HUGGINGFACE_API_KEY")
126
+
127
+ if model is None:
128
+ model = log_model_default("meta-llama/Llama-3.1-8B-Instruct")
129
+
130
+ return Chat(
131
+ provider=HuggingFaceProvider(
132
+ api_key=api_key,
133
+ model=model,
134
+ kwargs=kwargs,
135
+ ),
136
+ system_prompt=system_prompt,
137
+ )
138
+
139
+
140
+ class HuggingFaceProvider(OpenAIProvider):
141
+ def __init__(
142
+ self,
143
+ *,
144
+ api_key: Optional[str] = None,
145
+ model: str,
146
+ kwargs: Optional["ChatClientArgs"] = None,
147
+ ):
148
+ # https://huggingface.co/docs/inference-providers/en/index?python-clients=requests#http--curl
149
+ super().__init__(
150
+ name="HuggingFace",
151
+ model=model,
152
+ api_key=api_key,
153
+ base_url="https://router.huggingface.co/v1",
154
+ kwargs=kwargs,
155
+ )
@@ -0,0 +1,181 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import MISSING, MISSING_TYPE, is_testing
10
+
11
+ if TYPE_CHECKING:
12
+ from openai.types.chat import ChatCompletion
13
+
14
+ from .types.openai import ChatClientArgs, SubmitInputArgs
15
+
16
+
17
+ def ChatMistral(
18
+ *,
19
+ system_prompt: Optional[str] = None,
20
+ model: Optional[str] = None,
21
+ api_key: Optional[str] = None,
22
+ base_url: str = "https://api.mistral.ai/v1/",
23
+ seed: int | None | MISSING_TYPE = MISSING,
24
+ kwargs: Optional["ChatClientArgs"] = None,
25
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
26
+ """
27
+ Chat with a model hosted on Mistral's La Plateforme.
28
+
29
+ Mistral AI provides high-performance language models through their API platform.
30
+
31
+ Prerequisites
32
+ -------------
33
+
34
+ ::: {.callout-note}
35
+ ## API credentials
36
+
37
+ Get your API key from https://console.mistral.ai/api-keys.
38
+ :::
39
+
40
+ Examples
41
+ --------
42
+ ```python
43
+ import os
44
+ from chatlas import ChatMistral
45
+
46
+ chat = ChatMistral(api_key=os.getenv("MISTRAL_API_KEY"))
47
+ chat.chat("Tell me three jokes about statisticians")
48
+ ```
49
+
50
+ Known limitations
51
+ -----------------
52
+
53
+ * Tool calling may be unstable.
54
+ * Images require a model that supports vision.
55
+
56
+ Parameters
57
+ ----------
58
+ system_prompt
59
+ A system prompt to set the behavior of the assistant.
60
+ model
61
+ The model to use for the chat. The default, None, will pick a reasonable
62
+ default, and warn you about it. We strongly recommend explicitly
63
+ choosing a model for all but the most casual use.
64
+ api_key
65
+ The API key to use for authentication. You generally should not supply
66
+ this directly, but instead set the `MISTRAL_API_KEY` environment
67
+ variable.
68
+ base_url
69
+ The base URL to the endpoint; the default uses Mistral AI.
70
+ seed
71
+ Optional integer seed that Mistral uses to try and make output more
72
+ reproducible.
73
+ kwargs
74
+ Additional arguments to pass to the `openai.OpenAI()` client
75
+ constructor (Mistral uses OpenAI-compatible API).
76
+
77
+ Returns
78
+ -------
79
+ Chat
80
+ A chat object that retains the state of the conversation.
81
+
82
+ Note
83
+ ----
84
+ Pasting an API key into a chat constructor (e.g., `ChatMistral(api_key="...")`)
85
+ is the simplest way to get started, and is fine for interactive use, but is
86
+ problematic for code that may be shared with others.
87
+
88
+ Instead, consider using environment variables or a configuration file to manage
89
+ your credentials. One popular way to manage credentials is to use a `.env` file
90
+ to store your credentials, and then use the `python-dotenv` package to load them
91
+ into your environment.
92
+
93
+ ```shell
94
+ pip install python-dotenv
95
+ ```
96
+
97
+ ```shell
98
+ # .env
99
+ MISTRAL_API_KEY=...
100
+ ```
101
+
102
+ ```python
103
+ from chatlas import ChatMistral
104
+ from dotenv import load_dotenv
105
+
106
+ load_dotenv()
107
+ chat = ChatMistral()
108
+ chat.console()
109
+ ```
110
+
111
+ Another, more general, solution is to load your environment variables into the shell
112
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
113
+
114
+ ```shell
115
+ export MISTRAL_API_KEY=...
116
+ ```
117
+ """
118
+ if isinstance(seed, MISSING_TYPE):
119
+ seed = 1014 if is_testing() else None
120
+
121
+ if model is None:
122
+ model = log_model_default("mistral-large-latest")
123
+
124
+ if api_key is None:
125
+ api_key = os.getenv("MISTRAL_API_KEY")
126
+
127
+ return Chat(
128
+ provider=MistralProvider(
129
+ api_key=api_key,
130
+ model=model,
131
+ base_url=base_url,
132
+ seed=seed,
133
+ kwargs=kwargs,
134
+ ),
135
+ system_prompt=system_prompt,
136
+ )
137
+
138
+
139
+ class MistralProvider(OpenAIProvider):
140
+ def __init__(
141
+ self,
142
+ *,
143
+ api_key: Optional[str] = None,
144
+ model: str,
145
+ base_url: str = "https://api.mistral.ai/v1/",
146
+ seed: Optional[int] = None,
147
+ name: str = "Mistral",
148
+ kwargs: Optional["ChatClientArgs"] = None,
149
+ ):
150
+ super().__init__(
151
+ api_key=api_key,
152
+ model=model,
153
+ base_url=base_url,
154
+ seed=seed,
155
+ name=name,
156
+ kwargs=kwargs,
157
+ )
158
+
159
+ # Mistral is essentially OpenAI-compatible, with a couple small differences.
160
+ # We _could_ bring in the Mistral SDK and use it directly for more precise typing,
161
+ # etc., but for now that doesn't seem worth it.
162
+ def _chat_perform_args(
163
+ self, stream, turns, tools, data_model=None, kwargs=None
164
+ ) -> "SubmitInputArgs":
165
+ # Get the base arguments from OpenAI provider
166
+ kwargs2 = super()._chat_perform_args(stream, turns, tools, data_model, kwargs)
167
+
168
+ # Mistral doesn't support stream_options
169
+ if "stream_options" in kwargs2:
170
+ del kwargs2["stream_options"]
171
+
172
+ # Mistral wants random_seed, not seed
173
+ if seed := kwargs2.pop("seed", None):
174
+ if isinstance(seed, int):
175
+ kwargs2["extra_body"] = {"random_seed": seed}
176
+ elif seed is not None:
177
+ raise ValueError(
178
+ "MistralProvider only accepts an integer seed, or None."
179
+ )
180
+
181
+ return kwargs2
@@ -310,8 +310,7 @@ class OpenAIProvider(
310
310
  del kwargs_full["tools"]
311
311
 
312
312
  if stream and "stream_options" not in kwargs_full:
313
- if self.__class__.__name__ != "DatabricksProvider":
314
- kwargs_full["stream_options"] = {"include_usage": True}
313
+ kwargs_full["stream_options"] = {"include_usage": True}
315
314
 
316
315
  return kwargs_full
317
316
 
@@ -411,7 +410,9 @@ class OpenAIProvider(
411
410
  if isinstance(x, ContentText):
412
411
  content_parts.append({"type": "text", "text": x.text})
413
412
  elif isinstance(x, ContentJson):
414
- content_parts.append({"type": "text", "text": ""})
413
+ content_parts.append(
414
+ {"type": "text", "text": "<structured data/>"}
415
+ )
415
416
  elif isinstance(x, ContentToolRequest):
416
417
  tool_calls.append(
417
418
  {
@@ -450,7 +451,7 @@ class OpenAIProvider(
450
451
  if isinstance(x, ContentText):
451
452
  contents.append({"type": "text", "text": x.text})
452
453
  elif isinstance(x, ContentJson):
453
- contents.append({"type": "text", "text": ""})
454
+ contents.append({"type": "text", "text": "<structured data/>"})
454
455
  elif isinstance(x, ContentPDF):
455
456
  contents.append(
456
457
  {
@@ -522,7 +523,10 @@ class OpenAIProvider(
522
523
  contents: list[Content] = []
523
524
  if message.content is not None:
524
525
  if has_data_model:
525
- data = orjson.loads(message.content)
526
+ data = message.content
527
+ # Some providers (e.g., Cloudflare) may already provide a dict
528
+ if not isinstance(data, dict):
529
+ data = orjson.loads(data)
526
530
  contents = [ContentJson(value=data)]
527
531
  else:
528
532
  contents = [ContentText(text=message.content)]
@@ -0,0 +1,149 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import MISSING, MISSING_TYPE, is_testing
10
+
11
+ if TYPE_CHECKING:
12
+ from ._provider_openai import ChatCompletion
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatOpenRouter(
17
+ *,
18
+ system_prompt: Optional[str] = None,
19
+ model: Optional[str] = None,
20
+ api_key: Optional[str] = None,
21
+ base_url: str = "https://openrouter.ai/api/v1",
22
+ seed: Optional[int] | MISSING_TYPE = MISSING,
23
+ kwargs: Optional["ChatClientArgs"] = None,
24
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
25
+ """
26
+ Chat with one of the many models hosted on OpenRouter.
27
+
28
+ OpenRouter provides access to a wide variety of language models from different providers
29
+ through a unified API. Support for features depends on the underlying model that you use.
30
+
31
+ Prerequisites
32
+ -------------
33
+
34
+ ::: {.callout-note}
35
+ ## API key
36
+
37
+ Sign up at <https://openrouter.ai> to get an API key.
38
+ :::
39
+
40
+ Examples
41
+ --------
42
+
43
+ ```python
44
+ import os
45
+ from chatlas import ChatOpenRouter
46
+
47
+ chat = ChatOpenRouter(api_key=os.getenv("OPENROUTER_API_KEY"))
48
+ chat.chat("What is the capital of France?")
49
+ ```
50
+
51
+ Parameters
52
+ ----------
53
+ system_prompt
54
+ A system prompt to set the behavior of the assistant.
55
+ model
56
+ The model to use for the chat. The default, None, will pick a reasonable
57
+ default, and warn you about it. We strongly recommend explicitly choosing
58
+ a model for all but the most casual use. See <https://openrouter.ai/models>
59
+ for available models.
60
+ api_key
61
+ The API key to use for authentication. You generally should not supply
62
+ this directly, but instead set the `OPENROUTER_API_KEY` environment variable.
63
+ base_url
64
+ The base URL to the endpoint; the default uses OpenRouter's API.
65
+ seed
66
+ Optional integer seed that the model uses to try and make output more
67
+ reproducible.
68
+ kwargs
69
+ Additional arguments to pass to the `openai.OpenAI()` client constructor.
70
+
71
+ Returns
72
+ -------
73
+ Chat
74
+ A chat object that retains the state of the conversation.
75
+
76
+ Note
77
+ ----
78
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`) with
79
+ the defaults tweaked for OpenRouter.
80
+
81
+ Note
82
+ ----
83
+ Pasting an API key into a chat constructor (e.g., `ChatOpenRouter(api_key="...")`)
84
+ is the simplest way to get started, and is fine for interactive use, but is
85
+ problematic for code that may be shared with others.
86
+
87
+ Instead, consider using environment variables or a configuration file to manage
88
+ your credentials. One popular way to manage credentials is to use a `.env` file
89
+ to store your credentials, and then use the `python-dotenv` package to load them
90
+ into your environment.
91
+
92
+ ```shell
93
+ pip install python-dotenv
94
+ ```
95
+
96
+ ```shell
97
+ # .env
98
+ OPENROUTER_API_KEY=...
99
+ ```
100
+
101
+ ```python
102
+ from chatlas import ChatOpenRouter
103
+ from dotenv import load_dotenv
104
+
105
+ load_dotenv()
106
+ chat = ChatOpenRouter()
107
+ chat.console()
108
+ ```
109
+
110
+ Another, more general, solution is to load your environment variables into the shell
111
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
112
+
113
+ ```shell
114
+ export OPENROUTER_API_KEY=...
115
+ ```
116
+ """
117
+ if model is None:
118
+ model = log_model_default("gpt-4.1")
119
+
120
+ if api_key is None:
121
+ api_key = os.getenv("OPENROUTER_API_KEY")
122
+
123
+ if isinstance(seed, MISSING_TYPE):
124
+ seed = 1014 if is_testing() else None
125
+
126
+ kwargs2 = add_default_headers(kwargs or {})
127
+
128
+ return Chat(
129
+ provider=OpenAIProvider(
130
+ api_key=api_key,
131
+ model=model,
132
+ base_url=base_url,
133
+ seed=seed,
134
+ name="OpenRouter",
135
+ kwargs=kwargs2,
136
+ ),
137
+ system_prompt=system_prompt,
138
+ )
139
+
140
+
141
+ def add_default_headers(kwargs: "ChatClientArgs") -> "ChatClientArgs":
142
+ headers = kwargs.get("default_headers", None)
143
+ # https://openrouter.ai/docs/api-keys
144
+ default_headers = {
145
+ "HTTP-Referer": "https://posit-dev.github.io/chatlas",
146
+ "X-Title": "chatlas",
147
+ **(headers or {}),
148
+ }
149
+ return {"default_headers": default_headers, **kwargs}
@@ -0,0 +1,123 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import drop_none
10
+
11
+ if TYPE_CHECKING:
12
+ from ._provider_openai import ChatCompletion
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatPortkey(
17
+ *,
18
+ system_prompt: Optional[str] = None,
19
+ model: Optional[str] = None,
20
+ api_key: Optional[str] = None,
21
+ virtual_key: Optional[str] = None,
22
+ base_url: str = "https://api.portkey.ai/v1",
23
+ kwargs: Optional["ChatClientArgs"] = None,
24
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
25
+ """
26
+ Chat with a model hosted on PortkeyAI
27
+
28
+ [PortkeyAI](https://portkey.ai/docs/product/ai-gateway/universal-api)
29
+ provides an interface (AI Gateway) to connect through its Universal API to a
30
+ variety of LLMs providers with a single endpoint.
31
+
32
+ Prerequisites
33
+ -------------
34
+
35
+ ::: {.callout-note}
36
+ ## Portkey credentials
37
+
38
+ Follow the instructions at <https://portkey.ai/docs/introduction/make-your-first-request>
39
+ to get started making requests to PortkeyAI. You will need to set the
40
+ `PORTKEY_API_KEY` environment variable to your Portkey API key, and optionally
41
+ the `PORTKEY_VIRTUAL_KEY` environment variable to your virtual key.
42
+ :::
43
+
44
+ Examples
45
+ --------
46
+ ```python
47
+ import os
48
+ from chatlas import ChatPortkey
49
+
50
+ chat = ChatPortkey(api_key=os.getenv("PORTKEY_API_KEY"))
51
+ chat.chat("What is the capital of France?")
52
+ ```
53
+
54
+ Parameters
55
+ ----------
56
+ system_prompt
57
+ A system prompt to set the behavior of the assistant.
58
+ model
59
+ The model to use for the chat. The default, None, will pick a reasonable
60
+ default, and warn you about it. We strongly recommend explicitly
61
+ choosing a model for all but the most casual use.
62
+ api_key
63
+ The API key to use for authentication. You generally should not supply
64
+ this directly, but instead set the `PORTKEY_API_KEY` environment variable.
65
+ virtual_key
66
+ An (optional) virtual identifier, storing the LLM provider's API key. See
67
+ [documentation](https://portkey.ai/docs/product/ai-gateway/virtual-keys).
68
+ You generally should not supply this directly, but instead set the
69
+ `PORTKEY_VIRTUAL_KEY` environment variable.
70
+ base_url
71
+ The base URL for the Portkey API. The default is suitable for most users.
72
+ kwargs
73
+ Additional arguments to pass to the OpenAIProvider, such as headers or
74
+ other client configuration options.
75
+
76
+ Returns
77
+ -------
78
+ Chat
79
+ A chat object that retains the state of the conversation.
80
+
81
+ Notes
82
+ -----
83
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`) with
84
+ the defaults tweaked for PortkeyAI.
85
+
86
+ """
87
+ if model is None:
88
+ model = log_model_default("gpt-4.1")
89
+ if api_key is None:
90
+ api_key = os.getenv("PORTKEY_API_KEY")
91
+
92
+ kwargs2 = add_default_headers(
93
+ kwargs or {},
94
+ api_key=api_key,
95
+ virtual_key=virtual_key,
96
+ )
97
+
98
+ return Chat(
99
+ provider=OpenAIProvider(
100
+ api_key=api_key,
101
+ model=model,
102
+ base_url=base_url,
103
+ name="Portkey",
104
+ kwargs=kwargs2,
105
+ ),
106
+ system_prompt=system_prompt,
107
+ )
108
+
109
+
110
+ def add_default_headers(
111
+ kwargs: "ChatClientArgs",
112
+ api_key: Optional[str] = None,
113
+ virtual_key: Optional[str] = None,
114
+ ) -> "ChatClientArgs":
115
+ headers = kwargs.get("default_headers", None)
116
+ default_headers = drop_none(
117
+ {
118
+ "x-portkey-api-key": api_key,
119
+ "x-portkey-virtual-key": virtual_key,
120
+ **(headers or {}),
121
+ }
122
+ )
123
+ return {"default_headers": default_headers, **kwargs}
chatlas/_tokens.py CHANGED
@@ -8,7 +8,7 @@ from typing import TYPE_CHECKING
8
8
  import orjson
9
9
 
10
10
  from ._logging import logger
11
- from ._typing_extensions import TypedDict
11
+ from ._typing_extensions import NotRequired, TypedDict
12
12
 
13
13
  if TYPE_CHECKING:
14
14
  from ._provider import Provider
@@ -109,11 +109,11 @@ class TokenPrice(TypedDict):
109
109
  """The provider name (e.g., "OpenAI", "Anthropic", etc.)"""
110
110
  model: str
111
111
  """The model name (e.g., "gpt-3.5-turbo", "claude-2", etc.)"""
112
- cached_input: float
112
+ cached_input: NotRequired[float]
113
113
  """The cost per user token in USD per million tokens for cached input"""
114
114
  input: float
115
115
  """The cost per user token in USD per million tokens"""
116
- output: float
116
+ output: NotRequired[float]
117
117
  """The cost per assistant token in USD per million tokens"""
118
118
 
119
119
 
@@ -160,8 +160,8 @@ def compute_cost(
160
160
  if price is None:
161
161
  return None
162
162
  input_price = input_tokens * (price["input"] / 1e6)
163
- output_price = output_tokens * (price["output"] / 1e6)
164
- cached_price = cached_tokens * (price["cached_input"] / 1e6)
163
+ output_price = output_tokens * (price.get("output", 0) / 1e6)
164
+ cached_price = cached_tokens * (price.get("cached_input", 0) / 1e6)
165
165
  return input_price + output_price + cached_price
166
166
 
167
167
 
@@ -14,13 +14,13 @@ else:
14
14
  # they should both come from the same typing module.
15
15
  # https://peps.python.org/pep-0655/#usage-in-python-3-11
16
16
  if sys.version_info >= (3, 11):
17
- from typing import Required, TypedDict
17
+ from typing import NotRequired, Required, TypedDict
18
18
  else:
19
- from typing_extensions import Required, TypedDict
19
+ from typing_extensions import NotRequired, Required, TypedDict
20
20
 
21
21
 
22
22
  # The only purpose of the following line is so that pyright will put all of the
23
23
  # conditional imports into the .pyi file when generating type stubs. Without this line,
24
24
  # pyright will not include the above imports in the generated .pyi file, and it will
25
25
  # result in a lot of red squiggles in user code.
26
- _: "ParamSpec | TypeGuard | is_typeddict | Required | TypedDict" # type: ignore
26
+ _: "ParamSpec | TypeGuard | is_typeddict | NotRequired | Required | TypedDict" # type: ignore
chatlas/_version.py CHANGED
@@ -1,7 +1,14 @@
1
1
  # file generated by setuptools-scm
2
2
  # don't change, don't track in version control
3
3
 
4
- __all__ = ["__version__", "__version_tuple__", "version", "version_tuple"]
4
+ __all__ = [
5
+ "__version__",
6
+ "__version_tuple__",
7
+ "version",
8
+ "version_tuple",
9
+ "__commit_id__",
10
+ "commit_id",
11
+ ]
5
12
 
6
13
  TYPE_CHECKING = False
7
14
  if TYPE_CHECKING:
@@ -9,13 +16,19 @@ if TYPE_CHECKING:
9
16
  from typing import Union
10
17
 
11
18
  VERSION_TUPLE = Tuple[Union[int, str], ...]
19
+ COMMIT_ID = Union[str, None]
12
20
  else:
13
21
  VERSION_TUPLE = object
22
+ COMMIT_ID = object
14
23
 
15
24
  version: str
16
25
  __version__: str
17
26
  __version_tuple__: VERSION_TUPLE
18
27
  version_tuple: VERSION_TUPLE
28
+ commit_id: COMMIT_ID
29
+ __commit_id__: COMMIT_ID
19
30
 
20
- __version__ = version = '0.9.2'
21
- __version_tuple__ = version_tuple = (0, 9, 2)
31
+ __version__ = version = '0.10.0'
32
+ __version_tuple__ = version_tuple = (0, 10, 0)
33
+
34
+ __commit_id__ = commit_id = None
@@ -17,5 +17,5 @@ class ChatClientArgs(TypedDict, total=False):
17
17
  max_retries: int
18
18
  default_headers: Optional[Mapping[str, str]]
19
19
  default_query: Optional[Mapping[str, object]]
20
- http_client: httpx.AsyncClient
20
+ http_client: httpx.AsyncClient | None
21
21
  _strict_response_validation: bool
@@ -19,5 +19,5 @@ class ChatBedrockClientArgs(TypedDict, total=False):
19
19
  max_retries: int
20
20
  default_headers: Optional[Mapping[str, str]]
21
21
  default_query: Optional[Mapping[str, object]]
22
- http_client: httpx.AsyncClient
22
+ http_client: httpx.AsyncClient | None
23
23
  _strict_response_validation: bool
@@ -20,5 +20,5 @@ class ChatClientArgs(TypedDict, total=False):
20
20
  max_retries: int
21
21
  default_headers: Optional[Mapping[str, str]]
22
22
  default_query: Optional[Mapping[str, object]]
23
- http_client: httpx.AsyncClient
23
+ http_client: httpx.AsyncClient | None
24
24
  _strict_response_validation: bool
@@ -23,5 +23,5 @@ class ChatAzureClientArgs(TypedDict, total=False):
23
23
  max_retries: int
24
24
  default_headers: Optional[Mapping[str, str]]
25
25
  default_query: Optional[Mapping[str, object]]
26
- http_client: httpx.AsyncClient
26
+ http_client: httpx.AsyncClient | None
27
27
  _strict_response_validation: bool
@@ -177,6 +177,9 @@ class SubmitInputArgs(TypedDict, total=False):
177
177
  top_p: Union[float, None, openai.NotGiven]
178
178
  user: str | openai.NotGiven
179
179
  verbosity: Union[Literal["low", "medium", "high"], None, openai.NotGiven]
180
+ web_search_options: (
181
+ openai.types.chat.completion_create_params.WebSearchOptions | openai.NotGiven
182
+ )
180
183
  extra_headers: Optional[Mapping[str, Union[str, openai.Omit]]]
181
184
  extra_query: Optional[Mapping[str, object]]
182
185
  extra_body: object | None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: chatlas
3
- Version: 0.9.2
3
+ Version: 0.10.0
4
4
  Summary: A simple and consistent interface for chatting with LLMs
5
5
  Project-URL: Homepage, https://posit-dev.github.io/chatlas
6
6
  Project-URL: Documentation, https://posit-dev.github.io/chatlas
@@ -79,7 +79,7 @@ Provides-Extra: vertex
79
79
  Requires-Dist: google-genai>=1.14.0; extra == 'vertex'
80
80
  Description-Content-Type: text/markdown
81
81
 
82
- # chatlas <a href="https://posit-dev.github.io/chatlas"><img src="docs/logos/hex/logo.png" align="right" height="138" alt="chatlas website" /></a>
82
+ # chatlas <a href="https://posit-dev.github.io/chatlas"><img src="https://posit-dev.github.io/chatlas/logos/hex/logo.png" align="right" height="138" alt="chatlas website" /></a>
83
83
 
84
84
  <p>
85
85
  <!-- badges start -->
@@ -135,7 +135,7 @@ chat.chat("How's the weather in San Francisco?")
135
135
  ```
136
136
 
137
137
 
138
- <img src="docs/images/chatlas-hello.png" alt="Model response output to the user query: 'How's the weather in San Francisco?'" width="67%" style="display: block; margin-left: auto; margin-right: auto">
138
+ <img src="https://posit-dev.github.io/chatlas/images/chatlas-hello.png" alt="Model response output to the user query: 'How's the weather in San Francisco?'" width="67%" style="display: block; margin-left: auto; margin-right: auto">
139
139
 
140
140
 
141
141
  Learn more at <https://posit-dev.github.io/chatlas>
@@ -1,7 +1,7 @@
1
- chatlas/__init__.py,sha256=AynwP-KZLrA_U4aYUt7JgnRZKydodszWPu-tnmeh6xc,1706
1
+ chatlas/__init__.py,sha256=acbfWs7cquCWnP3ZyxYNNQLSQyIvEg2jbDn2O0iArnE,2111
2
2
  chatlas/_auto.py,sha256=-s7XGzsKLX4RipWtk4WOE8iKbOBhXPUPtI0-63PpXCY,5660
3
3
  chatlas/_callbacks.py,sha256=3RpPaOQonTqScjXbaShgKJ1Rc-YxzWerxKRBjVssFnc,1838
4
- chatlas/_chat.py,sha256=RA0EZIbMC6fEulzYIJdE9QMmFMRgF4zkenoXwAtwpTs,82048
4
+ chatlas/_chat.py,sha256=cZ7HG4jELhRumNvbSvsG0Lv-GZTl9wQrx8oydnAmKxE,82062
5
5
  chatlas/_content.py,sha256=Jk0frLSdZTEyGu4KDHsgQbQQDHEX9nYVMNUXx4OKGSo,19775
6
6
  chatlas/_content_image.py,sha256=EUK6wAint-JatLsiwvaPDu4D3W-NcIsDCkzABkXgfDg,8304
7
7
  chatlas/_content_pdf.py,sha256=cffeuJxzhUDukQ-Srkmpy62M8X12skYpU_FVq-Wvya4,2420
@@ -12,37 +12,43 @@ chatlas/_logging.py,sha256=weKvXZDIZ88X7X61ruXM_S0AAhQ5mgiW9dR-km8x7Mg,3324
12
12
  chatlas/_mcp_manager.py,sha256=smMXeKZzP90MrlCdnTHMyo7AWHwl7J2jkU8dKSlnEsQ,10237
13
13
  chatlas/_merge.py,sha256=SGj_BetgA7gaOqSBKOhYmW3CYeQKTEehFrXvx3y4OYE,3924
14
14
  chatlas/_provider.py,sha256=0cl6JtMe6xRbc-ghp4JqdwTv6OQeewQUgdToRSktJ3I,5374
15
- chatlas/_provider_anthropic.py,sha256=5pcV0_eUHnQVVLSUfJiZ18Udf9vmbxDoPzcpFJJhicE,26005
16
- chatlas/_provider_databricks.py,sha256=RAaWJTNOj0qmmOBg6Lg59idKE6ekm4JDsHgL2Pwq6Xc,4162
15
+ chatlas/_provider_anthropic.py,sha256=YHXZLtrNnZEVPGYGgsfsiqpM9Zm6HDv8zuj3cW7i8FE,25888
16
+ chatlas/_provider_cloudflare.py,sha256=Q3YB0wMl_DWWBCp7RmDMXxDqIScM1mSKeNTEJ5xpIOY,4932
17
+ chatlas/_provider_databricks.py,sha256=XytRyn_oAJzSUfz4CkTqq2LsCyYror4VN5jBO55tx0E,4526
18
+ chatlas/_provider_deepseek.py,sha256=6nPtPSo-Po6sD4i8PZJHuI5T2oATpLi5djXFGdlserk,4906
17
19
  chatlas/_provider_github.py,sha256=68dXdNxEQo5Yf7MtxA-SdV3HGXzMEQie1sP3c5u7Akk,3921
18
20
  chatlas/_provider_google.py,sha256=Q-VgKij7T3y3zPMhx73BxoHM8RG499Ediw4lMNWWVYA,20297
19
21
  chatlas/_provider_groq.py,sha256=XB2JDyuF95CcSbNkgk7JHcuy9KCW7hxTVaONDSjK8U8,3671
22
+ chatlas/_provider_huggingface.py,sha256=feJ416X0UdtyoeHZbkgolFf62D7zxNwM7i_X3NYsQQw,4669
23
+ chatlas/_provider_mistral.py,sha256=-p4rut0KCn-PrwnOlvr6lK8-K-OXvc5H9vTX-rCzUkk,5309
20
24
  chatlas/_provider_ollama.py,sha256=2TNg5UTEYQvjeChqyJ8hh8fV-A0Xh-B5Hv8b5rtA9FY,3309
21
- chatlas/_provider_openai.py,sha256=MGvlRlItaqzqRaqZ6Nenf3N1NUbH-MwaSltOTk6phms,25374
25
+ chatlas/_provider_openai.py,sha256=wupHVATX3Ra244jRLhQkAitBZzp0MIIuCYIzdYiPdEU,25554
26
+ chatlas/_provider_openrouter.py,sha256=9sCXvROVIiUdwfEbkVA-15_kc6ouFUP2uV2MmUe2rFk,4385
22
27
  chatlas/_provider_perplexity.py,sha256=hEfKYmNrv3yU-IP_3xCS02u7pQunhKC6iZpoiKWX9fc,3958
28
+ chatlas/_provider_portkey.py,sha256=G-U66By6t5iW4h5m4ut_2DBUq8Z7qTtcjuty-WF3nSw,3809
23
29
  chatlas/_provider_snowflake.py,sha256=83P7NiNT3D_JNeX_zs4JXwDWeoaYo9IKxN91W0GWWho,24310
24
- chatlas/_tokens.py,sha256=Z004y1dGoRVV36BfRnOfeUhUJgwh94QhNRWwE5867Bo,5335
30
+ chatlas/_tokens.py,sha256=QUsBLNJPgXk8vovcG5JdQU8NarCv7FRpOVBdgFkBgHs,5388
25
31
  chatlas/_tokens_old.py,sha256=L9d9oafrXvEx2u4nIn_Jjn7adnQyLBnYBuPwJUE8Pl8,5005
26
32
  chatlas/_tools.py,sha256=bOXJ0ry6vQqU8Qm-PVdESN8HTuUv1teqPH_vtqILv9k,11088
27
33
  chatlas/_turn.py,sha256=yK7alUxeP8d2iBc7amyz20BtEqcpvX6BCwWZsnlQ5R4,4515
28
- chatlas/_typing_extensions.py,sha256=YdzmlyPSBpIEcsOkoz12e6jETT1XEMV2Q72haE4cfwY,1036
34
+ chatlas/_typing_extensions.py,sha256=MB9vWMWlm-IF8uOQfrTcfb66MV6gYXn3zgnbdwAC7BQ,1076
29
35
  chatlas/_utils.py,sha256=Kku2fa1mvTYCr5D28VxE6-fwfy2e2doCi-eKQkLEg4Y,4686
30
- chatlas/_version.py,sha256=eeYYTSIkrgfRwSQ7LKo_py3xs3DvzgfWiAtK4K1JM4A,511
36
+ chatlas/_version.py,sha256=XS8OMho0YiZyQ_qDeRsy__m_nWUzYVEJw-NLk1VtDQU,706
31
37
  chatlas/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
38
  chatlas/data/prices.json,sha256=vESC5G1SDCnPrfRQTrvJ9wVdxyLEJZrAygV0oJ99ccc,56230
33
39
  chatlas/types/__init__.py,sha256=oRgbo1FIC2qkiZ6Bi4n3RNgCA6VDTeueoCHO4-6h1NA,725
34
40
  chatlas/types/anthropic/__init__.py,sha256=OwubA-DPHYpYo0XyRyAFwftOI0mOxtHzAyhUSLcDx54,417
35
- chatlas/types/anthropic/_client.py,sha256=G0LRhoFBcsSOMr5qhP-0rAScsVXaVlHCpggfVp54bnQ,690
36
- chatlas/types/anthropic/_client_bedrock.py,sha256=mNazQlu0pQt8JdzrYn3LKNgE4n732GjhQUJdQQK9QkY,785
41
+ chatlas/types/anthropic/_client.py,sha256=t_tnOzzsW1xWNADkNoAuZJYoE9QJ8ie7DQNnFO1pvoM,697
42
+ chatlas/types/anthropic/_client_bedrock.py,sha256=2J6U1QcSx1KwiiHfXs3i4YEXDXw11sp-x3iLOuESrgQ,792
37
43
  chatlas/types/anthropic/_submit.py,sha256=o5bpKEne6lqBz4YBLoYwRLKCVmBIdzRetiMCoOdUfb0,3661
38
44
  chatlas/types/google/__init__.py,sha256=ZJhi8Kwvio2zp8T1TQqmvdHqkS-Khb6BGESPjREADgo,337
39
45
  chatlas/types/google/_client.py,sha256=t7aKbxYq_xOA1Z3RnWcjewifdQFSHi7vKEj6MyKMCJk,729
40
46
  chatlas/types/google/_submit.py,sha256=19Ji4fAo1lTCbNSpR6Yi0i64RJwMGBdiZKQcnoDNRwY,1796
41
47
  chatlas/types/openai/__init__.py,sha256=Q2RAr1bSH1nHsxICK05nAmKmxdhKmhbBkWD_XHiVSrI,411
42
- chatlas/types/openai/_client.py,sha256=xEnMiVFjeIQkfMtTWA4mZP_cQbh8uBphml0H7x4ot4Q,785
43
- chatlas/types/openai/_client_azure.py,sha256=Dw8AgWgBgjSOkpYKAyjlx8Gxndc2E4FLww32FzqTRPg,889
44
- chatlas/types/openai/_submit.py,sha256=kZ7pAXUW5sUzY5-q4GLYOQigOxL4kAuRup-3nJM7NDg,7697
45
- chatlas-0.9.2.dist-info/METADATA,sha256=W7hyhJ18k9R1Q1vw-vB659_Cb7FLUVTZM7F3x_3j-v8,5531
46
- chatlas-0.9.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
47
- chatlas-0.9.2.dist-info/licenses/LICENSE,sha256=zyuGzPOC7CcbOaBHsQ3UEyKYRO56KDUkor0OA4LqqDg,1081
48
- chatlas-0.9.2.dist-info/RECORD,,
48
+ chatlas/types/openai/_client.py,sha256=SttisELwAd52_Je_5q3RfWGdX5wbg2CoGbxhS8ThS0A,792
49
+ chatlas/types/openai/_client_azure.py,sha256=b8Hr7iKYA5-sq9r7uEqbBFv9yo3itppmHIgkEGvChMs,896
50
+ chatlas/types/openai/_submit.py,sha256=rhft1h7zy6eSlSBLkt7ZAySFh-8WnR5UEG-BXaFTxag,7815
51
+ chatlas-0.10.0.dist-info/METADATA,sha256=dhX_Mf6xlpwwaJajsGTGuJ7GCwEZLmBZqqU7NvbOObY,5594
52
+ chatlas-0.10.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
53
+ chatlas-0.10.0.dist-info/licenses/LICENSE,sha256=zyuGzPOC7CcbOaBHsQ3UEyKYRO56KDUkor0OA4LqqDg,1081
54
+ chatlas-0.10.0.dist-info/RECORD,,