chatlas 0.9.1__py3-none-any.whl → 0.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of chatlas might be problematic. Click here for more details.

Files changed (36) hide show
  1. chatlas/__init__.py +21 -9
  2. chatlas/_auto.py +9 -9
  3. chatlas/_chat.py +38 -9
  4. chatlas/{_anthropic.py → _provider_anthropic.py} +13 -5
  5. chatlas/_provider_cloudflare.py +165 -0
  6. chatlas/{_databricks.py → _provider_databricks.py} +13 -2
  7. chatlas/_provider_deepseek.py +171 -0
  8. chatlas/{_github.py → _provider_github.py} +2 -2
  9. chatlas/{_google.py → _provider_google.py} +5 -5
  10. chatlas/{_groq.py → _provider_groq.py} +2 -2
  11. chatlas/_provider_huggingface.py +155 -0
  12. chatlas/_provider_mistral.py +181 -0
  13. chatlas/{_ollama.py → _provider_ollama.py} +2 -2
  14. chatlas/{_openai.py → _provider_openai.py} +28 -9
  15. chatlas/_provider_openrouter.py +149 -0
  16. chatlas/{_perplexity.py → _provider_perplexity.py} +2 -2
  17. chatlas/_provider_portkey.py +123 -0
  18. chatlas/{_snowflake.py → _provider_snowflake.py} +3 -3
  19. chatlas/_tokens.py +27 -12
  20. chatlas/_turn.py +3 -4
  21. chatlas/_typing_extensions.py +3 -3
  22. chatlas/_version.py +16 -3
  23. chatlas/data/prices.json +2769 -163
  24. chatlas/types/__init__.py +3 -3
  25. chatlas/types/anthropic/_client.py +1 -1
  26. chatlas/types/anthropic/_client_bedrock.py +1 -1
  27. chatlas/types/anthropic/_submit.py +5 -5
  28. chatlas/types/google/_submit.py +23 -29
  29. chatlas/types/openai/_client.py +1 -1
  30. chatlas/types/openai/_client_azure.py +1 -1
  31. chatlas/types/openai/_submit.py +28 -3
  32. {chatlas-0.9.1.dist-info → chatlas-0.10.0.dist-info}/METADATA +4 -4
  33. chatlas-0.10.0.dist-info/RECORD +54 -0
  34. chatlas-0.9.1.dist-info/RECORD +0 -48
  35. {chatlas-0.9.1.dist-info → chatlas-0.10.0.dist-info}/WHEEL +0 -0
  36. {chatlas-0.9.1.dist-info → chatlas-0.10.0.dist-info}/licenses/LICENSE +0 -0
@@ -5,11 +5,11 @@ from typing import TYPE_CHECKING, Optional
5
5
 
6
6
  from ._chat import Chat
7
7
  from ._logging import log_model_default
8
- from ._openai import OpenAIProvider
8
+ from ._provider_openai import OpenAIProvider
9
9
  from ._utils import MISSING, MISSING_TYPE, is_testing
10
10
 
11
11
  if TYPE_CHECKING:
12
- from ._openai import ChatCompletion
12
+ from ._provider_openai import ChatCompletion
13
13
  from .types.openai import ChatClientArgs, SubmitInputArgs
14
14
 
15
15
 
@@ -0,0 +1,155 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+
10
+ if TYPE_CHECKING:
11
+ from openai.types.chat import ChatCompletion
12
+
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatHuggingFace(
17
+ *,
18
+ system_prompt: Optional[str] = None,
19
+ model: Optional[str] = None,
20
+ api_key: Optional[str] = None,
21
+ kwargs: Optional["ChatClientArgs"] = None,
22
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
23
+ """
24
+ Chat with a model hosted on Hugging Face Inference API.
25
+
26
+ [Hugging Face](https://huggingface.co/) hosts a variety of open-source
27
+ and proprietary AI models available via their Inference API.
28
+ To use the Hugging Face API, you must have an Access Token, which you can obtain
29
+ from your [Hugging Face account](https://huggingface.co/settings/tokens).
30
+ Ensure that at least "Make calls to Inference Providers" and
31
+ "Make calls to your Inference Endpoints" is checked.
32
+
33
+ Prerequisites
34
+ --------------
35
+
36
+ ::: {.callout-note}
37
+ ## API key
38
+
39
+ You will need to create a Hugging Face account and generate an API token
40
+ from your [account settings](https://huggingface.co/settings/tokens).
41
+ Make sure to enable "Make calls to Inference Providers" permission.
42
+ :::
43
+
44
+ Examples
45
+ --------
46
+ ```python
47
+ import os
48
+ from chatlas import ChatHuggingFace
49
+
50
+ chat = ChatHuggingFace(api_key=os.getenv("HUGGINGFACE_API_KEY"))
51
+ chat.chat("What is the capital of France?")
52
+ ```
53
+
54
+ Parameters
55
+ ----------
56
+ system_prompt
57
+ A system prompt to set the behavior of the assistant.
58
+ model
59
+ The model to use for the chat. The default, None, will pick a reasonable
60
+ default, and warn you about it. We strongly recommend explicitly
61
+ choosing a model for all but the most casual use.
62
+ api_key
63
+ The API key to use for authentication. You generally should not supply
64
+ this directly, but instead set the `HUGGINGFACE_API_KEY` environment
65
+ variable.
66
+ kwargs
67
+ Additional arguments to pass to the underlying OpenAI client
68
+ constructor.
69
+
70
+ Returns
71
+ -------
72
+ Chat
73
+ A chat object that retains the state of the conversation.
74
+
75
+ Known limitations
76
+ -----------------
77
+
78
+ * Some models do not support the chat interface or parts of it, for example
79
+ `google/gemma-2-2b-it` does not support a system prompt. You will need to
80
+ carefully choose the model.
81
+ * Tool calling support varies by model - many models do not support it.
82
+
83
+ Note
84
+ ----
85
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`), with
86
+ the defaults tweaked for Hugging Face.
87
+
88
+ Note
89
+ ----
90
+ Pasting an API key into a chat constructor (e.g., `ChatHuggingFace(api_key="...")`)
91
+ is the simplest way to get started, and is fine for interactive use, but is
92
+ problematic for code that may be shared with others.
93
+
94
+ Instead, consider using environment variables or a configuration file to manage
95
+ your credentials. One popular way to manage credentials is to use a `.env` file
96
+ to store your credentials, and then use the `python-dotenv` package to load them
97
+ into your environment.
98
+
99
+ ```shell
100
+ pip install python-dotenv
101
+ ```
102
+
103
+ ```shell
104
+ # .env
105
+ HUGGINGFACE_API_KEY=...
106
+ ```
107
+
108
+ ```python
109
+ from chatlas import ChatHuggingFace
110
+ from dotenv import load_dotenv
111
+
112
+ load_dotenv()
113
+ chat = ChatHuggingFace()
114
+ chat.console()
115
+ ```
116
+
117
+ Another, more general, solution is to load your environment variables into the shell
118
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
119
+
120
+ ```shell
121
+ export HUGGINGFACE_API_KEY=...
122
+ ```
123
+ """
124
+ if api_key is None:
125
+ api_key = os.getenv("HUGGINGFACE_API_KEY")
126
+
127
+ if model is None:
128
+ model = log_model_default("meta-llama/Llama-3.1-8B-Instruct")
129
+
130
+ return Chat(
131
+ provider=HuggingFaceProvider(
132
+ api_key=api_key,
133
+ model=model,
134
+ kwargs=kwargs,
135
+ ),
136
+ system_prompt=system_prompt,
137
+ )
138
+
139
+
140
+ class HuggingFaceProvider(OpenAIProvider):
141
+ def __init__(
142
+ self,
143
+ *,
144
+ api_key: Optional[str] = None,
145
+ model: str,
146
+ kwargs: Optional["ChatClientArgs"] = None,
147
+ ):
148
+ # https://huggingface.co/docs/inference-providers/en/index?python-clients=requests#http--curl
149
+ super().__init__(
150
+ name="HuggingFace",
151
+ model=model,
152
+ api_key=api_key,
153
+ base_url="https://router.huggingface.co/v1",
154
+ kwargs=kwargs,
155
+ )
@@ -0,0 +1,181 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import MISSING, MISSING_TYPE, is_testing
10
+
11
+ if TYPE_CHECKING:
12
+ from openai.types.chat import ChatCompletion
13
+
14
+ from .types.openai import ChatClientArgs, SubmitInputArgs
15
+
16
+
17
+ def ChatMistral(
18
+ *,
19
+ system_prompt: Optional[str] = None,
20
+ model: Optional[str] = None,
21
+ api_key: Optional[str] = None,
22
+ base_url: str = "https://api.mistral.ai/v1/",
23
+ seed: int | None | MISSING_TYPE = MISSING,
24
+ kwargs: Optional["ChatClientArgs"] = None,
25
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
26
+ """
27
+ Chat with a model hosted on Mistral's La Plateforme.
28
+
29
+ Mistral AI provides high-performance language models through their API platform.
30
+
31
+ Prerequisites
32
+ -------------
33
+
34
+ ::: {.callout-note}
35
+ ## API credentials
36
+
37
+ Get your API key from https://console.mistral.ai/api-keys.
38
+ :::
39
+
40
+ Examples
41
+ --------
42
+ ```python
43
+ import os
44
+ from chatlas import ChatMistral
45
+
46
+ chat = ChatMistral(api_key=os.getenv("MISTRAL_API_KEY"))
47
+ chat.chat("Tell me three jokes about statisticians")
48
+ ```
49
+
50
+ Known limitations
51
+ -----------------
52
+
53
+ * Tool calling may be unstable.
54
+ * Images require a model that supports vision.
55
+
56
+ Parameters
57
+ ----------
58
+ system_prompt
59
+ A system prompt to set the behavior of the assistant.
60
+ model
61
+ The model to use for the chat. The default, None, will pick a reasonable
62
+ default, and warn you about it. We strongly recommend explicitly
63
+ choosing a model for all but the most casual use.
64
+ api_key
65
+ The API key to use for authentication. You generally should not supply
66
+ this directly, but instead set the `MISTRAL_API_KEY` environment
67
+ variable.
68
+ base_url
69
+ The base URL to the endpoint; the default uses Mistral AI.
70
+ seed
71
+ Optional integer seed that Mistral uses to try and make output more
72
+ reproducible.
73
+ kwargs
74
+ Additional arguments to pass to the `openai.OpenAI()` client
75
+ constructor (Mistral uses OpenAI-compatible API).
76
+
77
+ Returns
78
+ -------
79
+ Chat
80
+ A chat object that retains the state of the conversation.
81
+
82
+ Note
83
+ ----
84
+ Pasting an API key into a chat constructor (e.g., `ChatMistral(api_key="...")`)
85
+ is the simplest way to get started, and is fine for interactive use, but is
86
+ problematic for code that may be shared with others.
87
+
88
+ Instead, consider using environment variables or a configuration file to manage
89
+ your credentials. One popular way to manage credentials is to use a `.env` file
90
+ to store your credentials, and then use the `python-dotenv` package to load them
91
+ into your environment.
92
+
93
+ ```shell
94
+ pip install python-dotenv
95
+ ```
96
+
97
+ ```shell
98
+ # .env
99
+ MISTRAL_API_KEY=...
100
+ ```
101
+
102
+ ```python
103
+ from chatlas import ChatMistral
104
+ from dotenv import load_dotenv
105
+
106
+ load_dotenv()
107
+ chat = ChatMistral()
108
+ chat.console()
109
+ ```
110
+
111
+ Another, more general, solution is to load your environment variables into the shell
112
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
113
+
114
+ ```shell
115
+ export MISTRAL_API_KEY=...
116
+ ```
117
+ """
118
+ if isinstance(seed, MISSING_TYPE):
119
+ seed = 1014 if is_testing() else None
120
+
121
+ if model is None:
122
+ model = log_model_default("mistral-large-latest")
123
+
124
+ if api_key is None:
125
+ api_key = os.getenv("MISTRAL_API_KEY")
126
+
127
+ return Chat(
128
+ provider=MistralProvider(
129
+ api_key=api_key,
130
+ model=model,
131
+ base_url=base_url,
132
+ seed=seed,
133
+ kwargs=kwargs,
134
+ ),
135
+ system_prompt=system_prompt,
136
+ )
137
+
138
+
139
+ class MistralProvider(OpenAIProvider):
140
+ def __init__(
141
+ self,
142
+ *,
143
+ api_key: Optional[str] = None,
144
+ model: str,
145
+ base_url: str = "https://api.mistral.ai/v1/",
146
+ seed: Optional[int] = None,
147
+ name: str = "Mistral",
148
+ kwargs: Optional["ChatClientArgs"] = None,
149
+ ):
150
+ super().__init__(
151
+ api_key=api_key,
152
+ model=model,
153
+ base_url=base_url,
154
+ seed=seed,
155
+ name=name,
156
+ kwargs=kwargs,
157
+ )
158
+
159
+ # Mistral is essentially OpenAI-compatible, with a couple small differences.
160
+ # We _could_ bring in the Mistral SDK and use it directly for more precise typing,
161
+ # etc., but for now that doesn't seem worth it.
162
+ def _chat_perform_args(
163
+ self, stream, turns, tools, data_model=None, kwargs=None
164
+ ) -> "SubmitInputArgs":
165
+ # Get the base arguments from OpenAI provider
166
+ kwargs2 = super()._chat_perform_args(stream, turns, tools, data_model, kwargs)
167
+
168
+ # Mistral doesn't support stream_options
169
+ if "stream_options" in kwargs2:
170
+ del kwargs2["stream_options"]
171
+
172
+ # Mistral wants random_seed, not seed
173
+ if seed := kwargs2.pop("seed", None):
174
+ if isinstance(seed, int):
175
+ kwargs2["extra_body"] = {"random_seed": seed}
176
+ elif seed is not None:
177
+ raise ValueError(
178
+ "MistralProvider only accepts an integer seed, or None."
179
+ )
180
+
181
+ return kwargs2
@@ -7,11 +7,11 @@ from typing import TYPE_CHECKING, Optional
7
7
  import orjson
8
8
 
9
9
  from ._chat import Chat
10
- from ._openai import OpenAIProvider
10
+ from ._provider_openai import OpenAIProvider
11
11
  from ._utils import MISSING_TYPE, is_testing
12
12
 
13
13
  if TYPE_CHECKING:
14
- from ._openai import ChatCompletion
14
+ from ._provider_openai import ChatCompletion
15
15
  from .types.openai import ChatClientArgs, SubmitInputArgs
16
16
 
17
17
 
@@ -310,8 +310,7 @@ class OpenAIProvider(
310
310
  del kwargs_full["tools"]
311
311
 
312
312
  if stream and "stream_options" not in kwargs_full:
313
- if self.__class__.__name__ != "DatabricksProvider":
314
- kwargs_full["stream_options"] = {"include_usage": True}
313
+ kwargs_full["stream_options"] = {"include_usage": True}
315
314
 
316
315
  return kwargs_full
317
316
 
@@ -411,7 +410,9 @@ class OpenAIProvider(
411
410
  if isinstance(x, ContentText):
412
411
  content_parts.append({"type": "text", "text": x.text})
413
412
  elif isinstance(x, ContentJson):
414
- content_parts.append({"type": "text", "text": ""})
413
+ content_parts.append(
414
+ {"type": "text", "text": "<structured data/>"}
415
+ )
415
416
  elif isinstance(x, ContentToolRequest):
416
417
  tool_calls.append(
417
418
  {
@@ -450,7 +451,7 @@ class OpenAIProvider(
450
451
  if isinstance(x, ContentText):
451
452
  contents.append({"type": "text", "text": x.text})
452
453
  elif isinstance(x, ContentJson):
453
- contents.append({"type": "text", "text": ""})
454
+ contents.append({"type": "text", "text": "<structured data/>"})
454
455
  elif isinstance(x, ContentPDF):
455
456
  contents.append(
456
457
  {
@@ -522,7 +523,10 @@ class OpenAIProvider(
522
523
  contents: list[Content] = []
523
524
  if message.content is not None:
524
525
  if has_data_model:
525
- data = orjson.loads(message.content)
526
+ data = message.content
527
+ # Some providers (e.g., Cloudflare) may already provide a dict
528
+ if not isinstance(data, dict):
529
+ data = orjson.loads(data)
526
530
  contents = [ContentJson(value=data)]
527
531
  else:
528
532
  contents = [ContentText(text=message.content)]
@@ -531,6 +535,8 @@ class OpenAIProvider(
531
535
 
532
536
  if tool_calls is not None:
533
537
  for call in tool_calls:
538
+ if call.type != "function":
539
+ continue
534
540
  func = call.function
535
541
  if func is None:
536
542
  continue
@@ -557,14 +563,27 @@ class OpenAIProvider(
557
563
 
558
564
  usage = completion.usage
559
565
  if usage is None:
560
- tokens = (0, 0)
566
+ tokens = (0, 0, 0)
561
567
  else:
562
- tokens = usage.prompt_tokens, usage.completion_tokens
568
+ if usage.prompt_tokens_details is not None:
569
+ cached_tokens = (
570
+ usage.prompt_tokens_details.cached_tokens
571
+ if usage.prompt_tokens_details.cached_tokens
572
+ else 0
573
+ )
574
+ else:
575
+ cached_tokens = 0
576
+ tokens = (
577
+ usage.prompt_tokens - cached_tokens,
578
+ usage.completion_tokens,
579
+ cached_tokens,
580
+ )
563
581
 
564
582
  # For some reason ChatGroq() includes tokens under completion.x_groq
583
+ # Groq does not support caching, so we set cached_tokens to 0
565
584
  if usage is None and hasattr(completion, "x_groq"):
566
585
  usage = completion.x_groq["usage"] # type: ignore
567
- tokens = usage["prompt_tokens"], usage["completion_tokens"]
586
+ tokens = usage["prompt_tokens"], usage["completion_tokens"], 0
568
587
 
569
588
  tokens_log(self, tokens)
570
589
 
@@ -703,7 +722,7 @@ class OpenAIAzureProvider(OpenAIProvider):
703
722
  api_version: Optional[str] = None,
704
723
  api_key: Optional[str] = None,
705
724
  seed: int | None = None,
706
- name: str = "OpenAIAzure",
725
+ name: str = "Azure/OpenAI",
707
726
  model: Optional[str] = "UnusedValue",
708
727
  kwargs: Optional["ChatAzureClientArgs"] = None,
709
728
  ):
@@ -0,0 +1,149 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional
5
+
6
+ from ._chat import Chat
7
+ from ._logging import log_model_default
8
+ from ._provider_openai import OpenAIProvider
9
+ from ._utils import MISSING, MISSING_TYPE, is_testing
10
+
11
+ if TYPE_CHECKING:
12
+ from ._provider_openai import ChatCompletion
13
+ from .types.openai import ChatClientArgs, SubmitInputArgs
14
+
15
+
16
+ def ChatOpenRouter(
17
+ *,
18
+ system_prompt: Optional[str] = None,
19
+ model: Optional[str] = None,
20
+ api_key: Optional[str] = None,
21
+ base_url: str = "https://openrouter.ai/api/v1",
22
+ seed: Optional[int] | MISSING_TYPE = MISSING,
23
+ kwargs: Optional["ChatClientArgs"] = None,
24
+ ) -> Chat["SubmitInputArgs", ChatCompletion]:
25
+ """
26
+ Chat with one of the many models hosted on OpenRouter.
27
+
28
+ OpenRouter provides access to a wide variety of language models from different providers
29
+ through a unified API. Support for features depends on the underlying model that you use.
30
+
31
+ Prerequisites
32
+ -------------
33
+
34
+ ::: {.callout-note}
35
+ ## API key
36
+
37
+ Sign up at <https://openrouter.ai> to get an API key.
38
+ :::
39
+
40
+ Examples
41
+ --------
42
+
43
+ ```python
44
+ import os
45
+ from chatlas import ChatOpenRouter
46
+
47
+ chat = ChatOpenRouter(api_key=os.getenv("OPENROUTER_API_KEY"))
48
+ chat.chat("What is the capital of France?")
49
+ ```
50
+
51
+ Parameters
52
+ ----------
53
+ system_prompt
54
+ A system prompt to set the behavior of the assistant.
55
+ model
56
+ The model to use for the chat. The default, None, will pick a reasonable
57
+ default, and warn you about it. We strongly recommend explicitly choosing
58
+ a model for all but the most casual use. See <https://openrouter.ai/models>
59
+ for available models.
60
+ api_key
61
+ The API key to use for authentication. You generally should not supply
62
+ this directly, but instead set the `OPENROUTER_API_KEY` environment variable.
63
+ base_url
64
+ The base URL to the endpoint; the default uses OpenRouter's API.
65
+ seed
66
+ Optional integer seed that the model uses to try and make output more
67
+ reproducible.
68
+ kwargs
69
+ Additional arguments to pass to the `openai.OpenAI()` client constructor.
70
+
71
+ Returns
72
+ -------
73
+ Chat
74
+ A chat object that retains the state of the conversation.
75
+
76
+ Note
77
+ ----
78
+ This function is a lightweight wrapper around [](`~chatlas.ChatOpenAI`) with
79
+ the defaults tweaked for OpenRouter.
80
+
81
+ Note
82
+ ----
83
+ Pasting an API key into a chat constructor (e.g., `ChatOpenRouter(api_key="...")`)
84
+ is the simplest way to get started, and is fine for interactive use, but is
85
+ problematic for code that may be shared with others.
86
+
87
+ Instead, consider using environment variables or a configuration file to manage
88
+ your credentials. One popular way to manage credentials is to use a `.env` file
89
+ to store your credentials, and then use the `python-dotenv` package to load them
90
+ into your environment.
91
+
92
+ ```shell
93
+ pip install python-dotenv
94
+ ```
95
+
96
+ ```shell
97
+ # .env
98
+ OPENROUTER_API_KEY=...
99
+ ```
100
+
101
+ ```python
102
+ from chatlas import ChatOpenRouter
103
+ from dotenv import load_dotenv
104
+
105
+ load_dotenv()
106
+ chat = ChatOpenRouter()
107
+ chat.console()
108
+ ```
109
+
110
+ Another, more general, solution is to load your environment variables into the shell
111
+ before starting Python (maybe in a `.bashrc`, `.zshrc`, etc. file):
112
+
113
+ ```shell
114
+ export OPENROUTER_API_KEY=...
115
+ ```
116
+ """
117
+ if model is None:
118
+ model = log_model_default("gpt-4.1")
119
+
120
+ if api_key is None:
121
+ api_key = os.getenv("OPENROUTER_API_KEY")
122
+
123
+ if isinstance(seed, MISSING_TYPE):
124
+ seed = 1014 if is_testing() else None
125
+
126
+ kwargs2 = add_default_headers(kwargs or {})
127
+
128
+ return Chat(
129
+ provider=OpenAIProvider(
130
+ api_key=api_key,
131
+ model=model,
132
+ base_url=base_url,
133
+ seed=seed,
134
+ name="OpenRouter",
135
+ kwargs=kwargs2,
136
+ ),
137
+ system_prompt=system_prompt,
138
+ )
139
+
140
+
141
+ def add_default_headers(kwargs: "ChatClientArgs") -> "ChatClientArgs":
142
+ headers = kwargs.get("default_headers", None)
143
+ # https://openrouter.ai/docs/api-keys
144
+ default_headers = {
145
+ "HTTP-Referer": "https://posit-dev.github.io/chatlas",
146
+ "X-Title": "chatlas",
147
+ **(headers or {}),
148
+ }
149
+ return {"default_headers": default_headers, **kwargs}
@@ -5,11 +5,11 @@ from typing import TYPE_CHECKING, Optional
5
5
 
6
6
  from ._chat import Chat
7
7
  from ._logging import log_model_default
8
- from ._openai import OpenAIProvider
8
+ from ._provider_openai import OpenAIProvider
9
9
  from ._utils import MISSING, MISSING_TYPE, is_testing
10
10
 
11
11
  if TYPE_CHECKING:
12
- from ._openai import ChatCompletion
12
+ from ._provider_openai import ChatCompletion
13
13
  from .types.openai import ChatClientArgs, SubmitInputArgs
14
14
 
15
15