chatlas 0.10.0__py3-none-any.whl → 0.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of chatlas might be problematic. Click here for more details.
- chatlas/__init__.py +13 -1
- chatlas/_chat.py +93 -12
- chatlas/_content.py +8 -1
- chatlas/_provider.py +43 -1
- chatlas/_provider_anthropic.py +49 -2
- chatlas/_provider_cloudflare.py +9 -1
- chatlas/_provider_databricks.py +7 -0
- chatlas/_provider_github.py +63 -3
- chatlas/_provider_google.py +26 -2
- chatlas/_provider_ollama.py +40 -9
- chatlas/_provider_openai.py +29 -2
- chatlas/_provider_perplexity.py +9 -1
- chatlas/_provider_portkey.py +8 -0
- chatlas/_provider_snowflake.py +6 -0
- chatlas/_tools.py +12 -0
- chatlas/_version.py +2 -2
- chatlas/data/prices.json +329 -18
- chatlas/types/__init__.py +2 -0
- {chatlas-0.10.0.dist-info → chatlas-0.11.0.dist-info}/METADATA +1 -1
- {chatlas-0.10.0.dist-info → chatlas-0.11.0.dist-info}/RECORD +22 -22
- {chatlas-0.10.0.dist-info → chatlas-0.11.0.dist-info}/WHEEL +0 -0
- {chatlas-0.10.0.dist-info → chatlas-0.11.0.dist-info}/licenses/LICENSE +0 -0
chatlas/__init__.py
CHANGED
|
@@ -1,7 +1,12 @@
|
|
|
1
1
|
from . import types
|
|
2
2
|
from ._auto import ChatAuto
|
|
3
3
|
from ._chat import Chat
|
|
4
|
-
from ._content import
|
|
4
|
+
from ._content import (
|
|
5
|
+
ContentToolRequest,
|
|
6
|
+
ContentToolResult,
|
|
7
|
+
ContentToolResultImage,
|
|
8
|
+
ContentToolResultResource,
|
|
9
|
+
)
|
|
5
10
|
from ._content_image import content_image_file, content_image_plot, content_image_url
|
|
6
11
|
from ._content_pdf import content_pdf_file, content_pdf_url
|
|
7
12
|
from ._interpolate import interpolate, interpolate_file
|
|
@@ -59,6 +64,7 @@ __all__ = (
|
|
|
59
64
|
"ContentToolRequest",
|
|
60
65
|
"ContentToolResult",
|
|
61
66
|
"ContentToolResultImage",
|
|
67
|
+
"ContentToolResultResource",
|
|
62
68
|
"interpolate",
|
|
63
69
|
"interpolate_file",
|
|
64
70
|
"Provider",
|
|
@@ -68,3 +74,9 @@ __all__ = (
|
|
|
68
74
|
"Turn",
|
|
69
75
|
"types",
|
|
70
76
|
)
|
|
77
|
+
|
|
78
|
+
# Rebuild content models to resolve forward references to ToolAnnotation
|
|
79
|
+
ContentToolRequest.model_rebuild()
|
|
80
|
+
ContentToolResult.model_rebuild()
|
|
81
|
+
ContentToolResultImage.model_rebuild()
|
|
82
|
+
ContentToolResultResource.model_rebuild()
|
chatlas/_chat.py
CHANGED
|
@@ -9,6 +9,7 @@ import warnings
|
|
|
9
9
|
from pathlib import Path
|
|
10
10
|
from threading import Thread
|
|
11
11
|
from typing import (
|
|
12
|
+
TYPE_CHECKING,
|
|
12
13
|
Any,
|
|
13
14
|
AsyncGenerator,
|
|
14
15
|
AsyncIterator,
|
|
@@ -43,13 +44,16 @@ from ._display import (
|
|
|
43
44
|
)
|
|
44
45
|
from ._logging import log_tool_error
|
|
45
46
|
from ._mcp_manager import MCPSessionManager
|
|
46
|
-
from ._provider import Provider, StandardModelParams, SubmitInputArgsT
|
|
47
|
+
from ._provider import ModelInfo, Provider, StandardModelParams, SubmitInputArgsT
|
|
47
48
|
from ._tokens import compute_cost, get_token_pricing
|
|
48
49
|
from ._tools import Tool, ToolRejectError
|
|
49
50
|
from ._turn import Turn, user_turn
|
|
50
51
|
from ._typing_extensions import TypedDict, TypeGuard
|
|
51
52
|
from ._utils import MISSING, MISSING_TYPE, html_escape, wrap_async
|
|
52
53
|
|
|
54
|
+
if TYPE_CHECKING:
|
|
55
|
+
from mcp.types import ToolAnnotations
|
|
56
|
+
|
|
53
57
|
|
|
54
58
|
class TokensDict(TypedDict):
|
|
55
59
|
"""
|
|
@@ -128,6 +132,78 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
128
132
|
self._standard_model_params: StandardModelParams = {}
|
|
129
133
|
self._submit_input_kwargs: Optional[SubmitInputArgsT] = None
|
|
130
134
|
|
|
135
|
+
def list_models(self) -> list[ModelInfo]:
|
|
136
|
+
"""
|
|
137
|
+
List all models available for the provider.
|
|
138
|
+
|
|
139
|
+
This method returns detailed information about all models supported by the provider,
|
|
140
|
+
including model IDs, pricing information, creation dates, and other metadata. This is
|
|
141
|
+
useful for discovering available models and their characteristics without needing to
|
|
142
|
+
consult provider documentation.
|
|
143
|
+
|
|
144
|
+
Examples
|
|
145
|
+
--------
|
|
146
|
+
Get all available models:
|
|
147
|
+
|
|
148
|
+
```python
|
|
149
|
+
from chatlas import ChatOpenAI
|
|
150
|
+
|
|
151
|
+
chat = ChatOpenAI()
|
|
152
|
+
models = chat.list_models()
|
|
153
|
+
print(f"Found {len(models)} models")
|
|
154
|
+
print(f"First model: {models[0]['id']}")
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
View models in a table format:
|
|
158
|
+
|
|
159
|
+
```python
|
|
160
|
+
import pandas as pd
|
|
161
|
+
from chatlas import ChatAnthropic
|
|
162
|
+
|
|
163
|
+
chat = ChatAnthropic()
|
|
164
|
+
df = pd.DataFrame(chat.list_models())
|
|
165
|
+
print(df[["id", "input", "output"]].head()) # Show pricing info
|
|
166
|
+
```
|
|
167
|
+
|
|
168
|
+
Find models by criteria:
|
|
169
|
+
|
|
170
|
+
```python
|
|
171
|
+
from chatlas import ChatGoogle
|
|
172
|
+
|
|
173
|
+
chat = ChatGoogle()
|
|
174
|
+
models = chat.list_models()
|
|
175
|
+
|
|
176
|
+
# Find cheapest input model
|
|
177
|
+
cheapest = min(models, key=lambda m: m.get("input", float("inf")))
|
|
178
|
+
print(f"Cheapest model: {cheapest['id']}")
|
|
179
|
+
```
|
|
180
|
+
|
|
181
|
+
Returns
|
|
182
|
+
-------
|
|
183
|
+
list[ModelInfo]
|
|
184
|
+
A list of ModelInfo dictionaries containing model information. Each dictionary
|
|
185
|
+
contains:
|
|
186
|
+
|
|
187
|
+
- `id` (str): The model identifier to use with the Chat constructor
|
|
188
|
+
- `name` (str, optional): Human-readable model name
|
|
189
|
+
- `input` (float, optional): Cost per input token in USD per million tokens
|
|
190
|
+
- `output` (float, optional): Cost per output token in USD per million tokens
|
|
191
|
+
- `cached_input` (float, optional): Cost per cached input token in USD per million tokens
|
|
192
|
+
- `created_at` (date, optional): Date the model was created
|
|
193
|
+
- `owned_by` (str, optional): Organization that owns the model
|
|
194
|
+
- `provider` (str, optional): Model provider name
|
|
195
|
+
- `size` (int, optional): Model size in bytes
|
|
196
|
+
- `url` (str, optional): URL with more information about the model
|
|
197
|
+
|
|
198
|
+
The list is typically sorted by creation date (most recent first).
|
|
199
|
+
|
|
200
|
+
Note
|
|
201
|
+
----
|
|
202
|
+
Not all providers support this method. Some providers may raise NotImplementedError
|
|
203
|
+
with information about where to find model listings online.
|
|
204
|
+
"""
|
|
205
|
+
return self.provider.list_models()
|
|
206
|
+
|
|
131
207
|
def get_turns(
|
|
132
208
|
self,
|
|
133
209
|
*,
|
|
@@ -1462,6 +1538,7 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
1462
1538
|
*,
|
|
1463
1539
|
force: bool = False,
|
|
1464
1540
|
model: Optional[type[BaseModel]] = None,
|
|
1541
|
+
annotations: "Optional[ToolAnnotations]" = None,
|
|
1465
1542
|
):
|
|
1466
1543
|
"""
|
|
1467
1544
|
Register a tool (function) with the chat.
|
|
@@ -1539,13 +1616,16 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
1539
1616
|
The primary reason why you might want to provide a model in
|
|
1540
1617
|
Note that the name and docstring of the model takes precedence over the
|
|
1541
1618
|
name and docstring of the function.
|
|
1619
|
+
annotations
|
|
1620
|
+
Additional properties that describe the tool and its behavior.
|
|
1621
|
+
Should be a `from mcp.types import ToolAnnotations` instance.
|
|
1542
1622
|
|
|
1543
1623
|
Raises
|
|
1544
1624
|
------
|
|
1545
1625
|
ValueError
|
|
1546
1626
|
If a tool with the same name already exists and `force` is `False`.
|
|
1547
1627
|
"""
|
|
1548
|
-
tool = Tool.from_func(func, model=model)
|
|
1628
|
+
tool = Tool.from_func(func, model=model, annotations=annotations)
|
|
1549
1629
|
if tool.name in self._tools and not force:
|
|
1550
1630
|
raise ValueError(
|
|
1551
1631
|
f"Tool with name '{tool.name}' is already registered. "
|
|
@@ -1853,6 +1933,7 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
1853
1933
|
all_results: list[ContentToolResult] = []
|
|
1854
1934
|
for x in turn.contents:
|
|
1855
1935
|
if isinstance(x, ContentToolRequest):
|
|
1936
|
+
x.tool = self._tools.get(x.name)
|
|
1856
1937
|
if echo == "output":
|
|
1857
1938
|
self._echo_content(f"\n\n{x}\n\n")
|
|
1858
1939
|
if content == "all":
|
|
@@ -1913,6 +1994,7 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
1913
1994
|
all_results: list[ContentToolResult] = []
|
|
1914
1995
|
for x in turn.contents:
|
|
1915
1996
|
if isinstance(x, ContentToolRequest):
|
|
1997
|
+
x.tool = self._tools.get(x.name)
|
|
1916
1998
|
if echo == "output":
|
|
1917
1999
|
self._echo_content(f"\n\n{x}\n\n")
|
|
1918
2000
|
if content == "all":
|
|
@@ -2070,8 +2152,8 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
2070
2152
|
self._turns.extend([user_turn, turn])
|
|
2071
2153
|
|
|
2072
2154
|
def _invoke_tool(self, request: ContentToolRequest):
|
|
2073
|
-
|
|
2074
|
-
func =
|
|
2155
|
+
tool = request.tool
|
|
2156
|
+
func = tool.func if tool is not None else None
|
|
2075
2157
|
|
|
2076
2158
|
if func is None:
|
|
2077
2159
|
yield self._handle_tool_error_result(
|
|
@@ -2118,21 +2200,20 @@ class Chat(Generic[SubmitInputArgsT, CompletionT]):
|
|
|
2118
2200
|
yield self._handle_tool_error_result(request, e)
|
|
2119
2201
|
|
|
2120
2202
|
async def _invoke_tool_async(self, request: ContentToolRequest):
|
|
2121
|
-
|
|
2122
|
-
func = None
|
|
2123
|
-
if tool_def:
|
|
2124
|
-
if tool_def._is_async:
|
|
2125
|
-
func = tool_def.func
|
|
2126
|
-
else:
|
|
2127
|
-
func = wrap_async(tool_def.func)
|
|
2203
|
+
tool = request.tool
|
|
2128
2204
|
|
|
2129
|
-
if
|
|
2205
|
+
if tool is None:
|
|
2130
2206
|
yield self._handle_tool_error_result(
|
|
2131
2207
|
request,
|
|
2132
2208
|
error=RuntimeError("Unknown tool."),
|
|
2133
2209
|
)
|
|
2134
2210
|
return
|
|
2135
2211
|
|
|
2212
|
+
if tool._is_async:
|
|
2213
|
+
func = tool.func
|
|
2214
|
+
else:
|
|
2215
|
+
func = wrap_async(tool.func)
|
|
2216
|
+
|
|
2136
2217
|
# First, invoke the request callbacks. If a ToolRejectError is raised,
|
|
2137
2218
|
# treat it like a tool failure (i.e., gracefully handle it).
|
|
2138
2219
|
result: ContentToolResult | None = None
|
chatlas/_content.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from pprint import pformat
|
|
4
|
-
from typing import Any, Literal, Optional, Union
|
|
4
|
+
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
|
|
5
5
|
|
|
6
6
|
import orjson
|
|
7
7
|
from pydantic import BaseModel, ConfigDict
|
|
8
8
|
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
from ._tools import Tool
|
|
11
|
+
|
|
9
12
|
ImageContentTypes = Literal[
|
|
10
13
|
"image/png",
|
|
11
14
|
"image/jpeg",
|
|
@@ -171,11 +174,15 @@ class ContentToolRequest(Content):
|
|
|
171
174
|
The name of the tool/function to call.
|
|
172
175
|
arguments
|
|
173
176
|
The arguments to pass to the tool/function.
|
|
177
|
+
tool
|
|
178
|
+
The tool/function to be called. This is set internally by chatlas's tool
|
|
179
|
+
calling loop.
|
|
174
180
|
"""
|
|
175
181
|
|
|
176
182
|
id: str
|
|
177
183
|
name: str
|
|
178
184
|
arguments: object
|
|
185
|
+
tool: Optional["Tool"] = None
|
|
179
186
|
|
|
180
187
|
content_type: ContentTypeEnum = "tool_request"
|
|
181
188
|
|
chatlas/_provider.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from abc import ABC, abstractmethod
|
|
4
|
+
from datetime import date
|
|
4
5
|
from typing import (
|
|
5
6
|
AsyncIterable,
|
|
6
7
|
Generic,
|
|
@@ -16,7 +17,7 @@ from pydantic import BaseModel
|
|
|
16
17
|
from ._content import Content
|
|
17
18
|
from ._tools import Tool
|
|
18
19
|
from ._turn import Turn
|
|
19
|
-
from ._typing_extensions import TypedDict
|
|
20
|
+
from ._typing_extensions import NotRequired, TypedDict
|
|
20
21
|
|
|
21
22
|
ChatCompletionT = TypeVar("ChatCompletionT")
|
|
22
23
|
ChatCompletionChunkT = TypeVar("ChatCompletionChunkT")
|
|
@@ -35,6 +36,40 @@ submitting input to a model provider.
|
|
|
35
36
|
"""
|
|
36
37
|
|
|
37
38
|
|
|
39
|
+
class ModelInfo(TypedDict):
|
|
40
|
+
"Information returned from the `.list_models()` method"
|
|
41
|
+
|
|
42
|
+
id: str
|
|
43
|
+
"The model ID (this gets passed to the `model` parameter of the `Chat` constructor)"
|
|
44
|
+
|
|
45
|
+
cached_input: NotRequired[float | None]
|
|
46
|
+
"The cost per user token in USD per million tokens for cached input"
|
|
47
|
+
|
|
48
|
+
input: NotRequired[float | None]
|
|
49
|
+
"The cost per user token in USD per million tokens"
|
|
50
|
+
|
|
51
|
+
output: NotRequired[float | None]
|
|
52
|
+
"The cost per assistant token in USD per million tokens"
|
|
53
|
+
|
|
54
|
+
created_at: NotRequired[date]
|
|
55
|
+
"The date the model was created"
|
|
56
|
+
|
|
57
|
+
name: NotRequired[str]
|
|
58
|
+
"The model name"
|
|
59
|
+
|
|
60
|
+
owned_by: NotRequired[str]
|
|
61
|
+
"The owner of the model"
|
|
62
|
+
|
|
63
|
+
size: NotRequired[int]
|
|
64
|
+
"The size of the model in bytes"
|
|
65
|
+
|
|
66
|
+
provider: NotRequired[str]
|
|
67
|
+
"The provider of the model"
|
|
68
|
+
|
|
69
|
+
url: NotRequired[str]
|
|
70
|
+
"A URL to learn more about the model"
|
|
71
|
+
|
|
72
|
+
|
|
38
73
|
class StandardModelParams(TypedDict, total=False):
|
|
39
74
|
"""
|
|
40
75
|
A TypedDict representing the standard model parameters that can be set
|
|
@@ -102,6 +137,13 @@ class Provider(
|
|
|
102
137
|
"""
|
|
103
138
|
return self._model
|
|
104
139
|
|
|
140
|
+
@abstractmethod
|
|
141
|
+
def list_models(self) -> list[ModelInfo]:
|
|
142
|
+
"""
|
|
143
|
+
List all available models for the provider.
|
|
144
|
+
"""
|
|
145
|
+
pass
|
|
146
|
+
|
|
105
147
|
@overload
|
|
106
148
|
@abstractmethod
|
|
107
149
|
def chat_perform(
|
chatlas/_provider_anthropic.py
CHANGED
|
@@ -21,8 +21,8 @@ from ._content import (
|
|
|
21
21
|
ContentToolResultResource,
|
|
22
22
|
)
|
|
23
23
|
from ._logging import log_model_default
|
|
24
|
-
from ._provider import Provider, StandardModelParamNames, StandardModelParams
|
|
25
|
-
from ._tokens import tokens_log
|
|
24
|
+
from ._provider import ModelInfo, Provider, StandardModelParamNames, StandardModelParams
|
|
25
|
+
from ._tokens import get_token_pricing, tokens_log
|
|
26
26
|
from ._tools import Tool, basemodel_to_param_schema
|
|
27
27
|
from ._turn import Turn, user_turn
|
|
28
28
|
from ._utils import split_http_client_kwargs
|
|
@@ -209,6 +209,30 @@ class AnthropicProvider(
|
|
|
209
209
|
self._client = Anthropic(**sync_kwargs) # type: ignore
|
|
210
210
|
self._async_client = AsyncAnthropic(**async_kwargs)
|
|
211
211
|
|
|
212
|
+
def list_models(self):
|
|
213
|
+
models = self._client.models.list()
|
|
214
|
+
|
|
215
|
+
res: list[ModelInfo] = []
|
|
216
|
+
for m in models:
|
|
217
|
+
pricing = get_token_pricing(self.name, m.id) or {}
|
|
218
|
+
info: ModelInfo = {
|
|
219
|
+
"id": m.id,
|
|
220
|
+
"name": m.display_name,
|
|
221
|
+
"created_at": m.created_at.date(),
|
|
222
|
+
"input": pricing.get("input"),
|
|
223
|
+
"output": pricing.get("output"),
|
|
224
|
+
"cached_input": pricing.get("cached_input"),
|
|
225
|
+
}
|
|
226
|
+
res.append(info)
|
|
227
|
+
|
|
228
|
+
# Sort list by created_by field (more recent first)
|
|
229
|
+
res.sort(
|
|
230
|
+
key=lambda x: x.get("created_at", 0),
|
|
231
|
+
reverse=True,
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
return res
|
|
235
|
+
|
|
212
236
|
@overload
|
|
213
237
|
def chat_perform(
|
|
214
238
|
self,
|
|
@@ -797,3 +821,26 @@ class AnthropicBedrockProvider(AnthropicProvider):
|
|
|
797
821
|
|
|
798
822
|
self._client = AnthropicBedrock(**kwargs_full) # type: ignore
|
|
799
823
|
self._async_client = AsyncAnthropicBedrock(**kwargs_full) # type: ignore
|
|
824
|
+
|
|
825
|
+
def list_models(self):
|
|
826
|
+
# boto3 should come via anthropic's bedrock extras
|
|
827
|
+
import boto3
|
|
828
|
+
|
|
829
|
+
bedrock = boto3.client("bedrock")
|
|
830
|
+
resp = bedrock.list_foundation_models()
|
|
831
|
+
models = resp["modelSummaries"]
|
|
832
|
+
|
|
833
|
+
res: list[ModelInfo] = []
|
|
834
|
+
for m in models:
|
|
835
|
+
pricing = get_token_pricing(self.name, m["modelId"]) or {}
|
|
836
|
+
info: ModelInfo = {
|
|
837
|
+
"id": m["modelId"],
|
|
838
|
+
"name": m["modelName"],
|
|
839
|
+
"provider": m["providerName"],
|
|
840
|
+
"input": pricing.get("input"),
|
|
841
|
+
"output": pricing.get("output"),
|
|
842
|
+
"cached_input": pricing.get("cached_input"),
|
|
843
|
+
}
|
|
844
|
+
res.append(info)
|
|
845
|
+
|
|
846
|
+
return res
|
chatlas/_provider_cloudflare.py
CHANGED
|
@@ -153,7 +153,7 @@ def ChatCloudflare(
|
|
|
153
153
|
base_url = f"{cloudflare_api}/{account}/ai/v1/"
|
|
154
154
|
|
|
155
155
|
return Chat(
|
|
156
|
-
provider=
|
|
156
|
+
provider=CloudflareProvider(
|
|
157
157
|
api_key=api_key,
|
|
158
158
|
model=model,
|
|
159
159
|
base_url=base_url,
|
|
@@ -163,3 +163,11 @@ def ChatCloudflare(
|
|
|
163
163
|
),
|
|
164
164
|
system_prompt=system_prompt,
|
|
165
165
|
)
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
class CloudflareProvider(OpenAIProvider):
|
|
169
|
+
def list_models(self):
|
|
170
|
+
raise NotImplementedError(
|
|
171
|
+
".list_models() is not yet implemented for Cloudflare. "
|
|
172
|
+
"To view model availability online, see https://developers.cloudflare.com/workers-ai/models/"
|
|
173
|
+
)
|
chatlas/_provider_databricks.py
CHANGED
|
@@ -128,6 +128,13 @@ class DatabricksProvider(OpenAIProvider):
|
|
|
128
128
|
http_client=httpx.AsyncClient(auth=client._client.auth),
|
|
129
129
|
)
|
|
130
130
|
|
|
131
|
+
def list_models(self):
|
|
132
|
+
raise NotImplementedError(
|
|
133
|
+
".list_models() is not yet implemented for Databricks. "
|
|
134
|
+
"To view model availability online, see "
|
|
135
|
+
"https://docs.databricks.com/aws/en/machine-learning/model-serving/score-foundation-models#-foundation-model-types"
|
|
136
|
+
)
|
|
137
|
+
|
|
131
138
|
# Databricks doesn't support stream_options
|
|
132
139
|
def _chat_perform_args(
|
|
133
140
|
self, stream, turns, tools, data_model=None, kwargs=None
|
chatlas/_provider_github.py
CHANGED
|
@@ -3,9 +3,11 @@ from __future__ import annotations
|
|
|
3
3
|
import os
|
|
4
4
|
from typing import TYPE_CHECKING, Optional
|
|
5
5
|
|
|
6
|
+
import requests
|
|
7
|
+
|
|
6
8
|
from ._chat import Chat
|
|
7
9
|
from ._logging import log_model_default
|
|
8
|
-
from ._provider_openai import OpenAIProvider
|
|
10
|
+
from ._provider_openai import ModelInfo, OpenAIProvider
|
|
9
11
|
from ._utils import MISSING, MISSING_TYPE, is_testing
|
|
10
12
|
|
|
11
13
|
if TYPE_CHECKING:
|
|
@@ -18,7 +20,7 @@ def ChatGithub(
|
|
|
18
20
|
system_prompt: Optional[str] = None,
|
|
19
21
|
model: Optional[str] = None,
|
|
20
22
|
api_key: Optional[str] = None,
|
|
21
|
-
base_url: str = "https://models.
|
|
23
|
+
base_url: str = "https://models.github.ai/inference/",
|
|
22
24
|
seed: Optional[int] | MISSING_TYPE = MISSING,
|
|
23
25
|
kwargs: Optional["ChatClientArgs"] = None,
|
|
24
26
|
) -> Chat["SubmitInputArgs", ChatCompletion]:
|
|
@@ -125,7 +127,7 @@ def ChatGithub(
|
|
|
125
127
|
seed = 1014 if is_testing() else None
|
|
126
128
|
|
|
127
129
|
return Chat(
|
|
128
|
-
provider=
|
|
130
|
+
provider=GitHubProvider(
|
|
129
131
|
api_key=api_key,
|
|
130
132
|
model=model,
|
|
131
133
|
base_url=base_url,
|
|
@@ -135,3 +137,61 @@ def ChatGithub(
|
|
|
135
137
|
),
|
|
136
138
|
system_prompt=system_prompt,
|
|
137
139
|
)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class GitHubProvider(OpenAIProvider):
|
|
143
|
+
def __init__(self, base_url: str, **kwargs):
|
|
144
|
+
super().__init__(**kwargs)
|
|
145
|
+
self._base_url = base_url
|
|
146
|
+
|
|
147
|
+
def list_models(self) -> list[ModelInfo]:
|
|
148
|
+
# For some reason the OpenAI SDK API fails here? So perform request manually
|
|
149
|
+
# models = self._client.models.list()
|
|
150
|
+
|
|
151
|
+
base_url = self._base_url
|
|
152
|
+
if not base_url.endswith("/"):
|
|
153
|
+
base_url += "/"
|
|
154
|
+
|
|
155
|
+
if "azure" in base_url:
|
|
156
|
+
# i.e., https://models.inference.ai.azure.com
|
|
157
|
+
return list_models_gh_azure(base_url)
|
|
158
|
+
else:
|
|
159
|
+
# i.e., https://models.github.ai/inference/
|
|
160
|
+
return list_models_gh(base_url)
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def list_models_gh(base_url: str = "https://models.github.ai/inference/"):
|
|
164
|
+
# replace /inference endpoint with /catalog
|
|
165
|
+
base_url = base_url.replace("/inference", "/catalog")
|
|
166
|
+
response = requests.get(f"{base_url}models")
|
|
167
|
+
response.raise_for_status()
|
|
168
|
+
models = response.json()
|
|
169
|
+
|
|
170
|
+
res: list[ModelInfo] = []
|
|
171
|
+
for m in models:
|
|
172
|
+
_id = m["id"].split("/")[-1]
|
|
173
|
+
info: ModelInfo = {
|
|
174
|
+
"id": _id,
|
|
175
|
+
"name": m["name"],
|
|
176
|
+
"provider": m["publisher"],
|
|
177
|
+
"url": m["html_url"],
|
|
178
|
+
}
|
|
179
|
+
res.append(info)
|
|
180
|
+
|
|
181
|
+
return res
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
def list_models_gh_azure(base_url: str = "https://models.inference.ai.azure.com"):
|
|
185
|
+
response = requests.get(f"{base_url}models")
|
|
186
|
+
response.raise_for_status()
|
|
187
|
+
models = response.json()
|
|
188
|
+
|
|
189
|
+
res: list[ModelInfo] = []
|
|
190
|
+
for m in models:
|
|
191
|
+
info: ModelInfo = {
|
|
192
|
+
"id": m["name"],
|
|
193
|
+
"provider": m["publisher"]
|
|
194
|
+
}
|
|
195
|
+
res.append(info)
|
|
196
|
+
|
|
197
|
+
return res
|
chatlas/_provider_google.py
CHANGED
|
@@ -21,8 +21,8 @@ from ._content import (
|
|
|
21
21
|
)
|
|
22
22
|
from ._logging import log_model_default
|
|
23
23
|
from ._merge import merge_dicts
|
|
24
|
-
from ._provider import Provider, StandardModelParamNames, StandardModelParams
|
|
25
|
-
from ._tokens import tokens_log
|
|
24
|
+
from ._provider import ModelInfo, Provider, StandardModelParamNames, StandardModelParams
|
|
25
|
+
from ._tokens import get_token_pricing, tokens_log
|
|
26
26
|
from ._tools import Tool
|
|
27
27
|
from ._turn import Turn, user_turn
|
|
28
28
|
|
|
@@ -180,6 +180,30 @@ class GoogleProvider(
|
|
|
180
180
|
|
|
181
181
|
self._client = genai.Client(**kwargs_full)
|
|
182
182
|
|
|
183
|
+
def list_models(self):
|
|
184
|
+
models = self._client.models.list()
|
|
185
|
+
|
|
186
|
+
res: list[ModelInfo] = []
|
|
187
|
+
for m in models:
|
|
188
|
+
name = m.name or "[unknown]"
|
|
189
|
+
pricing = get_token_pricing(self.name, name) or {}
|
|
190
|
+
info: ModelInfo = {
|
|
191
|
+
"id": name,
|
|
192
|
+
"name": m.display_name or "[unknown]",
|
|
193
|
+
"input": pricing.get("input"),
|
|
194
|
+
"output": pricing.get("output"),
|
|
195
|
+
"cached_input": pricing.get("cached_input"),
|
|
196
|
+
}
|
|
197
|
+
res.append(info)
|
|
198
|
+
|
|
199
|
+
# Sort list by created_by field (more recent first)
|
|
200
|
+
res.sort(
|
|
201
|
+
key=lambda x: x.get("created", 0),
|
|
202
|
+
reverse=True,
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
return res
|
|
206
|
+
|
|
183
207
|
@overload
|
|
184
208
|
def chat_perform(
|
|
185
209
|
self,
|
chatlas/_provider_ollama.py
CHANGED
|
@@ -7,7 +7,7 @@ from typing import TYPE_CHECKING, Optional
|
|
|
7
7
|
import orjson
|
|
8
8
|
|
|
9
9
|
from ._chat import Chat
|
|
10
|
-
from ._provider_openai import OpenAIProvider
|
|
10
|
+
from ._provider_openai import ModelInfo, OpenAIProvider
|
|
11
11
|
from ._utils import MISSING_TYPE, is_testing
|
|
12
12
|
|
|
13
13
|
if TYPE_CHECKING:
|
|
@@ -90,18 +90,19 @@ def ChatOllama(
|
|
|
90
90
|
raise RuntimeError("Can't find locally running ollama.")
|
|
91
91
|
|
|
92
92
|
if model is None:
|
|
93
|
-
models =
|
|
93
|
+
models = ollama_model_info(base_url)
|
|
94
|
+
model_ids = [m["id"] for m in models]
|
|
94
95
|
raise ValueError(
|
|
95
|
-
f"Must specify model. Locally installed models: {', '.join(
|
|
96
|
+
f"Must specify model. Locally installed models: {', '.join(model_ids)}"
|
|
96
97
|
)
|
|
97
98
|
if isinstance(seed, MISSING_TYPE):
|
|
98
99
|
seed = 1014 if is_testing() else None
|
|
99
100
|
|
|
100
101
|
return Chat(
|
|
101
|
-
provider=
|
|
102
|
+
provider=OllamaProvider(
|
|
102
103
|
api_key="ollama", # ignored
|
|
103
104
|
model=model,
|
|
104
|
-
base_url=
|
|
105
|
+
base_url=base_url,
|
|
105
106
|
seed=seed,
|
|
106
107
|
name="Ollama",
|
|
107
108
|
kwargs=kwargs,
|
|
@@ -110,10 +111,40 @@ def ChatOllama(
|
|
|
110
111
|
)
|
|
111
112
|
|
|
112
113
|
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
114
|
+
class OllamaProvider(OpenAIProvider):
|
|
115
|
+
def __init__(self, *, api_key, model, base_url, seed, name, kwargs):
|
|
116
|
+
super().__init__(
|
|
117
|
+
api_key=api_key,
|
|
118
|
+
model=model,
|
|
119
|
+
base_url=f"{base_url}/v1",
|
|
120
|
+
seed=seed,
|
|
121
|
+
name=name,
|
|
122
|
+
kwargs=kwargs,
|
|
123
|
+
)
|
|
124
|
+
self.base_url = base_url
|
|
125
|
+
|
|
126
|
+
def list_models(self):
|
|
127
|
+
return ollama_model_info(self.base_url)
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def ollama_model_info(base_url: str) -> list[ModelInfo]:
|
|
131
|
+
response = urllib.request.urlopen(url=f"{base_url}/api/tags")
|
|
132
|
+
data = orjson.loads(response.read())
|
|
133
|
+
models = data.get("models", [])
|
|
134
|
+
if not models:
|
|
135
|
+
return []
|
|
136
|
+
|
|
137
|
+
res: list[ModelInfo] = []
|
|
138
|
+
for model in models:
|
|
139
|
+
# TODO: add capabilities
|
|
140
|
+
info: ModelInfo = {
|
|
141
|
+
"id": re.sub(":latest$", "", model["name"]),
|
|
142
|
+
"created_at": model["modified_at"],
|
|
143
|
+
"size": model["size"],
|
|
144
|
+
}
|
|
145
|
+
res.append(info)
|
|
146
|
+
|
|
147
|
+
return res
|
|
117
148
|
|
|
118
149
|
|
|
119
150
|
def has_ollama(base_url):
|
chatlas/_provider_openai.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
import base64
|
|
4
|
+
from datetime import datetime
|
|
4
5
|
from typing import TYPE_CHECKING, Any, Literal, Optional, cast, overload
|
|
5
6
|
|
|
6
7
|
import orjson
|
|
@@ -23,8 +24,8 @@ from ._content import (
|
|
|
23
24
|
)
|
|
24
25
|
from ._logging import log_model_default
|
|
25
26
|
from ._merge import merge_dicts
|
|
26
|
-
from ._provider import Provider, StandardModelParamNames, StandardModelParams
|
|
27
|
-
from ._tokens import tokens_log
|
|
27
|
+
from ._provider import ModelInfo, Provider, StandardModelParamNames, StandardModelParams
|
|
28
|
+
from ._tokens import get_token_pricing, tokens_log
|
|
28
29
|
from ._tools import Tool, basemodel_to_param_schema
|
|
29
30
|
from ._turn import Turn, user_turn
|
|
30
31
|
from ._utils import MISSING, MISSING_TYPE, is_testing, split_http_client_kwargs
|
|
@@ -200,6 +201,32 @@ class OpenAIProvider(
|
|
|
200
201
|
self._client = OpenAI(**sync_kwargs) # type: ignore
|
|
201
202
|
self._async_client = AsyncOpenAI(**async_kwargs)
|
|
202
203
|
|
|
204
|
+
def list_models(self):
|
|
205
|
+
models = self._client.models.list()
|
|
206
|
+
|
|
207
|
+
res: list[ModelInfo] = []
|
|
208
|
+
for m in models:
|
|
209
|
+
pricing = get_token_pricing(self.name, m.id) or {}
|
|
210
|
+
info: ModelInfo = {
|
|
211
|
+
"id": m.id,
|
|
212
|
+
"owned_by": m.owned_by,
|
|
213
|
+
"input": pricing.get("input"),
|
|
214
|
+
"output": pricing.get("output"),
|
|
215
|
+
"cached_input": pricing.get("cached_input"),
|
|
216
|
+
}
|
|
217
|
+
# DeepSeek compatibility
|
|
218
|
+
if m.created is not None:
|
|
219
|
+
info["created_at"] = datetime.fromtimestamp(m.created).date()
|
|
220
|
+
res.append(info)
|
|
221
|
+
|
|
222
|
+
# More recent models first
|
|
223
|
+
res.sort(
|
|
224
|
+
key=lambda x: x.get("created_at", 0),
|
|
225
|
+
reverse=True,
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
return res
|
|
229
|
+
|
|
203
230
|
@overload
|
|
204
231
|
def chat_perform(
|
|
205
232
|
self,
|