chat-console 0.3.8__py3-none-any.whl → 0.3.91__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
app/__init__.py CHANGED
@@ -3,4 +3,4 @@ Chat CLI
3
3
  A command-line interface for chatting with various LLM providers like ChatGPT and Claude.
4
4
  """
5
5
 
6
- __version__ = "0.3.8"
6
+ __version__ = "0.3.91"
app/api/anthropic.py CHANGED
@@ -1,13 +1,17 @@
1
1
  import anthropic
2
- import asyncio # Add missing import
2
+ import asyncio
3
+ import logging
3
4
  from typing import List, Dict, Any, Optional, Generator, AsyncGenerator
4
5
  from .base import BaseModelClient
5
6
  from ..config import ANTHROPIC_API_KEY
6
- from ..utils import resolve_model_id # Import the resolve_model_id function
7
+
8
+ # Set up logging
9
+ logger = logging.getLogger(__name__)
7
10
 
8
11
  class AnthropicClient(BaseModelClient):
9
12
  def __init__(self):
10
13
  self.client = None # Initialize in create()
14
+ self._active_stream = None # Track active stream for cancellation
11
15
 
12
16
  @classmethod
13
17
  async def create(cls) -> 'AnthropicClient':
@@ -17,237 +21,218 @@ class AnthropicClient(BaseModelClient):
17
21
  return instance
18
22
 
19
23
  def _prepare_messages(self, messages: List[Dict[str, str]], style: Optional[str] = None) -> List[Dict[str, str]]:
20
- """Prepare messages for Claude API"""
21
- # Anthropic expects role to be 'user' or 'assistant'
24
+ """Prepare messages for Anthropic API"""
22
25
  processed_messages = []
23
26
 
24
- for msg in messages:
25
- role = msg["role"]
26
- if role == "system":
27
- # For Claude, we'll convert system messages to user messages with a special prefix
27
+ # Add style instructions if provided
28
+ if style and style != "default":
29
+ style_instructions = self._get_style_instructions(style)
30
+ processed_messages.append({
31
+ "role": "system",
32
+ "content": style_instructions
33
+ })
34
+
35
+ # Add the rest of the messages
36
+ for message in messages:
37
+ # Ensure message has required fields
38
+ if "role" not in message or "content" not in message:
39
+ continue
40
+
41
+ # Map 'user' and 'assistant' roles directly
42
+ # Anthropic only supports 'user' and 'assistant' roles
43
+ if message["role"] in ["user", "assistant"]:
44
+ processed_messages.append(message)
45
+ elif message["role"] == "system":
46
+ # For system messages, we need to add them as system messages
28
47
  processed_messages.append({
29
- "role": "user",
30
- "content": f"<system>\n{msg['content']}\n</system>"
48
+ "role": "system",
49
+ "content": message["content"]
31
50
  })
32
51
  else:
33
- processed_messages.append(msg)
34
-
35
- # Add style instructions if provided
36
- if style and style != "default":
37
- # Find first non-system message to attach style to
38
- for i, msg in enumerate(processed_messages):
39
- if msg["role"] == "user":
40
- content = msg["content"]
41
- if "<userStyle>" not in content:
42
- style_instructions = self._get_style_instructions(style)
43
- msg["content"] = f"<userStyle>{style_instructions}</userStyle>\n\n{content}"
44
- break
52
+ # For any other role, treat as user message
53
+ processed_messages.append({
54
+ "role": "user",
55
+ "content": message["content"]
56
+ })
45
57
 
46
58
  return processed_messages
47
59
 
48
60
  def _get_style_instructions(self, style: str) -> str:
49
61
  """Get formatting instructions for different styles"""
50
62
  styles = {
51
- "concise": "Be extremely concise and to the point. Use short sentences and paragraphs. Avoid unnecessary details.",
52
- "detailed": "Be comprehensive and thorough in your responses. Provide detailed explanations, examples, and cover all relevant aspects of the topic.",
53
- "technical": "Use precise technical language and terminology. Be formal and focus on accuracy and technical details.",
54
- "friendly": "Be warm, approachable and conversational. Use casual language, personal examples, and a friendly tone.",
63
+ "concise": "Please provide concise, to-the-point responses without unnecessary elaboration.",
64
+ "detailed": "Please provide comprehensive responses with thorough explanations and examples.",
65
+ "technical": "Please use precise technical language and focus on accuracy and technical details.",
66
+ "friendly": "Please use a warm, conversational tone and relatable examples.",
55
67
  }
56
68
 
57
69
  return styles.get(style, "")
58
70
 
59
- async def generate_completion(self, messages: List[Dict[str, str]],
60
- model: str,
61
- style: Optional[str] = None,
62
- temperature: float = 0.7,
71
+ async def generate_completion(self, messages: List[Dict[str, str]],
72
+ model: str,
73
+ style: Optional[str] = None,
74
+ temperature: float = 0.7,
63
75
  max_tokens: Optional[int] = None) -> str:
64
- """Generate a text completion using Claude"""
65
- try:
66
- from app.main import debug_log
67
- except ImportError:
68
- debug_log = lambda msg: None
69
-
70
- # Resolve the model ID right before making the API call
71
- original_model = model
72
- resolved_model = resolve_model_id(model)
73
- debug_log(f"Anthropic: Original model ID '{original_model}' resolved to '{resolved_model}' in generate_completion")
74
-
76
+ """Generate a text completion using Anthropic"""
75
77
  processed_messages = self._prepare_messages(messages, style)
76
78
 
77
- response = await self.client.messages.create(
78
- model=resolved_model, # Use the resolved model ID
79
- messages=processed_messages,
80
- temperature=temperature,
81
- max_tokens=max_tokens or 1024,
82
- )
83
-
84
- return response.content[0].text
79
+ try:
80
+ response = await self.client.messages.create(
81
+ model=model,
82
+ messages=processed_messages,
83
+ temperature=temperature,
84
+ max_tokens=max_tokens if max_tokens else 4096,
85
+ )
86
+
87
+ return response.content[0].text
88
+ except Exception as e:
89
+ logger.error(f"Error generating completion: {str(e)}")
90
+ raise Exception(f"Anthropic API error: {str(e)}")
85
91
 
86
- async def generate_stream(self, messages: List[Dict[str, str]],
87
- model: str,
92
+ async def generate_stream(self, messages: List[Dict[str, str]],
93
+ model: str,
88
94
  style: Optional[str] = None,
89
- temperature: float = 0.7,
95
+ temperature: float = 0.7,
90
96
  max_tokens: Optional[int] = None) -> AsyncGenerator[str, None]:
91
- """Generate a streaming text completion using Claude"""
97
+ """Generate a streaming text completion using Anthropic"""
92
98
  try:
93
99
  from app.main import debug_log # Import debug logging if available
100
+ debug_log(f"Anthropic: starting streaming generation with model: {model}")
94
101
  except ImportError:
95
102
  # If debug_log not available, create a no-op function
96
103
  debug_log = lambda msg: None
97
104
 
98
- # Resolve the model ID right before making the API call
99
- original_model = model
100
- resolved_model = resolve_model_id(model)
101
- debug_log(f"Anthropic: Original model ID '{original_model}' resolved to '{resolved_model}'")
102
- debug_log(f"Anthropic: starting streaming generation with model: {resolved_model}")
103
-
104
105
  processed_messages = self._prepare_messages(messages, style)
105
106
 
106
107
  try:
107
- debug_log(f"Anthropic: requesting stream with {len(processed_messages)} messages")
108
- # Remove await from this line - it returns the context manager, not an awaitable
109
- stream = self.client.messages.stream(
110
- model=resolved_model, # Use the resolved model ID
111
- messages=processed_messages,
112
- temperature=temperature,
113
- max_tokens=max_tokens or 1024,
114
- )
108
+ debug_log(f"Anthropic: preparing {len(processed_messages)} messages for stream")
109
+
110
+ # Use more robust error handling with retry for connection issues
111
+ max_retries = 2
112
+ retry_count = 0
115
113
 
116
- debug_log("Anthropic: stream created successfully, processing chunks using async with")
117
- async with stream as stream_context: # Use async with
118
- async for chunk in stream_context: # Iterate over the context
119
- try:
120
- if chunk.type == "content_block_delta": # Check for delta type
121
- # Ensure we always return a string
122
- if chunk.delta.text is None:
123
- debug_log("Anthropic: skipping empty text delta chunk")
124
- continue
125
-
126
- text = str(chunk.delta.text) # Get text from delta
127
- debug_log(f"Anthropic: yielding chunk of length: {len(text)}")
128
- yield text
129
- else:
130
- debug_log(f"Anthropic: skipping non-content_delta chunk of type: {chunk.type}")
131
- except Exception as chunk_error: # Restore the except block for chunk processing
132
- debug_log(f"Anthropic: error processing chunk: {str(chunk_error)}")
133
- # Skip problematic chunks but continue processing
134
- continue # This continue is now correctly inside the loop and except block
114
+ while retry_count <= max_retries:
115
+ try:
116
+ debug_log(f"Anthropic: creating stream with model {model}")
117
+
118
+ # Create the stream
119
+ stream = await self.client.messages.create(
120
+ model=model,
121
+ messages=processed_messages,
122
+ temperature=temperature,
123
+ max_tokens=max_tokens if max_tokens else 4096,
124
+ stream=True
125
+ )
126
+
127
+ # Store the stream for potential cancellation
128
+ self._active_stream = stream
135
129
 
130
+ debug_log("Anthropic: stream created successfully")
131
+
132
+ # Process stream chunks
133
+ chunk_count = 0
134
+ debug_log("Anthropic: starting to process chunks")
135
+
136
+ async for chunk in stream:
137
+ # Check if stream has been cancelled
138
+ if self._active_stream is None:
139
+ debug_log("Anthropic: stream was cancelled, stopping generation")
140
+ break
141
+
142
+ chunk_count += 1
143
+ try:
144
+ if hasattr(chunk, 'delta') and hasattr(chunk.delta, 'text'):
145
+ content = chunk.delta.text
146
+ if content is not None:
147
+ debug_log(f"Anthropic: yielding chunk {chunk_count} of length: {len(content)}")
148
+ yield content
149
+ else:
150
+ debug_log(f"Anthropic: skipping None content chunk {chunk_count}")
151
+ else:
152
+ debug_log(f"Anthropic: skipping chunk {chunk_count} with missing content")
153
+ except Exception as chunk_error:
154
+ debug_log(f"Anthropic: error processing chunk {chunk_count}: {str(chunk_error)}")
155
+ # Skip problematic chunks but continue processing
156
+ continue
157
+
158
+ debug_log(f"Anthropic: stream completed successfully with {chunk_count} chunks")
159
+
160
+ # Clear the active stream reference when done
161
+ self._active_stream = None
162
+
163
+ # If we reach this point, we've successfully processed the stream
164
+ break
165
+
166
+ except Exception as e:
167
+ debug_log(f"Anthropic: error in attempt {retry_count+1}/{max_retries+1}: {str(e)}")
168
+ retry_count += 1
169
+ if retry_count <= max_retries:
170
+ debug_log(f"Anthropic: retrying after error (attempt {retry_count+1})")
171
+ # Simple exponential backoff
172
+ await asyncio.sleep(1 * retry_count)
173
+ else:
174
+ debug_log("Anthropic: max retries reached, raising exception")
175
+ raise Exception(f"Anthropic streaming error after {max_retries+1} attempts: {str(e)}")
176
+
136
177
  except Exception as e:
137
178
  debug_log(f"Anthropic: error in generate_stream: {str(e)}")
179
+ # Yield a simple error message as a last resort to ensure UI updates
180
+ yield f"Error: {str(e)}"
138
181
  raise Exception(f"Anthropic streaming error: {str(e)}")
139
-
140
- async def _fetch_models_from_api(self) -> List[Dict[str, Any]]:
141
- """Fetch available models directly from the Anthropic API."""
182
+
183
+ async def cancel_stream(self) -> None:
184
+ """Cancel any active streaming request"""
185
+ logger.info("Cancelling active Anthropic stream")
142
186
  try:
143
187
  from app.main import debug_log
188
+ debug_log("Anthropic: cancelling active stream")
144
189
  except ImportError:
145
- debug_log = lambda msg: None
146
-
147
- # Always include a reliable fallback list in case API calls fail
148
- fallback_models = [
149
- {"id": "claude-3-opus-20240229", "name": "Claude 3 Opus"},
150
- {"id": "claude-3-sonnet-20240229", "name": "Claude 3 Sonnet"},
151
- {"id": "claude-3-haiku-20240307", "name": "Claude 3 Haiku"},
152
- {"id": "claude-3-5-sonnet-20240620", "name": "Claude 3.5 Sonnet"},
153
- {"id": "claude-3-7-sonnet-20250219", "name": "Claude 3.7 Sonnet"},
154
- ]
155
-
156
- # If no client is initialized, return fallback immediately
157
- if not self.client:
158
- debug_log("Anthropic: No client initialized, using fallback models")
159
- return fallback_models
160
-
161
- try:
162
- debug_log("Anthropic: Fetching models from API...")
163
-
164
- # Try using the models.list method if available in newer SDK versions
165
- if hasattr(self.client, 'models') and hasattr(self.client.models, 'list'):
166
- try:
167
- debug_log("Anthropic: Using client.models.list() method")
168
- models_response = await self.client.models.list()
169
- if hasattr(models_response, 'data') and isinstance(models_response.data, list):
170
- formatted_models = [
171
- {"id": model.id, "name": getattr(model, "name", model.id)}
172
- for model in models_response.data
173
- ]
174
- debug_log(f"Anthropic: Found {len(formatted_models)} models via SDK")
175
- return formatted_models
176
- except Exception as sdk_err:
177
- debug_log(f"Anthropic: Error using models.list(): {str(sdk_err)}")
178
- # Continue to next method
190
+ pass
179
191
 
180
- # Try direct HTTP request if client exposes the underlying HTTP client
181
- if hasattr(self.client, '_client') and hasattr(self.client._client, 'get'):
182
- try:
183
- debug_log("Anthropic: Using direct HTTP request to /v1/models")
184
- response = await self.client._client.get(
185
- "/v1/models",
186
- headers={"anthropic-version": "2023-06-01"}
187
- )
188
- response.raise_for_status()
189
- models_data = response.json()
190
-
191
- if 'data' in models_data and isinstance(models_data['data'], list):
192
- formatted_models = [
193
- {"id": model.get("id"), "name": model.get("display_name", model.get("id"))}
194
- for model in models_data['data']
195
- if model.get("id")
196
- ]
197
- debug_log(f"Anthropic: Found {len(formatted_models)} models via HTTP request")
198
- return formatted_models
199
- else:
200
- debug_log("Anthropic: Unexpected API response format")
201
- except Exception as http_err:
202
- debug_log(f"Anthropic: HTTP request error: {str(http_err)}")
203
- # Continue to fallback
204
-
205
- # If we reach here, both methods failed
206
- debug_log("Anthropic: All API methods failed, using fallback models")
207
- return fallback_models
208
-
209
- except Exception as e:
210
- debug_log(f"Anthropic: Failed to fetch models from API: {str(e)}")
211
- debug_log("Anthropic: Using fallback model list")
212
- return fallback_models
213
-
214
- def get_available_models(self) -> List[Dict[str, Any]]:
215
- """Get list of available Claude models by fetching from API."""
216
- # Reliable fallback list that doesn't depend on async operations
217
- fallback_models = [
218
- {"id": "claude-3-opus-20240229", "name": "Claude 3 Opus"},
219
- {"id": "claude-3-sonnet-20240229", "name": "Claude 3 Sonnet"},
220
- {"id": "claude-3-haiku-20240307", "name": "Claude 3 Haiku"},
221
- {"id": "claude-3-5-sonnet-20240620", "name": "Claude 3.5 Sonnet"},
222
- {"id": "claude-3-7-sonnet-20250219", "name": "Claude 3.7 Sonnet"},
192
+ # Simply set the active stream to None
193
+ # This will cause the generate_stream method to stop processing chunks
194
+ self._active_stream = None
195
+ logger.info("Anthropic stream cancelled successfully")
196
+
197
+ async def get_available_models(self) -> List[Dict[str, Any]]:
198
+ """Get list of available Anthropic models"""
199
+ # Anthropic doesn't have a models endpoint, so we return a static list
200
+ models = [
201
+ {
202
+ "id": "claude-3-opus-20240229",
203
+ "name": "Claude 3 Opus",
204
+ "description": "Most powerful model for highly complex tasks",
205
+ "context_window": 200000,
206
+ "provider": "anthropic"
207
+ },
208
+ {
209
+ "id": "claude-3-sonnet-20240229",
210
+ "name": "Claude 3 Sonnet",
211
+ "description": "Balanced model for most tasks",
212
+ "context_window": 200000,
213
+ "provider": "anthropic"
214
+ },
215
+ {
216
+ "id": "claude-3-haiku-20240307",
217
+ "name": "Claude 3 Haiku",
218
+ "description": "Fastest and most compact model",
219
+ "context_window": 200000,
220
+ "provider": "anthropic"
221
+ },
222
+ {
223
+ "id": "claude-3-5-sonnet-20240620",
224
+ "name": "Claude 3.5 Sonnet",
225
+ "description": "Latest model with improved capabilities",
226
+ "context_window": 200000,
227
+ "provider": "anthropic"
228
+ },
229
+ {
230
+ "id": "claude-3-7-sonnet-20250219",
231
+ "name": "Claude 3.7 Sonnet",
232
+ "description": "Newest model with advanced reasoning",
233
+ "context_window": 200000,
234
+ "provider": "anthropic"
235
+ }
223
236
  ]
224
237
 
225
- try:
226
- # Check if we're already in an event loop
227
- try:
228
- loop = asyncio.get_running_loop()
229
- in_loop = True
230
- except RuntimeError:
231
- in_loop = False
232
-
233
- if in_loop:
234
- # We're already in an event loop, create a future
235
- try:
236
- from app.main import debug_log
237
- except ImportError:
238
- debug_log = lambda msg: None
239
-
240
- debug_log("Anthropic: Already in event loop, using fallback models")
241
- return fallback_models
242
- else:
243
- # Not in an event loop, we can use asyncio.run
244
- models = asyncio.run(self._fetch_models_from_api())
245
- return models
246
- except Exception as e:
247
- try:
248
- from app.main import debug_log
249
- except ImportError:
250
- debug_log = lambda msg: None
251
-
252
- debug_log(f"Anthropic: Error in get_available_models: {str(e)}")
253
- return fallback_models
238
+ return models
app/api/base.py CHANGED
@@ -22,6 +22,11 @@ class BaseModelClient(ABC):
22
22
  """Generate a streaming text completion"""
23
23
  yield "" # Placeholder implementation
24
24
 
25
+ @abstractmethod
26
+ async def cancel_stream(self) -> None:
27
+ """Cancel any active streaming request"""
28
+ pass
29
+
25
30
  @abstractmethod
26
31
  def get_available_models(self) -> List[Dict[str, Any]]:
27
32
  """Get list of available models from this provider"""
app/api/ollama.py CHANGED
@@ -11,6 +11,14 @@ from .base import BaseModelClient
11
11
  # Set up logging
12
12
  logger = logging.getLogger(__name__)
13
13
 
14
+ # Custom exception for Ollama API errors
15
+ class OllamaApiError(Exception):
16
+ """Exception raised for errors in the Ollama API."""
17
+ def __init__(self, message: str, status_code: Optional[int] = None):
18
+ self.message = message
19
+ self.status_code = status_code
20
+ super().__init__(self.message)
21
+
14
22
  class OllamaClient(BaseModelClient):
15
23
  def __init__(self):
16
24
  from ..config import OLLAMA_BASE_URL
@@ -266,6 +274,29 @@ class OllamaClient(BaseModelClient):
266
274
  last_error = None
267
275
  self._active_stream_session = None # Track the active session
268
276
 
277
+ # First check if the model exists in our available models
278
+ try:
279
+ available_models = await self.get_available_models()
280
+ model_exists = False
281
+ available_model_names = []
282
+
283
+ for m in available_models:
284
+ model_id = m.get("id", "")
285
+ available_model_names.append(model_id)
286
+ if model_id == model:
287
+ model_exists = True
288
+ break
289
+
290
+ if not model_exists:
291
+ error_msg = f"Model '{model}' not found in available models. Available models include: {', '.join(available_model_names[:5])}"
292
+ if len(available_model_names) > 5:
293
+ error_msg += f" and {len(available_model_names) - 5} more."
294
+ logger.error(error_msg)
295
+ raise OllamaApiError(error_msg)
296
+ except Exception as e:
297
+ debug_log(f"Error checking model availability: {str(e)}")
298
+ # Continue anyway, the main request will handle errors
299
+
269
300
  while retries >= 0:
270
301
  try:
271
302
  # First try a quick test request to check if model is loaded
@@ -299,6 +330,17 @@ class OllamaClient(BaseModelClient):
299
330
  if response.status != 200:
300
331
  logger.warning(f"Model test request failed with status {response.status}")
301
332
  debug_log(f"Model test request failed with status {response.status}")
333
+
334
+ # Check if this is a 404 Not Found error
335
+ if response.status == 404:
336
+ error_text = await response.text()
337
+ debug_log(f"404 error details: {error_text}")
338
+ error_msg = f"Error: Model '{model}' not found on the Ollama server. Please check if the model name is correct or try pulling it first."
339
+ logger.error(error_msg)
340
+ # Instead of raising, yield the error message for user display
341
+ yield error_msg
342
+ return # End the generation
343
+
302
344
  raise aiohttp.ClientError("Model not ready")
303
345
  except (aiohttp.ClientError, asyncio.TimeoutError) as e:
304
346
  logger.info(f"Model cold start detected: {str(e)}")
@@ -326,6 +368,16 @@ class OllamaClient(BaseModelClient):
326
368
  logger.error("Failed to pull model")
327
369
  debug_log("Failed to pull model")
328
370
  self._model_loading = False # Reset flag on failure
371
+
372
+ # Check if this is a 404 Not Found error
373
+ if pull_response.status == 404:
374
+ error_text = await pull_response.text()
375
+ debug_log(f"404 error details: {error_text}")
376
+ # This is likely a model not found in registry
377
+ error_msg = f"Error: Model '{model}' not found in the Ollama registry. Please check if the model name is correct or try a different model."
378
+ logger.error(error_msg)
379
+ raise OllamaApiError(error_msg, status_code=404)
380
+
329
381
  raise Exception("Failed to pull model")
330
382
  logger.info("Model pulled successfully")
331
383
  debug_log("Model pulled successfully")
app/api/openai.py CHANGED
@@ -3,10 +3,15 @@ import asyncio
3
3
  from typing import List, Dict, Any, Optional, Generator, AsyncGenerator
4
4
  from .base import BaseModelClient
5
5
  from ..config import OPENAI_API_KEY
6
+ import logging
7
+
8
+ # Set up logging
9
+ logger = logging.getLogger(__name__)
6
10
 
7
11
  class OpenAIClient(BaseModelClient):
8
12
  def __init__(self):
9
13
  self.client = None # Initialize in create()
14
+ self._active_stream = None # Track active stream for cancellation
10
15
 
11
16
  @classmethod
12
17
  async def create(cls) -> 'OpenAIClient':
@@ -115,6 +120,10 @@ class OpenAIClient(BaseModelClient):
115
120
  max_tokens=max_tokens,
116
121
  stream=True,
117
122
  )
123
+
124
+ # Store the stream for potential cancellation
125
+ self._active_stream = stream
126
+
118
127
  debug_log("OpenAI: stream created successfully")
119
128
 
120
129
  # Yield a small padding token at the beginning for very short prompts
@@ -128,6 +137,11 @@ class OpenAIClient(BaseModelClient):
128
137
  debug_log("OpenAI: starting to process chunks")
129
138
 
130
139
  async for chunk in stream:
140
+ # Check if stream has been cancelled
141
+ if self._active_stream is None:
142
+ debug_log("OpenAI: stream was cancelled, stopping generation")
143
+ break
144
+
131
145
  chunk_count += 1
132
146
  try:
133
147
  if chunk.choices and hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
@@ -148,6 +162,9 @@ class OpenAIClient(BaseModelClient):
148
162
 
149
163
  debug_log(f"OpenAI: stream completed successfully with {chunk_count} chunks")
150
164
 
165
+ # Clear the active stream reference when done
166
+ self._active_stream = None
167
+
151
168
  # If we reach this point, we've successfully processed the stream
152
169
  break
153
170
 
@@ -168,6 +185,20 @@ class OpenAIClient(BaseModelClient):
168
185
  yield f"Error: {str(e)}"
169
186
  raise Exception(f"OpenAI streaming error: {str(e)}")
170
187
 
188
+ async def cancel_stream(self) -> None:
189
+ """Cancel any active streaming request"""
190
+ logger.info("Cancelling active OpenAI stream")
191
+ try:
192
+ from app.main import debug_log
193
+ debug_log("OpenAI: cancelling active stream")
194
+ except ImportError:
195
+ pass
196
+
197
+ # Simply set the active stream to None
198
+ # This will cause the generate_stream method to stop processing chunks
199
+ self._active_stream = None
200
+ logger.info("OpenAI stream cancelled successfully")
201
+
171
202
  async def get_available_models(self) -> List[Dict[str, Any]]:
172
203
  """Fetch list of available OpenAI models from the /models endpoint"""
173
204
  try: