chanter 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- chanter/__init__.py +4 -0
- chanter/galaxy_fitter.py +118 -0
- chanter/model_galaxy.py +257 -0
- chanter/utils/__init__.py +1 -0
- chanter/utils/filter_set.py +175 -0
- chanter/utils/make_igm_grid.py +234 -0
- chanter/utils/make_ssp_grid/ascii_files/bintoascii.py +9 -0
- chanter/utils/make_ssp_grid/csv_to_fits.py +24 -0
- chanter/utils/make_ssp_grid/get_ssp.py +32 -0
- chanter/utils/make_ssp_grid/load_fits_test.py +8 -0
- chanter/utils/make_ssp_grid/raw_files/bc03/src/rebuildfitsheader.py +625 -0
- chanter/utils/make_ssp_grid/raw_files/bc03/src/rebuildtimeheader.py +48 -0
- chanter-0.0.1.dist-info/METADATA +14 -0
- chanter-0.0.1.dist-info/RECORD +16 -0
- chanter-0.0.1.dist-info/WHEEL +5 -0
- chanter-0.0.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from astropy.io import fits
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
max_redshift = 10.
|
|
6
|
+
igm_redshifts = np.arange(0.0, max_redshift + 0.01, 0.01)
|
|
7
|
+
igm_wavelengths = np.arange(1.0, 1225.01, 1.0)
|
|
8
|
+
print(igm_redshifts.shape)
|
|
9
|
+
|
|
10
|
+
coefs = np.loadtxt("/Users/struanstevenson/Desktop/research/CHANTER/lyman_series_coefs_inoue_2014_table2.txt")
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def get_Inoue14_trans(rest_wavs, z_obs):
|
|
14
|
+
""" Calculate IGM transmission using Inoue et al. (2014) model. """
|
|
15
|
+
|
|
16
|
+
if isinstance(rest_wavs, float):
|
|
17
|
+
rest_wavs = np.array([rest_wavs])
|
|
18
|
+
|
|
19
|
+
tau_LAF_LS = np.zeros((39, rest_wavs.shape[0]))
|
|
20
|
+
tau_DLA_LS = np.zeros((39, rest_wavs.shape[0]))
|
|
21
|
+
tau_LAF_LC = np.zeros(rest_wavs.shape[0])
|
|
22
|
+
tau_DLA_LC = np.zeros(rest_wavs.shape[0])
|
|
23
|
+
|
|
24
|
+
# Populate tau_LAF_LS
|
|
25
|
+
for j in range(39):
|
|
26
|
+
|
|
27
|
+
if z_obs < 1.2:
|
|
28
|
+
wav_slice = ((rest_wavs*(1.+z_obs) > coefs[j, 1])
|
|
29
|
+
& (rest_wavs*(1.+z_obs)
|
|
30
|
+
< (1+z_obs)*coefs[j, 1]))
|
|
31
|
+
|
|
32
|
+
tau_LAF_LS[j, wav_slice] = (coefs[j, 2]
|
|
33
|
+
* (rest_wavs[wav_slice]
|
|
34
|
+
* (1.+z_obs)/coefs[j, 1])**1.2)
|
|
35
|
+
|
|
36
|
+
elif z_obs < 4.7:
|
|
37
|
+
wav_slice_1 = ((rest_wavs*(1.+z_obs) > coefs[j, 1])
|
|
38
|
+
& (rest_wavs*(1.+z_obs) < 2.2*coefs[j, 1]))
|
|
39
|
+
wav_slice_2 = ((rest_wavs*(1.+z_obs) > 2.2*coefs[j, 1])
|
|
40
|
+
& (rest_wavs*(1.+z_obs)
|
|
41
|
+
< (1+z_obs)*coefs[j, 1]))
|
|
42
|
+
|
|
43
|
+
tau_LAF_LS[j, wav_slice_1] = (coefs[j, 2]
|
|
44
|
+
* (rest_wavs[wav_slice_1]
|
|
45
|
+
* (1.+z_obs)/coefs[j, 1])**1.2)
|
|
46
|
+
|
|
47
|
+
tau_LAF_LS[j, wav_slice_2] = (coefs[j, 3]
|
|
48
|
+
* (rest_wavs[wav_slice_2]
|
|
49
|
+
* (1.+z_obs)/coefs[j, 1])**3.7)
|
|
50
|
+
|
|
51
|
+
else:
|
|
52
|
+
wav_slice_1 = ((rest_wavs*(1.+z_obs) > coefs[j, 1])
|
|
53
|
+
& (rest_wavs*(1.+z_obs) < 2.2*coefs[j, 1]))
|
|
54
|
+
|
|
55
|
+
wav_slice_2 = ((rest_wavs*(1.+z_obs) > 2.2*coefs[j, 1])
|
|
56
|
+
& (rest_wavs*(1.+z_obs) < 5.7*coefs[j, 1]))
|
|
57
|
+
|
|
58
|
+
wav_slice_3 = ((rest_wavs*(1.+z_obs) > 5.7*coefs[j, 1])
|
|
59
|
+
& (rest_wavs*(1.+z_obs)
|
|
60
|
+
< (1+z_obs)*coefs[j, 1]))
|
|
61
|
+
|
|
62
|
+
tau_LAF_LS[j, wav_slice_1] = (coefs[j, 2]
|
|
63
|
+
* (rest_wavs[wav_slice_1]
|
|
64
|
+
* (1.+z_obs)/coefs[j, 1])**1.2)
|
|
65
|
+
|
|
66
|
+
tau_LAF_LS[j, wav_slice_2] = (coefs[j, 3]
|
|
67
|
+
* (rest_wavs[wav_slice_2]
|
|
68
|
+
* (1.+z_obs)/coefs[j, 1])**3.7)
|
|
69
|
+
|
|
70
|
+
tau_LAF_LS[j, wav_slice_3] = (coefs[j, 4]
|
|
71
|
+
* (rest_wavs[wav_slice_3]
|
|
72
|
+
* (1.+z_obs)/coefs[j, 1])**5.5)
|
|
73
|
+
|
|
74
|
+
# Populate tau_DLA_LS
|
|
75
|
+
for j in range(39):
|
|
76
|
+
|
|
77
|
+
if z_obs < 2.0:
|
|
78
|
+
wav_slice = ((rest_wavs*(1.+z_obs) > coefs[j, 1])
|
|
79
|
+
& (rest_wavs*(1.+z_obs)
|
|
80
|
+
< (1+z_obs)*coefs[j, 1]))
|
|
81
|
+
|
|
82
|
+
tau_DLA_LS[j, wav_slice] = (coefs[j, 5]
|
|
83
|
+
* (rest_wavs[wav_slice]
|
|
84
|
+
* (1.+z_obs)/coefs[j, 1])**2.0)
|
|
85
|
+
|
|
86
|
+
else:
|
|
87
|
+
wav_slice_1 = ((rest_wavs*(1.+z_obs) > coefs[j, 1])
|
|
88
|
+
& (rest_wavs*(1.+z_obs) < 3.0*coefs[j, 1]))
|
|
89
|
+
|
|
90
|
+
wav_slice_2 = ((rest_wavs*(1.+z_obs) > 3.0*coefs[j, 1])
|
|
91
|
+
& (rest_wavs*(1.+z_obs) < (1+z_obs)
|
|
92
|
+
* coefs[j, 1]))
|
|
93
|
+
|
|
94
|
+
tau_DLA_LS[j, wav_slice_1] = (coefs[j, 5]
|
|
95
|
+
* (rest_wavs[wav_slice_1]
|
|
96
|
+
* (1.+z_obs)/coefs[j, 1])**2.0)
|
|
97
|
+
|
|
98
|
+
tau_DLA_LS[j, wav_slice_2] = (coefs[j, 6]
|
|
99
|
+
* (rest_wavs[wav_slice_2]
|
|
100
|
+
* (1.+z_obs)/coefs[j, 1])**3.0)
|
|
101
|
+
|
|
102
|
+
# Populate tau_LAF_LC
|
|
103
|
+
if z_obs < 1.2:
|
|
104
|
+
wav_slice = ((rest_wavs*(1.+z_obs) > 911.8)
|
|
105
|
+
& (rest_wavs*(1.+z_obs) < 911.8*(1.+z_obs)))
|
|
106
|
+
|
|
107
|
+
tau_LAF_LC[wav_slice] = (0.325*((rest_wavs[wav_slice]
|
|
108
|
+
* (1.+z_obs)/911.8)**1.2
|
|
109
|
+
- (((1+z_obs)**-0.9)
|
|
110
|
+
* (rest_wavs[wav_slice]
|
|
111
|
+
* (1.+z_obs)/911.8)**2.1)))
|
|
112
|
+
|
|
113
|
+
elif z_obs < 4.7:
|
|
114
|
+
wav_slice_1 = ((rest_wavs*(1.+z_obs) > 911.8)
|
|
115
|
+
& (rest_wavs*(1.+z_obs) < 911.8*2.2))
|
|
116
|
+
|
|
117
|
+
wav_slice_2 = ((rest_wavs*(1.+z_obs) > 911.8*2.2)
|
|
118
|
+
& (rest_wavs*(1.+z_obs) < 911.8*(1.+z_obs)))
|
|
119
|
+
|
|
120
|
+
tau_LAF_LC[wav_slice_1] = (((2.55*10**-2)*((1+z_obs)**1.6)
|
|
121
|
+
* (rest_wavs[wav_slice_1]
|
|
122
|
+
* (1.+z_obs)/911.8)**2.1)
|
|
123
|
+
+ (0.325*((rest_wavs[wav_slice_1]
|
|
124
|
+
* (1.+z_obs)/911.8)**1.2))
|
|
125
|
+
- (0.25*((rest_wavs[wav_slice_1]
|
|
126
|
+
* (1.+z_obs)/911.8)**2.1)))
|
|
127
|
+
|
|
128
|
+
tau_LAF_LC[wav_slice_2] = ((2.55*10**-2)
|
|
129
|
+
* (((1.+z_obs)**1.6)
|
|
130
|
+
* ((rest_wavs[wav_slice_2]
|
|
131
|
+
* (1.+z_obs)/911.8)**2.1)
|
|
132
|
+
- ((rest_wavs[wav_slice_2]
|
|
133
|
+
* (1.+z_obs)/911.8)**3.7)))
|
|
134
|
+
|
|
135
|
+
else:
|
|
136
|
+
wav_slice_1 = ((rest_wavs*(1.+z_obs) > 911.8)
|
|
137
|
+
& (rest_wavs*(1.+z_obs) < 911.8*2.2))
|
|
138
|
+
|
|
139
|
+
wav_slice_2 = ((rest_wavs*(1.+z_obs) > 911.8*2.2)
|
|
140
|
+
& (rest_wavs*(1.+z_obs) < 911.8*5.7))
|
|
141
|
+
|
|
142
|
+
wav_slice_3 = ((rest_wavs*(1.+z_obs) > 911.8*5.7)
|
|
143
|
+
& (rest_wavs*(1.+z_obs) < 911.8*(1.+z_obs)))
|
|
144
|
+
|
|
145
|
+
tau_LAF_LC[wav_slice_1] = (((5.22*10**-4)*((1+z_obs)**3.4)
|
|
146
|
+
* (rest_wavs[wav_slice_1]
|
|
147
|
+
* (1.+z_obs)/911.8)**2.1)
|
|
148
|
+
+ (0.325*(rest_wavs[wav_slice_1]
|
|
149
|
+
* (1.+z_obs)/911.8)**1.2)
|
|
150
|
+
- ((3.14*10**-2)*((rest_wavs[wav_slice_1]
|
|
151
|
+
* (1.+z_obs)/911.8)**2.1)))
|
|
152
|
+
|
|
153
|
+
tau_LAF_LC[wav_slice_2] = (((5.22*10**-4)*((1+z_obs)**3.4)
|
|
154
|
+
* (rest_wavs[wav_slice_2]
|
|
155
|
+
* (1.+z_obs)/911.8)**2.1)
|
|
156
|
+
+ (0.218*((rest_wavs[wav_slice_2]
|
|
157
|
+
* (1.+z_obs)/911.8)**2.1))
|
|
158
|
+
- ((2.55*10**-2)*((rest_wavs[wav_slice_2]
|
|
159
|
+
* (1.+z_obs)
|
|
160
|
+
/ 911.8)**3.7)))
|
|
161
|
+
|
|
162
|
+
tau_LAF_LC[wav_slice_3] = ((5.22*10**-4)
|
|
163
|
+
* (((1+z_obs)**3.4)
|
|
164
|
+
* (rest_wavs[wav_slice_3]
|
|
165
|
+
* (1.+z_obs)/911.8)**2.1
|
|
166
|
+
- (rest_wavs[wav_slice_3]
|
|
167
|
+
* (1.+z_obs)/911.8)**5.5))
|
|
168
|
+
|
|
169
|
+
# Populate tau_DLA_LC
|
|
170
|
+
if z_obs < 2.0:
|
|
171
|
+
wav_slice = ((rest_wavs*(1.+z_obs) > 911.8)
|
|
172
|
+
& (rest_wavs*(1.+z_obs) < 911.8*(1.+z_obs)))
|
|
173
|
+
|
|
174
|
+
tau_DLA_LC[wav_slice] = (0.211*((1+z_obs)**2.)
|
|
175
|
+
- (7.66*10**-2)*(((1+z_obs)**2.3)
|
|
176
|
+
* (rest_wavs[wav_slice]
|
|
177
|
+
* (1.+z_obs)/911.8)**-0.3)
|
|
178
|
+
- 0.135*((rest_wavs[wav_slice]
|
|
179
|
+
* (1.+z_obs)/911.8)**2.0))
|
|
180
|
+
|
|
181
|
+
else:
|
|
182
|
+
wav_slice_1 = ((rest_wavs*(1.+z_obs) > 911.8)
|
|
183
|
+
& (rest_wavs*(1.+z_obs) < 911.8*3.0))
|
|
184
|
+
|
|
185
|
+
wav_slice_2 = ((rest_wavs*(1.+z_obs) > 911.8*3.0)
|
|
186
|
+
& (rest_wavs*(1.+z_obs) < 911.8*(1.+z_obs)))
|
|
187
|
+
|
|
188
|
+
tau_DLA_LC[wav_slice_1] = (0.634 + (4.7*10**-2)*(1.+z_obs)**3.
|
|
189
|
+
- ((1.78*10**-2)*((1.+z_obs)**3.3)
|
|
190
|
+
* (rest_wavs[wav_slice_1]
|
|
191
|
+
* (1.+z_obs)/911.8)**-0.3)
|
|
192
|
+
- (0.135*(rest_wavs[wav_slice_1]
|
|
193
|
+
* (1.+z_obs)/911.8)**2.0)
|
|
194
|
+
- 0.291*(rest_wavs[wav_slice_1]
|
|
195
|
+
* (1.+z_obs)/911.8)**-0.3)
|
|
196
|
+
|
|
197
|
+
tau_DLA_LC[wav_slice_2] = ((4.7*10**-2)*(1.+z_obs)**3.
|
|
198
|
+
- ((1.78*10**-2)*((1.+z_obs)**3.3)
|
|
199
|
+
* (rest_wavs[wav_slice_2]
|
|
200
|
+
* (1.+z_obs)/911.8)**-0.3)
|
|
201
|
+
- ((2.92*10**-2)
|
|
202
|
+
* (rest_wavs[wav_slice_2]
|
|
203
|
+
* (1.+z_obs)/911.8)**3.0))
|
|
204
|
+
|
|
205
|
+
tau_LAF_LS_sum = np.sum(tau_LAF_LS, axis=0)
|
|
206
|
+
tau_DLA_LS_sum = np.sum(tau_DLA_LS, axis=0)
|
|
207
|
+
|
|
208
|
+
tau = tau_LAF_LS_sum + tau_DLA_LS_sum + tau_LAF_LC + tau_DLA_LC
|
|
209
|
+
|
|
210
|
+
return np.exp(-tau)
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def make_table(z_array, rest_wavs):
|
|
214
|
+
""" Make up the igm absorption table used by bagpipes. """
|
|
215
|
+
|
|
216
|
+
print("BAGPIPES: Generating IGM absorption table.")
|
|
217
|
+
|
|
218
|
+
d_IGM_grid = np.zeros((z_array.shape[0], rest_wavs.shape[0]))
|
|
219
|
+
|
|
220
|
+
for i in range(z_array.shape[0]):
|
|
221
|
+
d_IGM_grid[i, :] = get_Inoue14_trans(rest_wavs, z_array[i])
|
|
222
|
+
|
|
223
|
+
hdulist = fits.HDUList(hdus=[fits.PrimaryHDU(),
|
|
224
|
+
fits.ImageHDU(name="trans", data=d_IGM_grid),
|
|
225
|
+
fits.ImageHDU(name="wavs", data=rest_wavs),
|
|
226
|
+
fits.ImageHDU(name="zred", data=z_array)])
|
|
227
|
+
|
|
228
|
+
if os.path.exists("d_igm_grid_inoue14.fits"):
|
|
229
|
+
os.system("rm " + "d_igm_grid_inoue14.fits")
|
|
230
|
+
|
|
231
|
+
hdulist.writeto("d_igm_grid_inoue14.fits")
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
make_table(igm_redshifts, igm_wavelengths)
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from astropy.table import Table
|
|
3
|
+
import pandas as pd
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
from astropy.io import fits
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
base22 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m22_ssp.csv', delimiter=',')
|
|
9
|
+
base32 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m32_ssp.csv', delimiter=',')
|
|
10
|
+
base42 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m42_ssp.csv', delimiter=',')
|
|
11
|
+
base52 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m52_ssp.csv', delimiter=',')
|
|
12
|
+
base62 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m62_ssp.csv', delimiter=',')
|
|
13
|
+
base72 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m72_ssp.csv', delimiter=',')
|
|
14
|
+
base82 = np.genfromtxt('/Users/struanstevenson/Desktop/research/CHANTER/ssp/m82_ssp.csv', delimiter=',')
|
|
15
|
+
|
|
16
|
+
master_base = np.array((base22, base32, base42, base52, base62, base72, base82))
|
|
17
|
+
|
|
18
|
+
hdul = fits.HDUList()
|
|
19
|
+
hdul.append(fits.PrimaryHDU())
|
|
20
|
+
|
|
21
|
+
for img in master_base:
|
|
22
|
+
hdul.append(fits.ImageHDU(data=img))
|
|
23
|
+
|
|
24
|
+
hdul.writeto('/Users/struanstevenson/Desktop/research/CHANTER/ssp/ssps.fits')
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from astropy.table import Table
|
|
3
|
+
import pandas as pd
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
|
|
6
|
+
def get_ssp(ascii_file):
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
ages = pd.read_table(ascii_file, sep='\s+', nrows=1, header=None, dtype='float')
|
|
10
|
+
ages = ages.to_numpy()[0][1:]
|
|
11
|
+
ages_df = pd.DataFrame(ages, columns=['age'])
|
|
12
|
+
|
|
13
|
+
waves = pd.read_table(ascii_file, sep='\s+', skiprows=6, nrows=1, header=None, dtype='float')
|
|
14
|
+
waves = waves.drop(waves.columns[0], axis=1)
|
|
15
|
+
|
|
16
|
+
flux = pd.read_table(ascii_file, sep='\s+', skiprows=7, nrows=221, header=None)
|
|
17
|
+
flux = flux.drop(flux.columns[0], axis=1)
|
|
18
|
+
flux = flux.drop(flux.columns[-53:], axis=1)
|
|
19
|
+
flux.columns = waves.to_numpy()[0]
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
base = ages_df.join(flux)
|
|
23
|
+
|
|
24
|
+
return base
|
|
25
|
+
|
|
26
|
+
specs = ['m22', 'm32', 'm42', 'm52', 'm62', 'm72', 'm82']
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
for spec in specs:
|
|
30
|
+
df = get_ssp('/Users/struanstevenson/Desktop/research/CHANTER/ssp/ascii_files/bc2003_hr_xmiless_'+spec+'_chab_ssp.ised_ASCII')
|
|
31
|
+
#df.to_csv('./CHANTER/ssp/'+spec+'_ssp.csv', index=False)
|
|
32
|
+
|